
Compiler Design

Lecture 17: Graph Colouring Register allocation (EaC§13)

Christophe Dubach

Winter 2021

Timestamp: 2021/03/18 09:30:57

1

Main idea

1. Build an interference graph (a.k.a. “conflict” graph)

� Nodes = variables (virtual registers)

� Edges = overlapping live ranges

2. Find a k-colouring of the graph

� Colours = architectural registers

2

Interference graph

What is an interference graph? (also called conflict graph)

� Two values interfer if there exists a point in the program where both

are simultaneously live

� If x and u interfer, they cannot occupy the same register

To compute interferences, we must know where values are live

� ⇒ result of liveness analysis

Interference graph G

� Nodes in G represents variables (or virtual registers)

� Edges in G represents interference between two variables (or virtual

registers)

3

k-colouring of conflict graph

k-colourable graph

A graph G is k-colourable iff the nodes can be labelled (or colored) such

that no edge in G connects two nodes with the same label (or color).

Examples:

2-colourable 3-colourable

If we can find a k-colouring of the interference graph, then all the nodes

(variables) with the same colour can share the same architectural

register, assuming at least k registers available.

4

Back to the main idea

1. Build an interference graph

2. Find a k-colouring of the graph

5

1. Building interference graph

Pseudo-assembly:

a = 0

L1 : b = a + 1

c = c + b

a = b*2

i f (a<9) goto L1

r e t u r n c

Control flow

graph:

entry

1: a = 0

2: b = a + 1

3: c = c + b

4: a = b * 2

5: a < 9

True

6: return c

False

Liveness:

node out in

6 c

5 ac ac

4 ac bc

3 bc bc

2 bc ac

1 ac c

Interference graph:

c

a b

6

2. Graph colouring and register mapping

Graph colouring:

c

a b

→
c

a b

→
c

a b

→
c

a b

Virtual to architectural registers

Possible mapping:

� a → $t0

� b → $t0

� c → $t1

(pseudo-)assembly final code:

$t0 = 0

L1 : $t0 = $t0 + 1

$t1 = $t1 + $t0

$t0 = $t0*2

i f ($t0<9) goto L1

r e t u r n $t1

Job done! Or is it?

7

Challenges

� Graph colouring is NP-complete

� Complexity is exponential

� We don’t like such algorithms in our compilers!

� It might not be possible to colour a graph with k colours.

� Need alternative strategy in these cases

8

Heuristic for Graph Colouring

Observations

Suppose we have k architectural registers (or k colours):

� Any vertex n that has fewer than k neighbours in the interference

graph (degree(n) < k) can always be coloured!

� In such case, pick any colour not used by its neighbours — there

must be one!

9

Sketch of an algorithm

� Pick any vertex n such that degree(n) < k and put it on the stack

� Remove that vertex n and all connected edges from the graph

� This may make some new nodes have fewer than k neighbours

� In the end, if some vertex n still has k or more neighbours, then spill

the variable associated with n to memory

� Otherwise successively pop vertices off the stack and colour them in

the lowest colour not used by some neighbour

10

Chaitin’s Algorithm (1982!)

1. While ∃ vertices with < k neighbours in G

� Pick any vertex n such that degree(n) < k and put it on the stack

� Remove that vertex and all connected edges from G

� This will lower the degree of n’s neighbours

2. If G is non-empty (all vertices have k or more neighbours) then:

� Pick a vertex n (using some heuristic) and spill the variable

associated with n

� Remove vertex n from G , along with all connected edges

� If this causes some vertex in G to have fewer than k neighbours,

then go to step 1; otherwise, repeat step 2

3. Successively pop vertices off the stack and colour them in a colour

not used by the neighbours

11

Example with 3 registers

12

Example with 3 registers

13

Example with 3 registers

14

Example with 3 registers

15

Example with 3 registers

16

Example with 3 registers

17

Example with 3 registers

18

Example with 3 registers

19

Example with 3 registers

20

Example with 3 registers

21

Register Spilling

Need for register spilling

If it is not possible to find a k-colouring of the graph, we need to spill

some variables in memory.

The idea is to map some variable to memory rather to register

� this is what our naive register allocator is doing (for all variables!)

(Other approaches are also possible (e.g. splitting live ranges) but this is

the subject of a compiler optimization course.)

22

Choice of variable to spill

Choosing which variable to spill is critical for performance:

� extra load instructions for every use of the variable

� extra store instructions for every def of the variable.

The compiler should use a cost-benefit analysis to decide which variable

to spill depending on:

� how often the variable is used/defined?

� how many other variables interfer with the variable?

� is the variable used in a loop?

For your project, simply pick the variable with highest connectivity as it is

likely to increase the chances that the graph becomes k-colourable.

23

Spilling a variable requires a register

Original code with virtual registers:

...

add v0, v1, v2

...

After register allocation, assuming

we spill v1:

v1: .space 4

...

lw $t0 , v1

add $t3 , $t0 ,$t2

...

We have a bit of a & situation: spilling v1 uses a register!

However, the live range of the register used for spilling is very short!

⇒ it is not so bad.

24

Two possible solutions:

� Naive approach: reserve a set of registers just for spilling purpose

(e.g. {$t0}) and never use them for anything else

� maximum number of such registers needed = maximum number of

registers an instruction can use/def (three for MIPS)

� Better approach: every time a variable needs to be spilled, stop the

register allocation process, and replace all the occurences of the

spilled variable with a load/store instruction that uses a virtual

register. Then re-run everything:

� liveness analysis

� inteference graph construction

� register allocation

source: ShadowThrust at Deviant Art, CC BY-SA 3.0

25

Next lecture

� Instruction selection

26

	Heuristic for Graph Colouring
	Register Spilling

