
Compiler design

Lecture 6: Bottom-Up Parsing

Christophe Dubach

21 January 2021

1



Top-Down Parser

A Top-Down parser builds a derivation by working from the

start symbol to the input sentence. ü

Bottom-Up Parser

A Bottom-Up parser builds a derivation by working from the

input sentence back to the start symbol. þ

2



Bottom-Up Parser

Example: CFG

Goal ::= a A B e

A ::= A b c

A ::= b

B ::= d

Input: abbcde

Bottom-Up Parsing

abbcde

aAbcde

aAde

aABe

Goal

Note that the production follows a rightmost derivation.

3



Bottom-Up Parser

Example: CFG

Goal ::= a A B e

A ::= A b c

A ::= b

B ::= d

Input: abbcde

Bottom-Up Parsing

abbcde

aAbcde

aAde

aABe

Goal

Note that the production follows a rightmost derivation.

3



Bottom-Up Parser

Example: CFG

Goal ::= a A B e

A ::= A b c

A ::= b

B ::= d

Input: abbcde

Bottom-Up Parsing

abbcde

aAbcde

aAde

aABe

Goal

Note that the production follows a rightmost derivation.

3



Bottom-Up Parser

Example: CFG

Goal ::= a A B e

A ::= A b c

A ::= b

B ::= d

Input: abbcde

Bottom-Up Parsing

abbcde

aAbcde

aAde

aABe

Goal

Note that the production follows a rightmost derivation.

3



Bottom-Up Parser

Example: CFG

Goal ::= a A B e

A ::= A b c

A ::= b

B ::= d

Input: abbcde

Bottom-Up Parsing

abbcde

aAbcde

aAde

aABe

Goal

Note that the production follows a rightmost derivation.

3



Bottom-Up Parser

Example: CFG

Goal ::= a A B e

A ::= A b c

A ::= b

B ::= d

Input: abbcde

Bottom-Up Parsing

productions

abbcde

aAbcde

aAde

aABe

Goal

reductions

Note that the production follows a rightmost derivation.

3



Leftmost vs Rightmost derivation



Leftmost vs Rightmost derivation

Example: CFG

Goal ::= a A B e

A ::= A b c | b

B ::= d

Leftmost derivation

Goal

aABe

aAbcBe

abbcBe

abbcde

LL parsers

Rightmost derivation

Goal

aABe

aAde

aAbcde

abbcde

LR parsers

4



Shift-Reduce Parser



Shift-reduce parser

� It consists of a stack and the input

� It uses four actions:

1. shift: next symbol is shifted onto the stack

2. reduce: pop the symbols Yn, . . . ,Y1 from the stack that form the

right member of a production X ::= Yn, . . . ,Y1

3. accept: stop parsing and report success

4. error: error reporting routine

How does the parser know when to shift or when to reduce?

Similarly to a top-down parser, could back-track if wrong decision made

or look ahead to decide.

Can build a DFA to decide when we should shift or reduce.

5



Shift-reduce parser

Example: CFG

Goal ::= a A B e

A ::= A b c | b

B ::= d

Operation:

Input

abbcde
Stack

6



Shift-reduce parser

Example: CFG

Goal ::= a A B e

A ::= A b c | b

B ::= d

Operation: shift

Input

bbcde

Stack
a

6



Shift-reduce parser

Example: CFG

Goal ::= a A B e

A ::= A b c | b

B ::= d

Operation: shift

Input

bcde

Stack

ab

6



Shift-reduce parser

Example: CFG

Goal ::= a A B e

A ::= A b c | b

B ::= d

Operation:

Input

bcde

Stack

ab

Choice here: shift or reduce?

Can lookahead one symbol to make decision.

(Knowing what to do is not explain here, need to analyse the grammar,

see EaC§3.5)

6



Shift-reduce parser

Example: CFG

Goal ::= a A B e

A ::= A b c | b

B ::= d

Operation: reduce

Input

bcde

Stack

aA

6



Shift-reduce parser

Example: CFG

Goal ::= a A B e

A ::= A b c | b

B ::= d

Operation: shift

Input

cde

Stack

aAb

6



Shift-reduce parser

Example: CFG

Goal ::= a A B e

A ::= A b c | b

B ::= d

Operation:

Input

cde

Stack

aAb

Choice here: shift or reduce?

Can lookahead one symbol to make decision.

(Knowing what to do is not explain here, need to analyse the grammar,

see EaC§3.5)

6



Shift-reduce parser

Example: CFG

Goal ::= a A B e

A ::= A b c | b

B ::= d

Operation: shift

Input

de

Stack

aAbc

6



Shift-reduce parser

Example: CFG

Goal ::= a A B e

A ::= A b c | b

B ::= d

Operation: reduce

Input

de

Stack

aA

6



Shift-reduce parser

Example: CFG

Goal ::= a A B e

A ::= A b c | b

B ::= d

Operation: shift

Input
e

Stack

aAd

6



Shift-reduce parser

Example: CFG

Goal ::= a A B e

A ::= A b c | b

B ::= d

Operation: reduce

Input
e

Stack

aAB

6



Shift-reduce parser

Example: CFG

Goal ::= a A B e

A ::= A b c | b

B ::= d

Operation: shift

Input
Stack

aABe

6



Shift-reduce parser

Example: CFG

Goal ::= a A B e

A ::= A b c | b

B ::= d

Operation: reduce

Input
Stack

Goal

6



Top-Down vs Bottom-Up Parsing

Top-Down

O Easy to write by hand

O Easy to integrate with the compiler

N Supports a smaller class of grammars

Cannot handle left recursion in the grammar

N Recursion might lead to performance issues

O Table encoding possible for better performance

Bottom-Up

O Very efficient (no recursion)

O Supports a larger class of grammar

Handles left/right recursion in the grammar

N Harder to write by hand

⇒Requires generation tools

N Rigid integration to compiler

7



Expressive Power of Grammars

Context-Free Grammars

LR(1)LL(1)

RG

LL(k) LR(k)

8



Last words

Context-Free Grammars

LR(1)LL(1)

RG

LL(k) LR(k)

Language 6= Grammar

� A language can be defined by more than one grammar

� These grammars might be of different “complexity”

(LL(1), LL(k), LR(k))

� ⇒ Language complexity 6= grammar complexity

9



Next lecture

� Parse tree and abstract syntax tree

10


	Leftmost vs Rightmost derivation
	Shift-Reduce Parser

