
Compiler Design

Lecture 20: Garbage Collection

Christophe Dubach
Winter 2021

Original slides from Prof. Laurie Hendren,

updated by Alex Krolik, 2016 – 2020,

updated by Christophe Dubach, 2021

Timestamp: 2021/03/30 20:27:20

1

Garbage Collection

Memory Management

Reference Counting

Mark-and-sweep

Stop-and-Copy

Pratical Considerations

2

Memory Allocation

Stack Memory Allocation

� Space allocated in the function call stack;

� Is used for function call information, local

variables, and return values;

� Typically contains fixed size data; and

� Is allocated and deallocated at the

beginning and end of a function.

Information stored in the stack is therefore

specific to a particular function invocation

(i.e. call).

FP

SP

call stack

foo
stack
frame

bar
stack
frame

return address

local variables
 saved registers

(return value)

frame pointer

(arguments)

3

Heap Memory Allocation

� Space allocated in the program heap;

� Is very dynamic in nature:

� Unknown size; and

� Unknown time;

� Requires additional runtime support for managing the heap space.

Information stored in the heap is therefore not necessarily tied to any

particular function invocation.

Example Heap

1

2

3

Heap variables may be referred to by other objects

in the heap, or from the stack.

4

Heap Memory Allocation

Data stored in the heap is controlled by a heap allocator (i.e. malloc).

� Manages the memory in the heap space;

� Takes as input an integer representing the size needed for the

allocation;

� Finds unallocated space in the heap large enough to accommodate

the request; and

� Returns a pointer to the newly allocated space.

You will find more details in an operating systems course.

5

Heap Memory Deallocations

Memory allocated on the heap are freed when they are no longer live (i.e.

free). This can be:

� Manual: User code making the necessary decisions on what is live;

� Continuous: Runtime code determining on the spot which objects

are live; or

� Periodic: Runtime code determining at specific times which objects

are live.

Without runtime support it is up to the program to return the memory

when it is no longer needed.

6

Heap Memory Deallocations

For this class, we will assume that the freed

heap blocks are stored on a freelist (a

linked list of heap blocks).

Freeing an object prepends the heap block

onto the list.

rr
rrr
rr
rrr
rr

r

-

�

�

-

�

-

-

�

p

q

r

12

15

7

37

59

20

9

37

freelist

7

Manual Deallocation Mechanisms

Heap memory can be freed manually at any point in the program.

� Programmers determine when an object is no longer live; and

� Requires calls to a deallocator (i.e. free).

Consider the following code

i n t *a = ma l l o c (s i z e o f (i n t)) ;

f r e e (a) ;

. . .

*a = 5 ; // what happens ?

8

Manual Deallocation Mechanisms

Advantages

� Reduces runtime complexity;

� Gives the programmer full control on what is live; and

� Can be more efficient in some circumstances.

Disadvantages

� Requires extensive effort from the programmer;

� Gives the programmer full control on what is live;

� Error-prone; and

� Can be less efficient in some circumstances.

9

Manual Deallocation Mechanisms

Sometimes manual deallocation is slower than automatic methods.

Consider the following example code, which allocates 100 integers and

then deallocates them one-by-one.

f o r (i n t i = 0 ; i < 100 ; ++i) {
a [i] = ma l l o c (s i z e o f (i n t)) ;

}

. . .

f o r (i n t i = 0 ; i < 100 ; ++i) {
f r e e (a [i]) ;

}

This is potentially inefficient. Why?

The allocations are potentially contiguous, and could therefore be

reclaimed as a block instead of one-by-one.

10

Manual Deallocation Mechanisms

Life Without Garbage Collection

� Dead records must be

explicitly deallocated;

� “Superior” if done

correctly; but

� It is easy to miss some

records;

� It is “dangerous” to

handle pointers; and

� May be less efficient in

some cases.

Memory leaks in real life (ical v.2.1)

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

0 1 2 3 4 5 6 7 8 9 101112131415161718192021222324

hours

MB

11

Runtime Deallocation Mechanisms

A runtime deallocation mechanism must answer the question:

Which records are dead, i.e. no longer in use?

The more precise the answer, the better the deallocation mechanism.

Ideally

� Records that will never be accessed in the future execution of the

program; but

� This is undecidable.

Basic conservative assumption

� A record is live if it is reachable from a stack-based program variable

(or global variable), otherwise dead.

12

Example Heap

Consider the following example heap, with stack

variables: p, q and r.

� Which records are live?

� Which records are dead?

rr
rr
rrr
rr
rrr
rr

-

�

�

-

-

�

�

-
p
q
r

37

12

15

7

37

59

20

9

13

Runtime Deallocation Mechanisms

A garbage collector

� Is part of the runtime system; and

� Automatically reclaims heap-allocated records that are no longer

used.

A garbage collector should

� Reclaim all unused records;

� Spend very little time per record;

� Not cause significant delays; and

� Allow all of memory to be used.

These are difficult and often conflicting requirements.

14

Garbage Collection

In this class we will study three types of garbage collection:

� Reference counting;

� Mark-and-sweep; and

� Stop-and-copy.

For each algorithm we will discuss the implementation, an example, and

the associated advantages/disadvantages.

15

Garbage Collection

Memory Management

Reference Counting

Mark-and-sweep

Stop-and-Copy

Pratical Considerations

16

Reference Counting

� Is a type of continuous (or incremental) garbage collection;

� Uses a field on each object (the reference count) to track incoming

pointers; and

� Determines an object is dead when its reference count reaches zero.

The reference count is updated

� Whenever a reference is changed;

� Created

e.g. int *a = b; // b refcount++

� Destroyed

e.g. a = c; // b refcount--

� Whenever a local variable goes out of scope;

� Whenever an object is deallocated (all objects it points to have their

reference counts decremented).

17

Reference Counting

Reference counting inserts calls to Increment and Decrement in the

source program as needed. When the object is no longer needed, the call

to Free is made.

Pseudo code for reference counting

function Increment(x)

x .count := x .count+1

function Decrement(x)

x .count := x .count−1

if x .count = 0 then

Free(x)

function Free(x)

for i :=1 to |x | do

Decrement(f)

x .f1 := freelist

freelist := x

18

Reference Counting

Reference counting has one large problem:

What about objects 7 and 9?

rr
rr
rrr
rr
rrr
rr

-

�

�

-

-

�

�

-
p
q
r

37

12

15

7

37

59

20

9

19

Reference Counting

Advantages

� Is incremental, distributing the cost over a long period;

� Does not require long pauses to handle deallocations;

� Catches dead objects immediately; and

� Requires no effort from the user.

Disadvantages

� Is incremental, slowing down the program continuously and

unnecessarily;

� Requires a more complex runtime system; and

� Cannot handle circular data structures.

20

Aside: Automatic Reference Counting (ARC)

Initially for Objective-C (now also for Swift), automatic reference

counting (ARC) is a reference counting implementation designed by

Apple and integrated into Clang.

� Inserts calls to retain (increment) and release at compile time;

� Optimizes away unnecessary updates.

Previously, developers inserted calls to the memory management

methods.

21

Garbage Collection

Memory Management

Reference Counting

Mark-and-sweep

Stop-and-Copy

Pratical Considerations

22

Mark-and-Sweep

The mark-and-sweep algorithm is a periodic approach to garbage

collection that has 3 main steps:

1. Explore pointers starting from the program (stack) variables, and

mark all records encountered;

2. Sweep through all records in the heap and reclaim the unmarked

ones; and

3. Finish by unmarking all marked records.

Assumptions

� We know which fields are pointers;

� We know the size of each record; and

� Reclaimed records are kept in a freelist.

23

Mark-and-Sweep

The 3 steps of the mark-and-sweep algorithm are shown below (steps 2

and 3 are merged).

Pseudo code for mark-and-sweep

function Mark()

for each program variable v do

DFS(v)

function DFS(x)

if x is pointer into heap then

if record x not marked then

mark record x

for i :=1 to |x | do

DFS(x .fi)

function Sweep()

p := first address in heap

while p < last address in heap do

if record p is marked then

unmark record p

else

p.f1 := freelist

freelist := p

p := p+sizeof(record p)

24

Mark-and-Sweep

rr
rr
rrr
rr
rrr
rr

rr
rrr
rr
rrr
rr

r

-

�

�

-

-

�

�

-

-

�

�

-

�

-

-

�

37

p

q

r

12

15

7

37

59

20

9

p

q

r

12

15

7

37

59

20

9

37

freelist

25

Analysis of Mark-and-Sweep

� Assume the heap has size H words; and

� Assume that R words are reachable.

The cost of garbage collection

c1R + c2H

The cost per reclaimed word

c1R + c2H

H − R

� If R is close to H, then this is expensive;

� The lower bound is c2.

26

Mark-and-Sweep

Advantages

� Is periodic, so does not slow down each operation in your program;

� Can be run in parallel to your program;

� Mark and sweep steps can be parallelized too;

� Requires no effort from the user.

Disadvantages

� Scanning the heap can be expensive;

� The heap may become fragmented : containing many small free

records but none that are large enough for the next allocation.

27

Heap Fragmentation

To deal with fragmented heaps we can use compaction.

� Once mark-and-sweep has finished, collect all live objects at the

beginning of the heap;

� Adjust pointers pointing to all moved objects;

� The adjustment depends on the amount of space freed before the

object;

� This removes fragmentation and improves locality.

This is not possible in all programming languages as garbage collection

must be conservative.

⇒ How do we know which fields are pointers?

28

Garbage Collection

Memory Management

Reference Counting

Mark-and-sweep

Stop-and-Copy

Pratical Considerations

29

Stop-and-Copy

Stop-and-copy is a periodic approach to garbage collection that:

� Divides the heap into two parts;

� Only uses one part at a time;

Conceptually this results in a simple high-level algorithm:

1. Use the active half of the heap for all allocations;

2. When it runs full, copy live records to the other part; and

3. Switch the roles of the two parts.

30

Stop-and-Copy

Consider the following snapshots of stop-and-copy before/after execution.

� next and limit indicate the available heap space; and

� Copied records are contiguous in memory. qqq qqqqqqqqq
qqq
qqqqqq

qqqq�

�

-

-

�
-

�

�

�
from-space to-space from-space to-space

next

limit

next
limit

31

Stop-and-Copy

The stop-and-copy algorithm internals are much more complicated.

Intuitively, it forwards each record on the heap in a breadth-first manner

(starting from the stack).

Pseudo code for stop-and-copy

function Copy()

scan := next := start of to-space

for each program variable v do

v := Forward(v)

while scan < next do

for i :=1 to |scan| do

scan.fi := Forward(scan.fi)

scan := scan+sizeof(record scan)

function Forward(p)

if p ∈ from-space then

if p.f1 ∈ to-space then

// copy already made

return p.f1
else // copy p to new space

for i :=1 to |p| do

next.fi := p.fi
p.f1 := next

next := next+sizeof(record p)

return p.f1
else return p

32

Stop-and-Copy

The follow are snapshots of stop-and-copy before executing and after

forwarding the top-level and scanning 1 record.

qq37p
q
r

qq37 p
q
r

qqqqq
qqqqq
qq

�

-
-

�

�

�

- �

12

15

7

37

59

20

9

before

qqqqq
qqqqq
qq

qqqqqq
q
q

q

-
-

�

-

--

-

-

-

-

�

�

��

��

�

7

59

20

9

15

37

12

scan

next

after forwarding p, q, and r and scanning 1 record

33

Analysis of Stop-and-Copy

� Assume the heap has size H words; and

� Assume that R words are reachable.

The cost of garbage collection

c3R

The cost per reclaimed word

c3R
H
2 − R

� This has no lower bound as H grows.

34

Stop-and-Copy

Advantages

� Allows fast allocation (no freelist);

� Avoids fragmentation;

� Collects in time proportional to R.

Disadvantage

� Wastes half your memory; and

� Stops the program to execute.

35

Garbage Collection

Memory Management

Reference Counting

Mark-and-sweep

Stop-and-Copy

Pratical Considerations

36

Practical Considerations

In practice, we use either mark-and-sweep or stop-and-copy (and in some

systems ref. counting).

This can lead to better memory management, at the cost of ∼ 100

instructions for a small object.

Each algorithm can be further extended by

� Generational collection (to make it run faster); and

� Incremental (or concurrent) collection (to make it run smoother).

37

Generational Collection

Observation: the young die quickly

Given this assumption, the garbage collector should:

� Focus on young records;

� Divide the heap into generations: G0,G1,G2, . . .;

� All records in Gi are younger than records in Gi+1;

� Collect G0 often, G1 less often, and so on; and

� Promote a record from Gi to Gi+1 when it survives several

collections.

38

Other Optimizations

Exploit locality

� Keep youngest generation small enough to fit in the CPU cache

Incremental collection

� Garbage collection may cause long pauses;

� This is undesirable for interactive or real-time programs; so

� Try to interleave the garbage collection with the program execution

(e.g. Train algorithm).

39

Earlier Assumptions

The presented garbage collection algorithms assumed that:

� We know the size of each record; and

� We know which fields are pointers.

For object-oriented languages, each record already contains a pointer to a

class descriptor, so garbage collection is straightforward to implement.

For general languages, we must sacrifice a few bytes per record to

indicate its size, and its organization.

40

Next lecture

� Objects / Classes / Inheritance

41

	Memory Management
	Reference Counting
	Mark-and-sweep
	Stop-and-Copy
	Pratical Considerations

