
COMP 520 Winter 2020 Virtual Machines (1)

Virtual Machines
COMP 520: Compiler Design (4 credits)
Alexander Krolik
alexander.krolik@mail.mcgill.ca

MWF 10:30-11:30, TR 1100
http://www.cs.mcgill.ca/~cs520/2020/

http://www.devmanuals.com/tutorials/java/corejava/

JavaVirtualMachine.html

COMP 520 Winter 2020 Virtual Machines (2)

Readings
Crafting a Compiler (recommended)

• Chapter 10.1-10.2

• Chapter 11

Optional

• JVM specification: http://docs.oracle.com/javase/specs/jvms/se7/html/

• The Jalapeño dynamic optimizing compiler for Java:
https://dl.acm.org/citation.cfm?id=304113

COMP 520 Winter 2020 Virtual Machines (3)

Announcements (Wednesday/Friday, February 5th/7th)
Milestones

• Next Monday we will introduce the GoLite project!

• You should have received an invite to the “comp520” organization on GitHub.

Assignment 2

• Any questions? Else if, codegen file

• Due: Monday, February 10th 11:59 PM

COMP 520 Winter 2020 Virtual Machines (4)

Virtual Machines
Virtual machines

JVM

Bytecode

Verification

Stack code

Summary

COMP 520 Winter 2020 Virtual Machines (5)

Ahead-of-Time (AOT) Compilation
Compilers traditionally transformed source code to machine code ahead-of-time (before execution)

• gcc translates into RTL (Register Transfer Language), optimizes RTL, and then compiles RTL
into native code.

Advantages

• Fast execution, since the code is already ready to be executed;

• The code can exploit many details of the underlying architecture (given a smart compiler); and

• Intermediate languages like RTL facilitate production of code generators for many target
architectures.

Disadvantages

• Runtime information (program or architecture) is ignored;

• A code generator must be built for each target architecture in the compiler; and

• Multiple binaries distributed, one for each target.

COMP 520 Winter 2020 Virtual Machines (6)

Virtual Machines
Programming languages supported by virtual machines delay generating native code (if at all) until
execution time. Instead, the AOT compiler produces virtual machine code.

?

?

-�

Abstract syntax trees

Virtual machine codeInterpreter

Native binary code

AOT-compile

JIT-compileInterpret

COMP 520 Winter 2020 Virtual Machines (7)

Interpreting Virtual Machine Code
Code can be interpreted – instructions read one at a time and executed in a “virtual” environment.
The code is not compiled to the target architecture.

• P-code for early Pascal interpreters;

• Postscript for display devices; and

• Java bytecode for the Java Virtual Machine (in some instances).

Advantages

• Easy to generate virtual machine code;

• The code is architecture independent; and

• Bytecode can be more compact (macro operations).

Disadvantages

• Poor performance due to interpretative overhead (typically 5-20× slower)

– Every instruction considered in isolation;

– Confuses branch prediction; and . . .

COMP 520 Winter 2020 Virtual Machines (8)

Sketch of a Bytecode Interpreter
pc = code.start;
while(true) {

npc = pc + instruction_length(code[pc]);
switch (opcode(code[pc])) {

case ILOAD_1:
push(local[1]);
break;

case ILOAD:
push(local[code[pc+1]]);
break;

case ISTORE:
t = pop();
local[code[pc+1]] = t;
break;

case IADD:
t1 = pop(); t2 = pop();
push(t1 + t2);
break;

case IFEQ:
t = pop();
if (t == 0) npc = code[pc+1];
break;

...
}
pc = npc;

}

COMP 520 Winter 2020 Virtual Machines (9)

Virtual Machines vs Compilers
But, modern Java is quite efficient – virtual machine code can also be JIT compiled!

http://blog.cfelde.com/2010/06/c-vs-java-performance/

COMP 520 Winter 2020 Virtual Machines (10)

JIT Compilers
A just-in-time (JIT) compiler generates native code during program execution.

Advantages

• Target specific architectural details;

• Observe program properties only possible at runtime;

• Efficiently allocate optimization time towards important methods.

Disadvantages

Now that the program performance depends on compile time, there are competing concerns.

• Compilation time and memory use;

• Code quality.

Effective JIT compilers offset the compilation cost with improved code performance.

Dynamo: A transparent dynamic optimization system. (Vasanth Bala, Evelyn Duesterwald, and
Sanjeev Banerjia). PLDI 2000.

COMP 520 Winter 2020 Virtual Machines (11)

Virtual Machines
In this class we will look at two different virtual machines

Java Virtual Machine: stack-based IR

VirtualRISC: register-based IR (after the break)

COMP 520 Winter 2020 Virtual Machines (12)

Virtual Machines
Virtual machines

JVM

Bytecode

Verification

Stack code

Summary

COMP 520 Winter 2020 Virtual Machines (13)

Java Virtual Machine

Note: slides of this format from http://cs434.cs.ua.edu/Classes/20_JVM.ppt

COMP 520 Winter 2020 Virtual Machines (14)

Java Compilers
Java compilers like javac translate source code to class files. Class files include the bytecode
instructions for each method along with class properties.

Java Compiler

foo.java

foo.class
magic number (0xCAFEBABE)
minor version/major version

this class
super class
interfaces
fields
methods
attributes

constant pool
access flags

Why 0xCAFEBABE? http://radio-weblogs.com/0100490/2003/01/28.html

COMP 520 Winter 2020 Virtual Machines (15)

Java Class Loading
To execute a Java program, classes must first be loaded into the virtual machine

1. Classes are loaded lazily when first accessed;

2. Class name must match file name;

3. Super classes are loaded first (transitively);

4. The bytecode is verified;

5. Static fields are allocated and given default values; and

6. Static initializers are executed.

COMP 520 Winter 2020 Virtual Machines (16)

Java Class Loaders
A class loader is an object responsible for loading classes.

• Each class loader is an instance of the abstract class java.lang.ClassLoader;

• Every class object contains a reference to the ClassLoader that defined it;

• Each class loader has a parent class loader

– First try parent class loader if class is requested; and

– There is a bootstrap class loader which is the root of the classloader hierarchy.

• Class loaders provide a powerful extension mechanism in Java

– Loading classes from other sources; and

– Transforming classes during loading.

COMP 520 Winter 2020 Virtual Machines (17)

Java Virtual Machine
The JVM is a stack machine which has the following components

• Memory;

• Registers;

• Condition codes; and

• Execution unit.

COMP 520 Winter 2020 Virtual Machines (18)

Java Virtual Machine Memory
The JVM has several types of memory for storing program information

• A stack
(used for function call frames);

• A heap
(used for dynamically allocated memory);

• A constant pool
(used for constant data that can be shared); and

• A code segment
(used to store JVM instructions of currently loaded class files).

COMP 520 Winter 2020 Virtual Machines (19)

Java Virtual Machine Stack Frames
The Java Virtual Machine has two types of stacks

• Call stack: function call frames; and

• Baby /operand /local stack: operands and results from instructions.

Each function call frame contains

• A reference to the constant pool;

• Locals:

– A reference to the current object (this) if any;

– The method arguments;

– The local variables; and

• A local stack used for intermediate results (the baby stack).

To compute the correct frame size, the number of local slots and the maximum size of the local
stack are fixed at compile-time.

COMP 520 Winter 2020 Virtual Machines (20)

COMP 520 Winter 2020 Virtual Machines (21)

Java Virtual Machine Registers
• No general purpose registers;

• The stack pointer (sp) which points to the top of the stack;

• The local stack pointer (lsp) which points to a location in the current stack frame; and

• The program counter (pc) which points to the current instruction.

COMP 520 Winter 2020 Virtual Machines (22)

Java Virtual Machine Execution
Condition codes

• Condition codes are set by instructions that evaluate predicates; and

• Are used for branching instructions.

The JVM instruction set does not differentiate between these two operations.

Execution unit

• Reads the Java Virtual Machine instruction at the current pc, decodes the instruction and
executes it;

• This may change the state of the machine (memory, registers, condition codes);

• The pc is automatically incremented after executing an instruction; but

• Method calls and branches explicitly change the pc.

COMP 520 Winter 2020 Virtual Machines (23)

Virtual Machines
Virtual machines

JVM

Bytecode

Verification

Stack code

Summary

COMP 520 Winter 2020 Virtual Machines (24)

COMP 520 Winter 2020 Virtual Machines (25)

Jasmin Code
Jasmin is the textual representation of Java bytecode that we will study (and write!) in class

Primitive types in jasmin

• boolean: Z

• float: F

• int: I

• long: J

• void: V

Reference types (classes)

• Types are given as their fully qualified names;

– i.e. String in the package java.lang has fully qualified name java.lang.String;

• In Jasmin code, we prepend L, replace “.” by “/” and add “;”;

– i.e. String is written as Ljava/lang/String; .

COMP 520 Winter 2020 Virtual Machines (26)

Writing Jasmin Code - Methods
In Jasmin code, a method consists of

• Signature

.method <modifiers> <name>(<parameter types>)<return type>

• Max height of the “baby” stack

.limit stack <limit>

• Number of locals (including explicit and implicit arguments)

.limit locals <limit>

• Method body

• Termination line

.end method

Example

.method public Abs(I)I

.limit stack 2

.limit locals 2

[...]

.end method

COMP 520 Winter 2020 Virtual Machines (27)

Example Jasmin
Consider the following Java method for computing the absolute value of an integer

public int Abs(int x) {

if (x < 0)

return x * -1;

else

return x;

}

Write the corresponding bytecode in Jasmin syntax

COMP 520 Winter 2020 Virtual Machines (28)

Example Jasmin
Corresponding Jasmin codes

.method public Abs(I)I // one int argument, returns an int

.limit stack 2 // has stack with 2 locations

.limit locals 2 // has space for 2 locals

// --locals-- --stack---

// [o -3] [* *]

iload_1 // [o -3] [-3 *]

ifge Else // [o -3] [* *]

iload_1 // [o -3] [-3 *]

iconst_m1 // [o -3] [-3 -1]

imul // [o -3] [3 *]

ireturn // [o -3] [* *]

Else:

iload_1

ireturn

.end method

Comments show trace of o.Abs(-3)

COMP 520 Winter 2020 Virtual Machines (29)

Java Virtual Machine Instructions
The JVM has 256 instructions for

• Arithmetic operations

• Constant loading operations

• Local operations

• Branch operations

• Stack operations

• Class operations

• Method operations

The JVM specification gives the full list

COMP 520 Winter 2020 Virtual Machines (30)

COMP 520 Winter 2020 Virtual Machines (31)

Arithmetic Operations
Arithmetic operations use operands from the stack, and store the result back on the stack

Unary arithmetic operations

ineg [...:i] -> [...:-i]

i2c [...:i] -> [...:i%65536]

Binary arithmetic operations

iadd [...:i1:i2] -> [...:i1+i2]

isub [...:i1:i2] -> [...:i1-i2]

imul [...:i1:i2] -> [...:i1*i2]

idiv [...:i1:i2] -> [...:i1/i2]

irem [...:i1:t2] -> [...:i1%i2]

Direct operations (stack not used)

iinc k a [...] -> [...]

local[k] = local[k]+a

COMP 520 Winter 2020 Virtual Machines (32)

Constant Loading Operations
Constant loading instructions push constant values onto the top of the stack

iconst_m1 [...] -> [...:-1]

iconst_0 [...] -> [...:0]

iconst_1 [...] -> [...:1]

iconst_2 [...] -> [...:2]

iconst_3 [...] -> [...:3]

iconst_4 [...] -> [...:4]

iconst_5 [...] -> [...:5]

aconst_null [...] -> [...:null]

ldc_int i [...] -> [...:i]

ldc_string s [...] -> [...:String(s)]

COMP 520 Winter 2020 Virtual Machines (33)

Locals Operations
Locals operations load and store values on the stack from the local variables

iload k [...] -> [...:local[k]]

istore k [...:i] -> [...]

local[k] = i

aload k [...] -> [...:local[k]]

astore k [...:o] -> [...]

local[k] = o

Field operations

Field operations get and put elements on the stack into fields of an object

getfield f sig [...:o] -> [...:o.f]

putfield f sig [...:o:v] -> [...]

o.f = v

Note that these instructions require the full name of the field (Class.field) and its signature (type)

COMP 520 Winter 2020 Virtual Machines (34)

Branch Operations
Nullary branch operations

goto L [...] -> [...]

branch always

Unary branch operations

Unary branch instructions compare the top of the stack against zero

ifeq L [...:i] -> [...]

branch if i == 0

ifne L [...:i] -> [...]

branch if i != 0

There are also other comparators ifgt, ifge, iflt, ifle for unary branching

ifnull L [...:o] -> [...]

branch if o == null

ifnonnull L [...:o] -> [...]

branch if o != null

COMP 520 Winter 2020 Virtual Machines (35)

Branch Operations
Binary branch operations

Binary branch instructions compare the top two elements on the stack against each other

if_icmpeq L [...:i1:i2] -> [...]

branch if i1 == i2

if_icmpne L [...:i1:i2] -> [...]

branch if i1 != i2

There are also other comparison instructions if_icmpgt, if_icmpge, if_icmplt, if_icmple

if_acmpeq L [...:o1:o2] -> [...]

branch if o1 == o2

if_acmpne L [...:o1:o2] -> [...]

branch if o1 != o2

COMP 520 Winter 2020 Virtual Machines (36)

Stack Operations
Stack instructions are value agnostic operations that change the state of the stack

dup [...:v1] -> [...:v1:v1]

pop [...:v1] -> [...]

swap [...:v1:v2] -> [...:v2:v1]

nop [...] -> [...]

COMP 520 Winter 2020 Virtual Machines (37)

Class Operations
new C [...] -> [...:o]

The new instruction by itself only allocates space on the heap. To execute the constructor and
initialize the object, you must call <init> using invokespecial and the appropriate parameters

invokespecial C/<init>(T1,...,Tn)V [...:o:a1:...:an] -> [...]

Class properties of an object

instance_of C [...:o] -> [...:i]

if (o == null) i = 0

else i = (C <= type(o))

checkcast C [...:o] -> [...:o]

if (o != null && !C <= type(o))

throw ClassCastException

COMP 520 Winter 2020 Virtual Machines (38)

Method Operations
Most methods are invoked using an invokevirtual instruction

invokevirtual m sig [...:o:a1:...:an] -> [...:ret]

Internally

Invoking methods consists of selecting the appropriate method for the dynamic type of the object,
setting up the stack frame and locals, and jumping to the body

entry = lookupHierarchy(m, sig, dynamic_class(o));

block = block(entry);

push stack frame of size: block.locals + block.stacksize;

local[0] = o; // local 0 points to "this"

local[1] = a_1;

...

local[n] = a_n;

pc = block.code;

COMP 520 Winter 2020 Virtual Machines (39)

Method Operations
Other methods are invoked using an invokespecial instruction

invokespecial m sig [...:o:a1:...:an] -> [...:ret]

Internally

entry = lookupClassOnly(m, sig, static_class(o));

block = block(entry);

push stack frame of size: block.locals + block.stacksize;

local[0] = o; // local 0 points to "this"

local[1] = a_1;

...

local[n] = a_n;

pc = block.code;

Comparison to invokevirtual

For which method calls is invokespecial used? <init>(..), private, super method calls.

invokevirtual uses the class of the object itself, whereas invokespecial calls a specific class
in the hierarchy. There are also bytecode instructions invokestatic and invokeinterface

COMP 520 Winter 2020 Virtual Machines (40)

Method Operations
Return operations can either take (a) a single element; or (b) no elements.

ireturn [...:<frame>:i] -> [...:i]

pop stack frame,

push i onto frame of caller

areturn [...:<frame>:o] -> [...:o]

pop stack frame,

push o onto frame of caller

return [...:<frame>] -> [...]

pop stack frame

Those operations also release locks in synchronized methods.

COMP 520 Winter 2020 Virtual Machines (41)

Example Java Method
Consider the following Java method from the Cons class

public boolean member(Object item) {
if (first.equals(item))

return true;
else if (rest == null)

return false;
else

return rest.member(item);
}

Write the corresponding Java bytecode in Jasmin syntax, where first is a field of type Object

and rest is a field of type Cons.

COMP 520 Winter 2020 Virtual Machines (42)

Example Java Method
Corresponding bytecode (in Jasmin syntax)
.method public member(Ljava/lang/Object;)Z
.limit locals 2 // local[0] = o

// local[1] = item
.limit stack 2 // [* *]

aload_0 // [o *]
getfield Cons.first Ljava/lang/Object;

// [o.first *]
aload_1 // [o.first item]
invokevirtual java/lang/Object/equals(Ljava/lang/Object;)Z

// [b *] for some boolean b
ifeq else_1 // [* *]
iconst_1 // [1 *]
ireturn // [* *]

else_1:
aload_0 // [o *]
getfield Cons.rest LCons; // [o.rest *]
aconst_null // [o.rest null]
if_acmpne else_2 // [* *]
iconst_0 // [0 *]
ireturn // [* *]

else_2:
aload_0 // [o *]
getfield Cons.rest LCons; // [o.rest *]
aload_1 // [o.rest item]
invokevirtual Cons/member(Ljava/lang/Object;)Z

// [b *] for some boolean b
ireturn // [* *]

.end method

COMP 520 Winter 2020 Virtual Machines (43)

Announcements (Wednesday, February 12th)
Assignment 2

• Will be graded by next week. If you have not submitted yet, do so soon!

Midterm

• Tuesday, February 25th 6:00 PM - 7:30 PM

• Conflicts – please contact me

Milestone 1

• Get started early!

• Any questions?

• Due: Friday, February 21st 11:59 PM

COMP 520 Winter 2020 Virtual Machines (44)

Reference Compiler (GoLite)
Accessing

• ssh <socs_username>@teaching.cs.mcgill.ca

• ~cs520/golitec {keyword} < {file}

• If you find errors in the reference compiler, bonus points!

Keywords for the first milestone

• scan: run scanner only, OK/Error

• tokens: produce the list of tokens for the program

• parse: run scanner+parser, OK/Error

• pretty: produce a pretty output for the program

COMP 520 Winter 2020 Virtual Machines (45)

Virtual Machines
Virtual machines

JVM

Bytecode

Verification

Stack code

Summary

COMP 520 Winter 2020 Virtual Machines (46)

Java Class Loading and Execution Model
• When a method is invoked, a ClassLoader finds the correct class and checks that it contains

an appropriate method;

• If the method has not yet been loaded, then it is verified (remote classes);

• After loading and verification, the method body is interpreted;

• If the method becomes executed multiple times, the bytecode for that method is translated to
native code; and

• If the method becomes hot, the native code is optimized.

The last two steps are very involved and a lot of research and industrial effort has been put into
good adaptive JIT compilers.

COMP 520 Winter 2020 Virtual Machines (47)

Bytecode Verification
• Bytecode cannot be trusted to be well-formed and well-behaved;

• Before executing any bytecode, it should be verified, especially if that bytecode is received over
the network;

• Verification is performed partly at class loading time, and partly at run-time; and

• At load time, dataflow analysis is used to approximate the number and type of values in locals
and on the stack.

COMP 520 Winter 2020 Virtual Machines (48)

Bytecode Verification - Syntax
• The first 4 bytes of a class file must contain the magic number 0xCAFEBABE;

• The bytecodes must be syntactically correct

– All instructions are complete;

– Branch targets are within the code segment;

– Only legal offsets are referenced;

– Constants have appropriate types; and

– Execution cannot fall of the end of the code.

COMP 520 Winter 2020 Virtual Machines (49)

Bytecode Verification - Interesting Properties
Stack properties

• At any program point, the stack is the same size along all execution paths; and

• At any program point, the stack contains the same types along all execution paths.

Why? Conservatively guess instructions executed after the program point are path independent.

Type properties

• Each instruction must be executed with the correct number and types of arguments on the
stack, and in locals (on all execution paths); and

• Fields are assigned appropriate values.

Other properties

• Every method must have enough locals to hold the receiver object (except static methods) and
the method’s arguments; and

• No local variable can be accessed before it has been assigned a value.

COMP 520 Winter 2020 Virtual Machines (50)

Slides of this format from: http://cs.au.dk/~mis/dOvs/slides/39a-javavirtualmachine.pdf

COMP 520 Winter 2020 Virtual Machines (51)

COMP 520 Winter 2020 Virtual Machines (52)

COMP 520 Winter 2020 Virtual Machines (53)

COMP 520 Winter 2020 Virtual Machines (54)

Split-verification in Java 6+
• Bytecode verification is easy but still polynomial, i.e. sometimes slow;

• This can be exploited in denial-of-service attacks:
http://www.bodden.de/research/javados/

• Java 6 (version 50.0 bytecodes) introduced StackMapTable attributes to make verification
linear

– Java compilers know the type of locals at compile time;

– Java 6 compilers store these types in the bytecode using StackMapTable attributes; which

– Speeds up construction of the “proof tree”⇒ also called “Proof-Carrying Code”.

• Java 7 (version 51.0 bytecodes) JVMs enforce presence of these attributes.

COMP 520 Winter 2020 Virtual Machines (55)

Consider the Following Mystery Program
public class u1 {

public static void main(String [] args) {
int r = mystery(4);
System.out.println(r);

}

static int mystery(int n) {
... written only in bytecode ...

}
}

COMP 520 Winter 2020 Virtual Machines (56)

Now in Jasmin Code
.class public ul
.super java/lang/Object

.method public <init>()V

.limit stack 1

.limit locals 1
aload_0
invokespecial java/lang/Object/<init>()V
return

.end method

.method public static main([Ljava/lang/String;)V

.limit stack 2

.limit locals 2
ldc 4
invokestatic ul/mystery(I)I
istore_1
getstatic java.lang.System.out Ljava/io/PrintStream;
iload_1
invokevirtual java/io/PrintStream/println(I)V
return

.end method

COMP 520 Winter 2020 Virtual Machines (57)

What does this method do?
.method static mystery(I)I
.limit stack 5
.limit locals 2
Begin:

iconst_1
istore_1

PushLoop:
iload_1
iinc 1 1
iload_1
iload_0
if_icmple PushLoop
iconst_1
istore_1

PopLoop:
imul
iinc 1 1
iload_1
iload_0
if_icmplt PopLoop
ireturn

.end method

Try java -noverify ul and java ul

COMP 520 Winter 2020 Virtual Machines (58)

Virtual Machines
Virtual machines

JVM

Bytecode

Verification

Stack code

Summary

COMP 520 Winter 2020 Virtual Machines (59)

Converting Class Files
A useful tool for dealing with class files, http://sourceforge.net/projects/tinapoc/
supports several tools including

> java dejasmin Test.class

will disassemble Test.class and produce Jasmin output

> java jasmin test.j

assembles test.j written in Jasmin code. See Jasmin documentation for more details.

Add -classpath tinapoc.jar:bcel-5.1.jar with the appropriate paths

javap

The Java provided tool javap also provides disassembly support including the constant pool

> javap -c Test.class

will disassemble Text.class and produce Jasmin output

COMP 520 Winter 2020 Virtual Machines (60)

Stack Code for Optimization
Is stack code really suitable for optimizations and transformations?

No, tools like Soot are useful for this: http://sable.github.io/soot/

Optimizing stack based intermediate representations requires

• Reasoning and maintaining information about the stack (which changes height); and

• Does not correspond to actual execution!

COMP 520 Winter 2020 Virtual Machines (61)

Power1 Example
public class p1 {

public static void main(String [] args) {
int r = power1(10,2);
System.out.println(r);

}

static int power1(int x, int n) {
int i;
int prod = 1;
for (i = 0; i < n; i++)

prod = prod * (x + 1);
return prod;

}
}

COMP 520 Winter 2020 Virtual Machines (62)

Power1 Example
Using Soot to create Jimple 3 address code (soot -f jimple p1)

public class p1 extends java.lang.Object {
public void <init>() {

p1 r0;
r0 := @this: p1;
specialinvoke r0.<java.lang.Object: void <init>()>();
return;

}

public static void main(java.lang.String[]) {
java.lang.String[] r0;
int i0;
java.io.PrintStream $r1;
r0 := @parameter0: java.lang.String[];
i0 = staticinvoke <p1: int power1(int,int)>(10, 2);
$r1 = <java.lang.System: java.io.PrintStream out>;
virtualinvoke $r1.<java.io.PrintStream: void println(int)>(i0);
return;

}
...

COMP 520 Winter 2020 Virtual Machines (63)

...
static int power1(int, int) {

int i0, i1, i2, i3, $i4;
i0 := @parameter0: int;
i1 := @parameter1: int;
i3 = 1;
i2 = 0;

label1:
if i2 >= i1 goto label2;
$i4 = i0 + 1;
i3 = i3 * $i4;
i2 = i2 + 1;
goto label1;

label2:
return i3;

}
}

COMP 520 Winter 2020 Virtual Machines (64)

Decompiling Class Files
Soot can also decompile .class files to the equivalent .java

Try soot -f dava -p db.renamer enabled:true p1

import java.io.PrintStream;

public class p1 {
public static void main(String[] args) {

int i0;
i0 = p1.power1(10, 2);
System.out.println(i0);

}

static int power1(int i0, int i1) {
int i, i3;
i3 = 1;
for (i = 0; i < i1; i++) {

i3 = i3 * (i0 + 1);
}
return i3;

}
}

Some program information (such as variable names) is lost from the original source

COMP 520 Winter 2020 Virtual Machines (65)

Virtual Machines
Virtual machines

JVM

Bytecode

Verification

Stack code

Summary

COMP 520 Winter 2020 Virtual Machines (66)

This Class
Java bytecode

• The JOOS compiler produces Java bytecode in Jasmin format; and

• The JOOS peephole optimizer transforms bytecode into more efficient bytecode.

VirtualRISC (coming soon)

• Java bytecode can be converted into machine code at run-time using a JIT (Just-In-Time)
compiler;

• We will study some examples of converting Java bytecode into a language similar to
VirtualRISC;

• We will study some simple, standard optimizations on VirtualRISC.

COMP 520 Winter 2020 Virtual Machines (67)

Let’s Practice!
Write the Java bytecode version of the static method for computing the power.

public class p1 {
static int power1(int x, int n) {

int i;
int prod = 1;
for (i = 0; i < n; i++)

prod = prod * (x + 1);
return prod;

}
}

You can assume the following mapping of variables to bytecode locals

Parameters: x -> local 0 n -> local 1

Locals: i -> local 2 prod -> local 3

Try: javac p1.java, javap -verbose p1.class

COMP 520 Winter 2020 Virtual Machines (68)

Jasmin Code
.method static power1(II)I
.limit stack 3
.limit locals 4

Label2:
0: iconst_1
1: istore_3 ; prod = 1

2: iconst_0
3: istore_2 ; i = 0;

Label1:
4: iload_2
5: iload_1
6: if_icmpge Label0 ; (i >= n)?

9: iload_3
10: iload_0
11: iconst_1 ; high water mark for baby stack, 3
12: iadd
13: imul
14: istore_3 ; prod = prod * (x + 1)

15: iinc 2 1 ; i++
18: goto Label1

Label0:
21: iload_3
22: ireturn ; return prod

.end method

COMP 520 Winter 2020 Virtual Machines (69)

Jasmin Code (Loop Invariant Removal)
.method static power1(II)I
.limit stack 2
.limit locals 5

Label2:
0: iconst_1
1: istore_3 ; prod = 1

2: iload_0
3: iconst_1
4: iadd
5: istore 4 ; t = x + 1

7: iconst_0
8: istore_2 ; i = 0

Label1:
9: iload_2
10: iload_1
11: if_icmpge Label0 (i >= n)?

14: iload_3
15: iload 4
17: imul
18: istore_3 ; prod = prod * t;

19: iinc 2 1 ; i++
22: goto Label1

Label0:
25: iload_3
26: ireturn ; return prod

.end method

