
Compiler Design

Lecture 12: Introduction to Code Generation

Christophe Dubach

10 February 2021

1

Table of contents

Introduction

Overview

The Backend

The Big Picture

Code Generation

Code Generator Visitor for Arithmetic Expressions

2

Introduction

Introduction

Overview

Overview

FrontEnd
Source
code

Middle
End

IR
BackEnd Machine

Code

Errors

IR

Front-end

� Lexer

� Parser

� AST builder

� Semantic Analyser

Middle-end

� Optimizations (Compiler Optimisations course)

3

Introduction

The Backend

The Back end

Instruction
Selection

IR Register
Allocation

IR Instruction
Scheduling

IR

Errors

Machine
code

� Translate IR into target machine code

� Choose instructions to implement each IR operation

� Decide which value to keep in registers

� Ensure conformance with system interfaces

� Automation has been less successful in the back end

4

Instruction Selection

Instruction
Selection

IR Register
Allocation

IR Instruction
Scheduling

IR

Errors

Machine
code

� Mapping the IR into assembly code

(in our case AST to MIPS assembly)

� Assumes a fixed storage mapping & code shape

� Combining operations, using addressing modes

5

Register Allocation

Instruction
Selection

IR Register
Allocation

IR Instruction
Scheduling

IR

Errors

Machine
code

� Deciding which value reside in a register

� Minimise amount of spilling

6

Instruction Scheduling

Instruction
Selection

IR Register
Allocation

IR Instruction
Scheduling

IR

Errors

Machine
code

� Avoid hardware stalls and interlocks

� Reordering operations to hide latencies

� Use all functional units productively

Instruction scheduling is an optimisation

Improves quality of the code. Not strictly required.

7

Introduction

The Big Picture

The Big Picture

How hard are these problems?

� Instruction selection

� Can make locally optimal choices, with automated tool

� Global optimality is NP-Complete

� Instruction scheduling

� Single basic block ⇒ heuristic work quickly

� General problem, with control flow ⇒ NP-Complete

� Register allocation

� Single basic block, no spilling ⇒ linear time

� Whole procedure is NP-Complete (graph colouring algorithm)

These three problems are tightly coupled!

However, conventional wisdom says we lose little by solving these

problems independently.

8

How to solve these problems?

� Instruction selection

� Use some form of pattern matching

� Assume enough registers or target “important” values

� Instruction scheduling

� Within a block, list scheduling is “close” to optimal

� Across blocks, build framework to apply list scheduling

� Register allocation

� Start from virtual registers & map “enough” into k

� With targeting, focus on “good” priority heuristic

Approximate solutions

Will be important to define good metrics for “close”, “good”,

“enough”,

9

Code Generation

Register-based machine

� Most real physical machine are register-based

� Instruction operates on registers.

� The number of architecture register available to the compiler can

vary from processor to processors.

The first phase of code generation usually assumes an unlimited numbers

of registers (virtual registers).

Later phases (register allocator) converts these virtual registers to the

finite set of available physical architectural registers (more on this in

lecture on register allocation).

10

Generating Code for Register-Based Machine

The key code quality issue is holding values in registers

When can a value be safely allocated to a register?

� when only one name can reference its value

� pointers, structs & arrays all cause trouble

When should a value be allocated to a register?

� when it is both safe & profitable

Encoding this knowledge into the IR

� assign a virtual register to anything that goes into one

� load or store the others at each reference

Register allocation is key

All this relies on a strong register allocator.

11

Generating Code for Register-Based Machine

Memory

x

y

Example: x+y

lw $t0 , x # load content of memory at address x into $t0

lw $t1 , y # load content of memory at address y into $t1

add $t2 , $t0 , $t1

12

Exercise

Write down the list of equivalent assembly instructions for 4+x*y

Exercise

Assuming you have an instruction addi (add immediate), rewrite the

previous example.

This illustrates the instruction selection problem

(more on this in following lectures).

13

Code Generator Visitor for

Arithmetic Expressions

Visitor for Arithmetic Expressions

4 + x * y

* Var(y)Var(x)

BinOp+num(4)

BinOp

Main idea:

� Traverse AST with visitor: depth first, post-order;

� After traversing a subtree, the visitor returns the register that

contains the result of evaluating the subtree.

14

We will assume an unlimited number of registers is available to us

(virtual registers).

Two helper functions:

� newVirtualRegister to obtain a unique register

� emit to produce an instruction

The following example shows how to implement a visitor to produce code

that evaluates expressions.

15

Expression Code Generator Visitor

IntLiteral

Re g i s t e r v i s i t I n t L i t e r a l (I n t L i t e r a l i t) {
Re g i s t e r r e sReg = n ewV i r t u a l R e g i s t e r () ;

emit (” l i ” , resReg , i t . v a l u e) ;

r e t u r n r e sReg ;

}

16

Expression Code Generator Visitor

Var

Re g i s t e r v i s i t V a r (Var v) {
Re g i s t e r r e sReg = n ewV i r t u a l R e g i s t e r () ;

emit (” lw” , resReg , v . l a b e l) ;

r e t u r n r e sReg ;

}

Here we assume our variables are all integer and global.

We will see how to deal with arrays/structs and stack allocated variables

in another lecture.

17

Expression Code Generator Visitor

Binary operators

Re g i s t e r v i s i tB i nOp (BinOp bo) {
Re g i s t e r l h sReg = bo . l h s . a ccep t (t h i s) ;

R e g i s t e r rhsReg = bo . r h s . a ccep t (t h i s) ;

R e g i s t e r r e sReg = n ewV i r t u a l R e g i s t e r () ;

sw i tch (bo . op) {
case ADD:

emit (”add” , resReg , lhsReg , rhsReg) ;

break ;

case MUL:

emit (”mult ” , lhsReg , rhsReg) ;

emit (”mf lo ” , r e sReg) ;

break ;

. . .

}
r e t u r n r e sReg ;

}

18

Next lecture

Code Shape

� Conditions

� Function calls

� Loops

� If statement

Memory management

� Static/stack/heap allocation

� Data structure memory layout

� Register spilling

19

	Introduction
	Overview
	The Backend
	The Big Picture

	Code Generation
	Code Generator Visitor for Arithmetic Expressions

