Compiler Design

Lecture 21: Object Oriented Features

Christophe Dubach
Winter 2021

Some content inspired from Dr. Michel Schinz's lecture on Advanced Compiler Construction, EPFL 2016

Timestamp: 2021/04/09 13:16:29

Object-Oriented features in Java

class A {

int x;

float foo() {...}
}

class B extends A {
int y;
float foo() {...} features?
float bar() {...}

}

How does the compiler supports object oriented

e Where is b.x in memory?

e Where is the implementationof a.foo()?
class Main {
void f(A a, B b) {
a.foo();
b.x;

}
}

Object-Oriented Features

Object Layout

Object Layout: Single inheritance

In a single-inheritage language, a class can only inherit from a single

superclass.

For such languages, fields in an object can simply be laid out sequentially,
starting from the ones from superclass.

This means that a field declared in a class will always be in the same
location, no matter what the instance type of the object of that class is.

class A {
int x;
float foo() {...}

}

class B extends A {
int y;
float foo() {...}
float bar() {...}

}

class Main {
void f(A a, B b) {
a.foo ();
b.y;
b.x
a.x;
}
}

Object layout for A
[relx |]cassa Field x is at the

remepy_ o] same offset from
] the start of the
Ol Iayﬁqeryt e lime object in both
feld x | class cases!
instance ptr

Assuming instance pointer in $t0:
Code for b.y:

1w $t1, 8($t0)

Code for b.x:

1w $t1, 4($t0)

Code for a.x (a can be instance of A or B):

1w $t1, 4($t0)

Object Layout: Multiple inheritance

In the case of multiple-inheritage language, object layout becomes more

complicated.

Unidirectional object layout

class
int

class
int

class
int

C extends A&B{
z;

Object layout for A

s

Object layout for B

instance ptr

Object layout for C

instance ptr

field y class B

field z class
field y class B

field x class A

Wasted space!

And requires to know, ahead of time, the entire class hierarchy.

Bidirectional object layout

Idea: store fields above and below the object instance pointer.

class A {
int x;

class B {
int y;

}

class C extends A&B{
int z;

However:

Object layout for A

carceps

Object layout for B
[vew |

instance ptr

fieldy J class B

Object layout for C

instance ptr

field z

field x

field y

] class C

l class A

] class B

No more wasted
space!

e Requires to know, ahead of time, the entire class hierarchy;

e Might not always be possible to avoid wasted space.

Accessor methods

In the context of multiple inheritance, we can take an alternative
approach:

e lay out the fields from the class freely (in the most compact
manner); and

e use getter and setter accessor methods and rely on the method
dispatch mechanism.

The drawback: accessor methods are much slower than direct access to
the fields.

Object layout summary

Problem is easy in the case of single-inheritance languages (e.g. Java).
The problem becomes more complex in the case of a multiple-inheritance
languages (e.g. C++):

e trade-off between speed and space;

e might require access to the whole class hierarchy = close-world;

e or, for instance, rely on accessor methods / dispatching.

Object-Oriented Features

Method Dispatch

Method Dispatch

Class methods

The problem: given a class and a method name (and its arguments), find
the method’s code to execute.

Trivially solved at compile time (static) with name analysis.
Instance methods

The problem: given an object instance and a method name (and its
arguments), find the method’s code to execute.

Not possible (in general) to solve at compile time in the presence of
inheritance: the specific method's code to execute depends on the
runtime type of the object!

class A {
void foo () {print(a)}
}

class B extends A {
void foo() {print(b)}
}

class Main {
void f {
A a = new A();
B bl = new B();
A b2 = new B();
a.foo(); // prints
bl.foo(); // prints
b2.foo (); // prints

o L

When calling foo, the runtime has
to decide between the two
implementations based on the
instance type of the object.

This is generally what we refer to as
dynamic dispatch.

10

Dynamic dispatch with Virtual tables

class A {

void foo (){ print(”foo-a")}
void bar()(prinf(”"bar_a”)}

}

class B extends A {
void bar(){print(”"bar_b”)}
void baz(){print(”"baz_b”)}

}

class A
code for foo
object A Virtual Table for A
instance ptr A VTBL ptr
S . code for bar
class B
oriect® code for bar
instance ptr B VTBL ptr
- code for baz

Inherited methods from the superclass are at the same fixed position in

the virtuable table.

11

class A

code for foo

Virtual Table for A

object A

instance ptr A VTBL ptr
—_—

class B

object B

code for bar

foo
instance ptr B VTBL ptr
— code for baz

Assuming variable p declared with type A, code for p.bar():

assuming p stored in $tO

1w $t1, 0($t0) // get virtual table pointer

1w $t2, 4($t1) // get address of code for subroutine bar
jalr $t2 // jump&link to subroutine

Depending on the instance type of p, the corresponding bar method will
be called.

12

Accessing fields from an instance method

Consider the following example:

class A {

int i;

void inc() { i = i+1 }
}

How does the implementation of inc reach the instance variable 17

In fact, the code above looks more like this:

class A {

int i;

void inc() { this.i = this.i+1 }
}

Okay, but where do we get the reference this from?

13

Easy, it is passed as an argument to the instance method:

void inc(A this) { this.i = this. i+l }

So when you write:

Ap=...;
p.inc();

@ what is really happening being the scence is that you virtually
dispatch to the implemention of inc passing p as the first argument:

Ap= ..
p-inc(p);

14

Multiple inheritance

What have been shown above works for single-inheritance.

However, in the presence of multiple-inheritance, problems start arising

again as we cannot guarantee that the methods are always at the same
fixed position in the virtual table:

object A Virtual Table for A
class A { bar
void bar () { .. } instance ptr A VTBL ptr foo
void foo (){...}
} object B Virtual Table for B
class B { baz
void bar () { L. } instance ptr B VTBL ptr bar
void baz(){...}
} object € Virtual Table for C
class C extends A&B{ pag
VOid fOO () { s } instance ptr C VTBL ptr iar_
} 3
foo

@ Back to square one!

15

Luckily solutions exist, based on the idea of embeddeding layout of
superclasses into the subclass:

cllass A { Layout for C:
s > field z |

}

class B { |
int y; field y

}

class C extends A&B{ - g
int z; field x

} instance ptr

There is one virtual table for each super class in the object and the
virtual table is chosen based on the static type of the instance ptr.

class C

class B

class A

16

class A {

int x;

void bar(){...}
void foo (){...}
}

class B {

int y;

void bar(){...}
void baz(){...}

}
class C extends A&B{

int z;
void foo (){...}
}

Layout for C:

field z

field y

field x

instance ptr

class C

class B

class A

17

Layout and virtual tables for object A and C:

Virtual Table A class A
bject A
S bar code for foo
field x —
foo
instance ptr A VTBL ptr
Virtual Table C
o0 class B
== -
object C baz
5 code for baz
= Virtual Table 2 -
VTBL ptr bar
fiel class C
EEY baz
1
WAL (i Virtual TabI7A
field x
bar
i VTBL pti
instance ptr C ptr \\ -

Key property: instance methods of given class are always in the same
location in the corresponding virtual table.

Given the following code:

Cc = new C();
A ac = new C();

A a = new A();

c.foo();

ac.bar();

a.bar();

c.bar(); <— compile time error!

To make this work, we add an offset to the instance pointer based on the
static type which will bring us to the right table.

19

This is not the end of the story, but we won't cover more in this lecture.
Additional techniques exist to make this efficient:

e Trampoline (used commonly in C++ implementations);
e Row displacement tables;

e Inline caching (great when using a Just-In-Time (JIT) compiler).
Summary:

e Single-inheritance languages are easy to implement

e Layout the fields sequentially in the object;
e Use a single virtual table to perform dynamic dispatch.

e Multiple-inheritance brings some challenges but solutions exist

e Embedded layout;

e Together with Trampoline, row displacement tables or inline caching.

20

	Object Layout
	Method Dispatch

