<table>
<thead>
<tr>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type Systems</td>
</tr>
<tr>
<td>Specification</td>
</tr>
<tr>
<td>Type properties</td>
</tr>
<tr>
<td>Inference Rules</td>
</tr>
<tr>
<td>Inference Rules</td>
</tr>
<tr>
<td>Environments</td>
</tr>
<tr>
<td>Function Call</td>
</tr>
<tr>
<td>Implementation</td>
</tr>
<tr>
<td>Visitor implementation</td>
</tr>
</tbody>
</table>
Type Systems
Type Systems

Specification
What are types used for?

Checking that identifiers are declared and used correctly is not the only thing that needs to be verified in the compiler.

In most programming languages, **expressions have a type**.

Types are here to ensure that expressions are compatible with one another to guarantee some level of correctness.
Examples: typing rules of our Mini-C language

- The operands of `+` must be integers
- The operands of `==` must be compatible (`int` with `int`, `char` with `char`)
- The number of arguments passed to a function must be equal to the number of parameters
- ...
Type Systems

Type properties
Typing properties

Definition: Strong/weak typing

A language is said to be **strongly typed** if the violation of a typing rule results in an error.

A language is said to be **weakly typed** or not typed in other cases — in particular if the program behaviour becomes unspecified after an incorrect typing.

Strong/weak typing is about **how strictly** types are distinguished (e.g. implicit conversion).

Definition: Static/dynamic typing

A language is said to be **statically typed** if there exists a type system that can detect incorrect programs before execution.

A language is said to be **dynamically typed** in other cases.

Static/dynamic typing is about **when** type information is available.
A strongly typed language does not necessarily imply static typing.

<table>
<thead>
<tr>
<th>Language examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>strong</td>
</tr>
<tr>
<td>static</td>
</tr>
<tr>
<td>dynamic</td>
</tr>
</tbody>
</table>

Java (static/strong)

```java
class A {}
class B {}
A a = (A) b;
// compile-time error
```

C (static/weak)

```c
int * p1;
char ** p2;
p1 = (int*) p2;
// no error
```

Python (dynamic/strong)

```python
1 + 'a'
# run-time error
```

JavaScript (dynamic/weak)

```javascript
num = 11;
num.toUpperCase();
// run-time error
3 + '6'; // '36'
3 * '6'; // 18
```
Weak dynamic typing: the worst of the worst!

JavaScript

```javascript
num = 11;
num.toUpperCase();
// run-time error

3 + '6'; // '36'
3 * '6'; // 18
// no error
```

We want to give an exact specification of the language.

- We will *formally* define this, using a mathematical notation.
- Programs who pass the type checking phase are *well-typed* since they correspond to programs for which it is possible to give a *type* to each expression.

This mathematical description will fully specify the typing rules of our language.
Inference Rules
Suppose that we have a small language expressing constants (integer literal), the $+$ binary operation and the type \textbf{int}.

\begin{center}
\textbf{Example: language for arithmetic expressions}
\begin{tabular}{ll}
\textbf{Constants} & $i = \text{a number (integer literal)}$ \\
\textbf{Expressions} & $e = i$ \\
 & $| e_1 + e_2$ \\
\textbf{Types} & $T = \text{int}$
\end{tabular}
\end{center}
Inference Rules

Inference Rules
An expression e is of type T iff:

- it’s an expression of the form i and $T = \text{int}$ or
- it’s an expression of the form $e_1 + e_2$, where e_1 and e_2 are two expressions of type int and $T = \text{int}$

To represent such a definition, it is convenient to use inference rules which in this context is called a typing rule:

<table>
<thead>
<tr>
<th>Typing rules</th>
</tr>
</thead>
<tbody>
<tr>
<td>IntLit: $\vdash i : \text{int}$</td>
</tr>
<tr>
<td>BinOp: $\vdash e_1 : \text{int} \quad \vdash e_2 : \text{int} \quad \vdash e_1 + e_2 : \text{int}$</td>
</tr>
</tbody>
</table>
Typing rules

\[
\begin{align*}
\text{IntLit} & \quad \vdash i : \text{int} \\
\text{BinOp} & \quad \vdash e_1 : \text{int} \quad \vdash e_2 : \text{int} \\
& \quad \vdash e_1 + e_2 : \text{int}
\end{align*}
\]

An inference rule is composed of:

- a horizontal line
- a name on the left or right of the line
- a list of premisses placed above the line
- a conclusion placed below the line

An inference rule where the list of premisses is empty is called an axiom.
An inference rule can be read bottom up:

<table>
<thead>
<tr>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

```
 intuit BnOp ⊢ e₁ : int ⊢ e₂ : int ⊢ e₁ + e₂ : int
```

“*To show that an expression of the form \(e₁ + e₂ \) has type \texttt{int}, we need to show that \(e₁ \) and \(e₂ \) have the type \texttt{int}*."

- To show that the conclusion of a rule holds, it is enough to prove that the premisses are correct.
- This process stops when we encounter an axiom.
Using the inference rule representation, it possible to see whether an expression is well-typed.

Example: (1+2)+3

```
BINOP  INTLit  ____  INTLit  ____  INTLit  ____
       ┌───────┐    ┌───────┐    ┌───────┐
       │ 1 : int│    │ 2 : int│    │ 3 : int│
       └───────┘    └───────┘    └───────┘
       ┌───────┐    ┌───────┐
       │ 1 + 2 : int │ 3 : int
       └───────┘    └───────┘
       ┌───────┐
       │ (1 + 2) + 3 : int
       └───────┘
```

Such a tree is called a derivation tree.

Conclusion

An expression e has type T iff there exist a derivation tree whose conclusion is $\vdash e : T$.
Inference Rules

Environments
Let’s add identifiers to our language.

Example: language for arithmetic expressions

<table>
<thead>
<tr>
<th>Identifiers</th>
<th>x = a name (string literal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constants</td>
<td>i = a number (integer literal)</td>
</tr>
<tr>
<td>Expressions</td>
<td>$e = i$</td>
</tr>
<tr>
<td></td>
<td>$</td>
</tr>
<tr>
<td></td>
<td>$</td>
</tr>
<tr>
<td>Types</td>
<td>$T = \text{int}$</td>
</tr>
</tbody>
</table>

To determine if an expression such as $x+1$ is well-typed, we need to have information about the type of x.

We add an **environment** Γ to our typing rules which associates a type for each identifier. We now write $\Gamma \vdash e : T$.
An typing environment Γ is list of pairs of an identifier x and a type T. We can add an inference rule to decide when an expression containing an identifier is well-typed:

\[
\text{Ident} \quad \frac{x : T \in \Gamma}{\Gamma \vdash x : T}
\]

Example: $x + 1$

In the environment $\Gamma = \{x : \text{int}\}$, it is possible to type check $x + 1$:

\[
\begin{align*}
\text{Ident} & \quad \frac{x : T \in \Gamma}{\Gamma \vdash x : \text{int}} \\
\text{IntLit} & \quad \Gamma \vdash 1 : \text{int} \\
\text{BinOp} & \quad \frac{\Gamma \vdash x : \text{int}}{\Gamma \vdash x + 1 : \text{int}}
\end{align*}
\]
Inference Rules

Function Call
We need to add a notation to talk about the type of the functions.

Example: language for arithmetic expressions

<table>
<thead>
<tr>
<th>Identifiers</th>
<th>x = a name (string literal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constants</td>
<td>i = a number (integer literal)</td>
</tr>
<tr>
<td>Expressions</td>
<td>$e = i$</td>
</tr>
<tr>
<td></td>
<td>$</td>
</tr>
<tr>
<td></td>
<td>$</td>
</tr>
<tr>
<td>Types</td>
<td>$T, U = \text{int}$</td>
</tr>
<tr>
<td></td>
<td>$</td>
</tr>
</tbody>
</table>

where U represents a collection of types: $U_0, U_1, \ldots,$
Function call inference rule

\[
\text{FUNCALL}(f) \quad \frac{\Gamma \vdash f : \overline{U} \to T \quad \Gamma \vdash \overline{x} : \overline{U}}{\Gamma \vdash f(\overline{x}) : T}
\]

In plain English:

- the arguments \(\overline{x} \) must be of types \(\overline{U} \)
- the function \(f \) must be defined in the environment \(\Gamma \) as a function taking parameters of types \(\overline{U} \) and a return type \(T \).

Example: int foo(int, int)

\[
\text{FUNCALL}(\text{foo}) \quad \frac{\Gamma \vdash \text{foo} : (\text{int, int}) \to \text{int} \quad \Gamma \vdash x1 : \text{int} \quad \Gamma \vdash x2 : \text{int}}{\Gamma \vdash \text{foo}(x1, x2) : \text{int}}
\]
Implementation
Implementation

Visitor implementation
\[
\text{BINOP}(+) \vdash e_1 : \text{int} \quad \vdash e_2 : \text{int} \\
\vdash e_1 + e_2 : \text{int}
\]

TypeChecker visitor : binary operation

```java
class TypeChecker {
    public Type visitBinOp(BinOp bo) {
        Type lhsT = bo.lhs.accept(this);
        Type rhsT = bo.rhs.accept(this);
        if (bo.op == ADD) {
            if (lhsT == Type.INT && rhsT == Type.INT) {
                bo.type = Type.INT; // set the type
                return Type.INT; // returns it
            } else
                error();
        }
        // ...
    }
}
```
TypeChecker visitor: variables

```java
public Type visitVarDecl(VarDecl vd) {
    if (vd.type == VOID)
        error();
    return null;
}

public Type visitVarExp(Var v) {
    v.type = v.vd.type;
    return v.vd.type;
}
```

Not just analysis!
The visitor does more than analysing the AST: it also remembers the result of the analysis directly in the AST node.
Exercise: write the visit method for function call

```java
public Type visitFunCall(FunCall fc) {
    // ...
}
```

Function call inference rule

\[
\text{FUNCALL}(f) \quad \frac{\Gamma \vdash f : \overline{U} \rightarrow T \quad \Gamma \vdash \overline{x} : \overline{U}}{\Gamma \vdash f(\overline{x}) : T}
\]
Conclusion

- Typing rules can be formally defined using inference rules.
- We saw how to implement them with a visitor

Next lecture:

- An introduction to Assembly