
Compiling Techniques

Lecture 2: The view from 35000 feet

Christophe Dubach

8 January 2021

1

First Compilers & Programming

Languages

First “Compiler”: 1952

First “compiler”: A-0 System. The term “compiler” was coined by Grace

Hopper in the 1950s.

Automatic Coding for Digital Computers, Grace

Hopper, 1955:

“Compiling [...] which withdraw sub-

routines from a library and operate

upon them, finally linking the pieces

together to deliver, as output, a com-

plete specific program.” Grace Hopper,

US Navy

source: James S. Davis - Image released by the United States Navy with the ID DN-SC-84-05971

Actually more a sort of linker than what we call compiler today.

2

https://commons.wikimedia.org/wiki/File:Commodore_Grace_M._Hopper,_USN_(covered)_head_and_shoulders_crop.jpg

Fortran, 1957

� First “high-level” programming language.

� Fortran = Formula translation

Simple Fortran II program

C AREA OF A TRIANGLE − HERON ’S FORMULA

C INPUT − CARD READER UNIT 5 , INTEGER INPUT

C OUTPUT −
C INTEGER VARIABLES START WITH I , J ,K, L ,M OR N

READ(5 ,501) IA , IB , IC

501 FORMAT(3 I 5)

IF (IA .EQ.0 .OR. IB .EQ.0 .OR. IC .EQ. 0) STOP 1

S = (IA + IB + IC) / 2 .0

AREA = SQRT(S * (S − IA) * (S − IB) * (S − IC))

WRITE(6 ,601) IA , IB , IC ,AREA

601 FORMAT(4H A=, I5 , 5H B=, I5 , 5H C=, I5 ,

8H AREA=,F10 . 2 ,$13H SQUARE UNITS)

STOP

END

source: Wikipedia

John Bakus,

IBM

source: PIerre.Lescanne, CC BY-SA 4.0, via Wikimedia Commons

3

https://en.wikibooks.org/wiki/Fortran/Fortran_examples
https://creativecommons.org/licenses/by-sa/4.0

Lisp, 1958

� Lisp = List processing language

Simple Lisp 1 program

((Y (LAMBDA (FN)

(LAMBDA (X)

(IF (ZEROP X) 1 (* X (FN (− X 1)))))))

6)

source: Technical Issues of Separation in Function Cells and Value Cells

John McCarthy,

MIT

source: ”null0”, CC BY-SA 2.0, via Wikimedia Commons

Fortran and Lisp are the oldest, and most influencial programming

languages. Both are still in use today!

(Fortran) Imperative & Functional (Lisp)

4

http://www.nhplace.com/kent/Papers/Technical-Issues.html
https://creativecommons.org/licenses/by-sa/2.0

High-level view

High-level view of a compiler

Compiler Machine
code

Source
code

Errors

� Must recognise legal (and illegal) programs

� Must generate correct code

� Must manage storage of all variables (and code)

� Must agree with OS & linker on format for object code

Big step up from assembly language; use higher level notations

5

Traditional two-pass compiler

FrontEnd
Source
code

BackEnd

IR

Machine
Code

Errors

� Use an intermediate representation (IR)

� Front end maps legal source code into IR

� Back end maps IR into target machine code

� Admits multiple front ends & multiple passes

� Typically, front end is O(n) or O(n log n),

while back end is NPC (NP-complete)

6

A common fallacy two-pass compiler

Frontend

Target 1

Fortran

Backend

Frontend

Target 2

R

Backend

Frontend

Target 3

Java

Backend

FrontendSmalltalk

� Can we build n x m compilers with n+m components?

� Must encode all language specific knowledge in each front end

� Must encode all features in a single IR

� Must encode all target specific knowledge in each back end

� Limited success in systems with very low-level IRs (e.g. LLVM)

� Active research area (e.g. Graal, Truffle)

7

Front End

Front End

Passes

The Frontend

Scanner
Source
code

Tokeniser
token

char
 Parser

AST

Semantic
Analyser

AST

Lexer

IR
Generator

IR

Errors

� Recognise legal (& illegal) programs

� Report errors in a useful way

� Produce IR & preliminary storage map

� Shape the code for the back end

Much of front end construction can be automated

8

The Lexer

Scanner
Source
code

Tokeniser
token

char

 Parser
AST

Semantic
Analyser

AST

Lexer

IR
Generator

IR

Errors

Lexical analysis

� Recognises words in a character stream

� Produces tokens (words) from lexeme

� Collect identifier information (e.g. variable names)

� Typical tokens include number, identifier, +, −, new, while, if

� Lexer eliminates white space (including comments)

Example: x = y+2;

becomes: IDENTIFIER(x) EQUAL IDENTIFIER(y) PLUS CST(2)

9

The Parser

Scanner
Source
code

Tokeniser
token

char
 Parser

AST

Semantic
Analyser

AST

Lexer

IR
Generator

IR

Errors

Parsing

� Recognises context-free syntax & reports errors

� Builds an AST (Astract Syntax Tree)

� Hand-coded parsers are fairly easy to build

� Most books advocate using automatic parser generators

In the course project, you will build your own parser

� Will teach you more than using a generator!

� Once you know how to build a parser by hand, using a parser

generator becomes easy

10

Semantic Analyser

Scanner
Source
code

Tokeniser
tokenchar

Parser
AST Semantic

Analyser
AST

Lexer

IR
Generator

IR

Errors

Semantic Analysis

� Guides context-sensitive (“semantic”) analysis

� Checks variable and function declared before use

� Type checking

Type checking example:

i n t f oo (i n t a) = { . . . }
vo id main () {

f l o a t f ;

f = foo (1 , 2) ; // type e r r o r

}

11

Intermediate Representation (IR) Generator

Scanner
Source
code

Tokeniser
token

char

 Parser
AST

Semantic
Analyser

AST

Lexer

IR
Generator

IR

Errors

� Generates the IR (Intermediate Representation) used by the rest of

the compiler.

� Sometimes the AST is the IR.

12

Front End

Representations

Simple Expression Grammar

1 goa l → exp r

2 exp r → exp r op term

3 | term

4 term → number

5 | i d

6 op → +

7 | −

S = goa l

T = {number , id ,+,−}
N = { goa l , expr , term , op}
P = {1 ,2 ,3 , 4 , 5 , 6 , 7}

� This grammar defines simple expressions with addition & subtraction

over “number” and “id”

� This grammar, like many, falls in a class called “Context-Free

Grammars”, abbreviated CFG

13

Derivations

Given a CFG, we can derive sentences by repeated substitution

Production Result

goal

1 expr

2 expr op term

5 expr op y

7 expr - y

2 expr op term - y

4 expr op 2 - y

6 expr + 2 - y

3 term + 2 - y

5 x + 2 - y

To recognise a valid sentence in a CFG, we reverse this process and build

up a parse tree

14

Parse tree

x + 2 - y

goal

expr

op termexpr

op termexpr

term

id(x)

+ num(2)

- id(y)

This contains a lot of unnecessary information.

15

Abstract Syntax Tree (AST)

-

+

id(x) num(2)

id(y)

The AST summarises grammatical structure, without including detail

about the derivation.

� Compilers often use an abstract syntax tree

� This is much more concise

� ASTs are one kind of IR

16

Back end

The Back end

Instruction
Selection

AST

Register
Allocation

AST

Instruction
Scheduling

IR

Errors

Machine
code

� Translate IR into target machine code

� Choose instructions to implement each IR operation

� Decide which value to keep in registers

� Ensure conformance with system interfaces

� Automation has been less successful in the back end

17

Back end

Instruction Selection

Instruction Selection

Instruction
Selection

AST Register
Allocation

AST Instruction
Scheduling

IR

Errors

Machine
code

� Produce fast, compact code

� Take advantage of target features such as addressing modes

� Usually viewed as a pattern matching problem

Example: d = a * b + c

option 1

MUL rt, ra, rb

ADD rd, rt, rc

option 2

MADD rd, ra, rb, rc

18

Back end

Register Allocation

Register Allocation

Instruction
Selection

AST

Register
Allocation

AST

Instruction
Scheduling

IR

Errors

Machine
code

� Have each value in a register when it is used

� Manage a limited set of resources

� Can change instruction choices & insert LOADs & STOREs (spilling)

� Optimal allocation is NP-Complete (1 or k registers)

� Graph colouring problem

� Compilers approximate solutions to NP-Complete problems

19

Back end

Instruction Scheduling

Instruction Scheduling

Instruction
Selection

AST

Register
Allocation

AST

Instruction
Scheduling

IR

Errors

Machine
code

� Avoid hardware stalls and interlocks

� Use all functional units productively

� Can increase lifetime of variables (changing the allocation)

� Optimality:

� Optimal scheduling is NP-Complete in nearly all cases

� Heuristic techniques are well developed

20

Optimiser

Three Pass Compiler

FrontEnd
Source
code

Middle
End

IR
 BackEnd Machine

Code

Errors

IR

Compiler Optimization (or code improvement):

� Analyses IR and rewrites/transforms IR

� Primary goal is to reduce running time of the compiled code

� May also improve code size, power consumption, . . .

� Must preserve “meaning” of the code

� Measured by values of named variables

� Subject of Compiler Optimisation course

21

The Optimiser

Modern optimisers are structured as a series of passes

e.g. LLVM

Opt
1

IR

IR

Errors

IR

Opt
2

IR
 IR

Opt
N

...

� Discover & propagate some constant value

� Move a computation to a less frequently executed place

� Specialise some computation based on context

� Discover a redundant computation & remove it

� Remove useless or unreachable code

� . . .

22

Modern Restructuring Compiler

FrontEnd
Source
code

Middle
End

IR
 BackEnd Machine

Code

Errors

IR

IR
Generator

LL
AST

Restructurer
HL
AST

Translate from high-level (HL) IR to low-level (LL) IR

� Blocking for memory hierarchy and data reuse

� Parallelisation (including vectorization)

All of above is based on data dependence analysis

� Also full and partial inlining

Compiler optimizations are not covered in this course

23

Role of the runtime system

� Memory management services

� Allocate, in the heap or on the stack

� Deallocate

� Collect garbage

� Run-time type checking

� Error processing

� Interface to the operating system (input and output)

� Support for parallelism (communication and synchronization)

24

Programs related to compilers

� Pre-processor:

� Produces input to the compiler

� Processes Macro/Directives (e.g. #define, #include)

� Assembler:

� Translate assembly language to actual machine code (binary)

� Performs actual allocation of variables

� Linker:

� Links together various compiled files and/or libraries

� Generate a full program that can be loaded and executed

� Debugger:

� Tight integration with compiler

� Uses meta-information from compiler (e.g. variable names)

� Virtual Machines:

� Executes virtual assembly

� typically embedded a just-in-time (jit) compiler

25

Next lecture

� Introduction to Lexical Analysis (real start of compiler course)

� Decomposition of the input into a stream of tokens

� Construction of scanners from regular expressions

26

	First Compilers & Programming Languages
	High-level view
	Front End
	Passes
	Representations

	Back end
	Instruction Selection
	Register Allocation
	Instruction Scheduling

	Optimiser

