Compiler Design

Lecture 13: Code generation : Memory management and

function call
(EaC Chapter 6&7)

Christophe Dubach
Winter 2022

Timestamp: 2022/02/15 11:05:00

Table of contents

Memory management
Static Allocation & Alignment
Stack allocation

Address of expressions

Function calls

Memory management

Static versus Dynamic

- Static allocation: storage can be allocated directly by the
compiler by simply looking at the program at compile-time. This
implies that the compiler can infer storage size information.

- Dynamic allocation: storage needs to be allocated at run-time
due to unknown size or function calls.

Heap, Stack, Static storage

Static storage:
- Text: instructions

- Data
high .
address stack - global variables
"""""" - string literals
) - global arrays of fixed size
dynamic
allocation
...... T Dynamic Storage:
hear | - Heap: malloc
data tati
el stack
address - local variables

- function arguments/return values
- saved registers
- register spilling (register allocation)

Example

high
address stack
dynamic
allocation
heap
data static
o text allocation
address

char c; data
int arr[4]; data
void foo() {
int arr2[3]; stack
intx ptr = stack

(int*) malloc(sizeof(int)*2);

int b; stack

bar("hello”); data

heap

Memory management

Static Allocation & Alignment

Typically

- int and pointer types (e.g. charx, intx, void«) are 32 bits (4 byte).
- char is 1 byte

However, it depends on the data alignment of the architecture.
A single char might occupy 4 bytes if data alignment is 4 bytes.

Example (static allocation):

.data .data

c: .space 1 # char c: .space 4 # char

i: .space 4 # int i: .space 4 # int

.text .text

1b $to, c b $to, c

w $t1, i # error! w $t1, i # all good!
Miss-aligned load With padding added

® forbidden! All good © 6

In a Cstructure, all values are aligned to the data alignment of the
architecture (unless packed directive is used).

Example C code (static allocation)

struct myStruct_t {
char c;
int x;

|5

struct myStruct_t ms;

In this example, it is as if the value c uses 4 bytes of data.

.text

.data
ms_myStruct_t_c: .space 4
ms_myStruct_t_x: .space 4

In contrast to structs, arrays are always compact in C with extra
padding added in the end if required.

Example C code (static allocation):

char arr[7];
int i;

Corresponding assembly code:

.data
arr: .space 8
113 .space 4

.text

Memory management

Stack allocation

Stack variable allocation

The compiler needs to keep track of local variables in functions.

These cannot be allocated statically (i.e. text section).

int foo(int i) {

int a;

a = 1;

if (i==0)

foo (1); If a allocated statically, what is printed?

print(a); 1

a = 2;
} 2
void bar() {

foo (0);

}

Local variables must be stored on the stack!

How to keep track of local variables on the stack?
= Could use the stack pointer.

A Problem: stack pointer can move.

- e.g. dynamic memory allocation on the stack

Solution: use another pointer, the frame pointer

Frame pointer

- The frame pointer must be initialised to the value of the stack
pointer, just when entering the function.

- Access to variables allocated on the stack can then be
determined as a fixed offset from the frame pointer.

- The frame pointer (FP) always points

to the beginning of the local

variables of the current function,

just after the arguments (if any). FP —

- The stack pointer (SP) always points
at the top of the stack (points to the
last element pushed).

SP—

call stack

(arguments)

(return value)

return address

frame pointer

saved registers

local variables

foo
stack
frame

bar
stack
frame

Memory management

Address of expressions

Visitor for generating addresses

Sometimes, the compiler needs to know the address of an
expression (e.g. assignment, address-of operator):

struct vec_t {
int x;
int y;

b

void foo () {
int i;
struct vec_t v;
int arr[10];
= 2;
V.X = 3;
arr[2] = 5;

}

Visitor for generating addresses

Specialized visitor that produces the address of an expression:
AddrGen Visitor

Register visitBinOp (BinOp bo) {
error(”Cannot request address for BinOP”);

}

Register visitintLiteral(IntLiteral it) {
error(”Cannot request address for IntLiteral”);

}

Register visitVarExpr(VarExpr v) {
Register resReg = newVirtualRegister ();
if (v.vd.isStaticAllocated())

emit(”la”, resReg, v.vd.label);

else if (v.cd.isStackAllocated())

return resReg;

}

The AddrGen visitor will be called from the “normal” code generator
visitor when needed:

Code generator visitor

Register visitAssign (Assign a) {
Register addrReg = a.lhs.accept(new AddrGen());
Register valReg = a.rhs.accept(this);
emit("sw”, valReg, addrReg);
return null; // different from C

14

Examples above have assumed variable stores an interger.

In case a variable represents an array or struct, you have to be
careful:

- array are passed by reference
(treat them exactly like pointers, no big deal)
- struct are passed by values
Assigning between two structs means copying field by field. Hence

your code generator must check the type of variables when
encountering an assignment and handle structures correctly.

Similar problem for struct and function call. Arguments and return
values that are struct are passed by values.

Code with struct assignment:

Equivalent to:

struct vec_t {
int x; int vy;

1

void foo() {
struct vec_t v1;
struct vec_t v2;

vl = v2;
1
Q Pro tip

struct vec_t {
int x; intvy;

b

void foo () {
struct vec_t v1;
struct vec_t v2;
Vl.X = Vv2.X;
vli.y = v2.y;

Instead of handling this complexity in the code generator, write a
pass that runs before code generation to transform the AST to
“inline” the struct assignments field by field.

16

Function calls

Function calls

What happens during a function call?

int bar(int a) { - The caller needs to pass the

} return 3+a; arguments to the callee

void foo() { - The callee needs to pass the return
value to the caller
bar(4)
But also:

} - The values stored in registers needs

- foo is the caller to be saved somehow.

- Need to remember where we came
from to return to the call site.

* bar is the callee

Possible convention:
- precall:
- pass the arguments via registers or
push on the stack
- reserve space on stack for return value
(if needed)
-+ push return address on the stack
- postreturn:
- restore return address from the stack
- read the return value from dedicated

register or stack
- reset stack pointer

function foo

function bar

prologue
precall
call
return
postreturn
epilogue
call stack
foo
(arguments) stack
(return value) frame
return address
FP — frame pointer

saved registers

bar
stack

sp local variables

frame

- prologue:
- push frame pointer onto the stack
- initialise the frame pointer
- save all the saved registers onto the

stack
- reserve space on the stack for local

variables
- epilogue:
- restore saved registers from the stack

restore the stack pointer
- restore the frame pointer from the stack

function foo

function bar

precall

prologue

call

return

postreturn

epilogue

call stack

(arguments)

(return value)

return address

FP — frame pointer

saved registers

sp local variables

foo
stack
frame

bar
stack
frame

19

@ Other conventions are possible.
To simplify (for your project), we suggest you:

- save all the registers used by a function onto the stack;

- pass all arguments and return value via the stack
(this is needed anyway when there are more than four
arguments).

20

Example (callee)

int bar(int a) {

bar:

addi
sw

move
addi
sw

addi

sw

addi

lw
add

sw

lw
lw

addi

int b;
return 3+a;

Ssp, $sp, -4 #

Sfp, ($sp) # push frame pointer on the stack
fp, Ssp # initialise the frame pointer
Ssp, Ssp, -4 #

$to, ($sp) # push $t0 onto the stack

Ssp, Ssp, -4 #

$t1, (Ssp) # push $t1 onto the stack

Ssp, Ssp, -4 # reserve space on stack for b
$t0, 3 # load 3 into $t0

$t1, 12(Sfp) # load first argument from stack
$to, $to, St1 # add $t0 and first argument

$to, 8(Sfp) # copy the return value on stack
$t0, -4(sfp) # restore $t0

S$t1, -8($fp) # restore St1

Ssp, $sp, 16 # restore stack pointer

Sfp, (Sfp) # restore the frame pointer

Sra # jumps to return address

21

Example (caller)

void foo() {

bar (4)

foo:

Lli sto, 4

addi $sp, $sp, -4
sw $to, (Ssp)
addi $sp, Ssp, -4

addi $sp, $sp, -4
sw $ra, (Ssp)

jal bar
lw Sra, ($sp)
lw $to, 4(Ssp)

addi $sp, $sp, 12

ERE Y

=

=3

=*

£3

£

=

push argument on stack

reserve space on stack

push return address on
call function

restore return address
read return value from

reset stack pointer

for return value

stack

from the stack

stack

22

Beware of passing structs! Needs to be passed by value.

C code example:

Equivalent C code:

struct vec_t {
int x;
int y;

}

int foo(struct vec_t v)
return v.x;

}

void bar() {
struct vect_t myvec;
int i;
i = foo(myvec);

}

{

struct vec_t {
int x;
int y;

}

void foo(int x, int y){
struct vec_t v;
V.X = X; V.Y = y;
return v.x;

}
void bar() {

struct vect_t myvec;

int i;

i = foo(myvec.x, myvec.y);
}

23

Beware of returning structs! Needs to be passed by value.

Equivalent C code:

C code example:
struct vec_t {
struct vec_t { int x;
int x; int y;
int y; }
}
void foo(struct vec_t % result){
struct vec_t foo() { struct vec_t v;
struct vec_t v; v.x = 0; v.y = 1;
v.x = 0; v.y = 1; *result = v;
return v; }
}
void bar() {
void bar() { struct vect_t myvec;
struct vect_t myvec; struct vect_t result;
myvec = foo (); foo(&result);
} myvec = result;
}
2%

Q Pro tip
Instead of handling this complexity in the code generator, you

could write a pass that runs before code generation to transform
the AST to deal with returning/passing struct to functions.

You may have to call this pass together with other transformations
passes iteratively until nothing changes in the AST (e.g. in case of
nested structures).

25

Next lecture

Naive register allocator.

26

	Memory management
	Static Allocation & Alignment
	Stack allocation
	Address of expressions

	Function calls

