Compiler Design

Lecture 16: Liveness Analysis

Christophe Dubach
Winter 2021

Some material from Prof. Michelle Strout, CS553, Colorado State University.

Timestamp: 2021/03/10 13:19:42

Example of generated MIPS code

(using virtual registers):

After “‘proper” register allocation
(possible output):

.data
X: .space
y: .space

.text
la
1w
add
la
1w
sub
add
swW
swW

vO,
vl,
v2,
v3,
v4,
vb,
v6 ,
v5,
v6 ,

X
(v0)
v0, vi
y

(v3)
vd, v2
v2, véd
(v0)
(v3)

.data
X: .space

y: .space

.text

$t0,
$t1,
$t2,
$t3,
$t4,
$t5,
$t6,
$t5,
$t6,

X

($t0)
$t0, $t1
y

($t3)
$t4, $t2
$t2, $t4
($t0)
($t3)

What if less than 7 architectural registers available for allocation?

e Need to know which values is going to be used in the future.

Liveness

Definition

A variable (virtual register) is at some point in the program if it has
previously been by an instruction and will be by an
instruction in the future. It is otherwise.

© Two variables can use the same architectural register if they are never
used at the same time, i.e. never simulataneously live.

= Register allocation use liveness information.

Example:

.data

X: .space

y: .space

.text
la
1w
add
la
1w
sub
add

sSw

vO,
vi,
v2,
v3,
v4,
vb,
v6 ,
vb,
v6 ,

X
(v0)
vi, vi
y

(v3)
vd, v2
v2, vé
(v0)
(v3)

Live

vO
vO
v0
vO
vO
vO
vO

vl

after instruction:

v2
v2
v2
v2

v3

v3 v4

v3 v4 vb
v3 vb v6
v3 v6

Question: how many architectural registers are needed?

Computing liveness is more complicated in the presence of control flow
(e.g. loops, if-then-else).

Assembly pseudo-code: !

0
=a+1

c+ b
a = bx2
if (a<9) goto L1
return c

L1:

0 o W

Question: what is the live range of b?

To answer this question we need to understand the dynamic flow of the
program execution.

LWe illustrate concepts at a slightly higher level than assembly from this point on.

Control-Flow Graph (CFG)

Concept invented in 1970 by: Directed graph:

Frances Allen (1932-2020), IBM,
(1st woman to receive Turing Award

in 2006!)
imedia. rue
a=20
L1: b=a + 1
c=c+b
a = bx2 [False
if (a<9) goto L1 ¥
return c 6: return c

https://commons.wikimedia.org/wiki/File:Allen_mg_2528-3750K-b.jpg

What is the live range of b?

e b is used in statement 4, so b is live on the
3 — 4 edge

e since statement 3 does not define b, b is
also live on the 2 — 3 edge

e statement 2 defines b, so any value of b
on the 1 — 2 and 5 — 2 edges are not
needed, so b is dead along these edges

b live range is 2 -3 — 4

[False

6: return c

Live range of a:

el —>2and4 —>5—2

Live range of b:

o234

Live range of c:

eentry +1—+2—-3—>4—->5—-2
and 5 — 6

[False

6: return c

Q Since a and b never simultaneously live, can share a register.

Terminology

Flow Graph

e a Control Flow Graph (CFG) has out-edges
that leads to successor nodes and in-edges
that come from predecessor nodes

e pred(n) = set of all predecessors of node n
succ(n) = set of all successors of node n

Examples
e Out-edges of node 5: 5 — 6 and 5 — 2
e succ(5) = {2,6}
e pred(5) = {4}
e pred(2) = {1,5}

[False

6: return c

Uses and Defs

Def (definition)

e A write of a value to a variable

1l: a=0
e def(v) = set of CFG nodes that define variable v
e def(n) = set of variables defined at node n
Use
o A read of a variable's value
5: a <9
e use(v) = set of CFG nodes that use variable v

e use(n) = set of variables used at node n

10

More precise definition of liveness

\v live
/ &def(v)
: - : /
A variable v is live on a CFG edge if (PO
e 7 a directed path from that edge to a use \
of v (node € use(b)) and) Edetv)
e that path does not go through any def of /
v (nodes ¢ def(v). (Edef(v)
\

\ Euse(v)

11

Computing Liveness

Flow of Liveness

Data-flow

e Liveness of variables is a property that flows through the edges of
the CFG

Direction of flow

e Liveness flows backward in the CFG:
behaviour of future nodes determines liveness at a given node

12

Example: flow of liveness for a

6: return c

Example: flow of liveness for b

6: return c

13

Liveness at Nodes

~«—— just before computation

We have liveness on edges

< just after computation

e before and after each node

Two more definitions:

e A variable is live-out at a node if it is live on any of that node's
out-edges

e A variable is live-in at a node if it is live on any of that node’s
in-edges

14

Computing Liveness

Rules for computing liveness

1. Generate liveness:

v € use(n) = v € LIVE;,(n)

2. Push liveness across edges:
v € LIVEj,(n) = Vpepred(n)V € LIVEou(p)

3. Push liveness across nodes:
v E LIVEout(n)/\v ¢ def(n) =V E LIVE,n(n) LIVE,,

“

LIVEou
Data-flow equations

LIVE;n(n) = | use(n) \1 U (LIVEye(n) — def (n)) \3

LIVEou(n)=| |J LIVEx(s)

Vsesucc(n)

15

Solving the Data-flow equations

1: for all node n € CFG do

2: LIVE;,(n) =@

3: LIVE,:(n) =@

4: end for

5. repeat

6: for all node n € CFG do

7 LIVE;,(n) = LIVE;,(n)

8: LIVEL,.(n) = LIVE,u(n)

9: LIVE;,(n) = use(n) U (LIVE,,(n) — def(n))

10: LIVE.:(n)= U LIVE;(s)
Vsesucc(n)

11: end for

12: until LIVE},(n) = LIVEj,(n) A LIVE.,(n) = LIVEou(n)¥n

This is a fix-point algorithm for iterative liveness analysis.

16

[False

6: return c

node use def Ist 2nd 3rd 4th 5th 6th 7th
in out |in out|in out|in out|in out|in out|in out

1 a a a ac c ac c ac c ac
2 a b a a bc |ac bc [ac bc |ac bc |ac bc |ac bc
3 bc ¢ bc bc b bc b bc b bc b bc bc bc bc
4 b a b a b a b ac bc ac bc ac bc ac
5 a a ac ac ac ac ac ac ac ac ac ac ac
6 @ @ @ c @ c @

Data-flow equations

LIVEj,(n) = use(n) U (LIVE,,(n) — def(n))
LIVEou(n) = U LIVE;,(s)

Vsesucc(n)

17

There is something inefficient about this process.

[False

y
6: return c

For instance, consider the 3 — 4 edge in the graph:

e LIVE,,(4) is used to compute LIVE;,(4)
e LIVE;,(4) is used to compute LIVE,,;(3)

© The algorithm would converge faster if we
process the nodes backwards.

18

Backward Liveness Analysis

for all node n € CFG do
LIVE;,(n) = o
LIVE,(n) =@
. end for

for all node n € CFG in reverse topological order do

1:

2

3

4

5: repeat
6

7 LIVE), (n) = LIVE;,(n)
8

9

LIVE, ,(n) = LIVE:(n)
LIVEy:(n)= U LIVE;(s)
Vsesucc(n)
10: LIVE;,(n) = use(n) U (LIVEy:(n) — def (n))

11: end for
12: until LIVE], (n) = LIVE;,(n) A LIVEL ,(n) = LIVE:(n)Vn

19

Example with Backward Liveness Analysis

node use def Ist 2nd 3rd
out in ‘ out in ‘ out in
6 c c c c
5 a c ac | ac ac | ac ac
4 a ac bc | ac bc | ac bc
3 bc ¢ bc bc | bc bc | bc bc
2 a b bc ac | bc ac | bc ac
1 a ac c ac c ac c

Converges in only 3 iterations!

Data-flow equations

LIVEo(n)= |J LIVEx(s)

Vsesucc(n)

6: return c LIVE;,(n) = use(n) U (LIVE,,(n) — def(n))

[False

20

More performance considerations

Basic Block

A straight sequence of assembly instruction which (usually) finishes
with a branch/jump instruction.

Key property: Either all the instructions in the sequence execute or

none execute.

Can significantly decrease the size that a CFG occupies in memory by
grouping nodes that have a single predecessor and a single successor into

basic blocks.

The instructions in a basic block can be simply represented as a list
(rather than a graph).

21

No basic blocks:

With basic blocks:

rue

3: return c

[False

6: return c

22

Next lecture

e Proper register allocation

23

	Computing Liveness

