Special Topic: GPUs

COMP 520: Compiler Design 2020
Alexander Krolik
alexander.krolik@mail.mcgill.ca

@& Announcements

* Peephole: Tuesday, April 14th
 Milestone 4: Friday, April 24th

* Final project: Friday, May 15t
 Group meeting: Week of April 27th

* Milestone 2 programs will be posted shortly!

@2 Plan

 \What is a GPU?

* Programming model/paradigm
» Hardware architecture

* Thread and memory mapping
* GPU algorithms

* Introductory
* Reductions

What is a GPU?

@& \What is a GPU?

A Graphics Processing Unit (GPU) is:

* A specialized processor originally designed for graphics;
 Targets throughput computing —i.e. ALL the pixels;

* Also called an accelerator or co-processor;

* Works in collaboration with the CPU; and

 Can be found in many modern devices.

une Oven

https://www.zdnet.com/article/nvidia-unveils-cheaper-and-faster-geforce-gtx-1080-gpu/
https://juneoven.com/the-oven

@& History of GPUs

* Introduced in the 1970's;
» Originally contained hardware for graphics only;

* Transitioned to generic throughput processors in mid 2000's;
» "General-purpose” GPUs;

* Have been pushed by 2 industries:
* Gaming;
* Machine learning; and

* From 2010 onwards, a key component in all computers.

@%® GPU Motivation

Why bother? We have great multi-core CPUs...

» CPUs are optimized for generic-processing of individual tasks
* Faster cores
« Smaller number of hardware threads

» GPUs are optimized for throughput computing
 Slower cores
» Larger number of hardware threads

Tricky: How can we use parallelism to offset slower cores?
ldea: Saturate GPU cores to achieve higher throughput than CPU.

@& GPU Design Goals

Modern GPUs are designed for:

* High-degrees of parallelism;

» Efficient synchronization and data sharing;
* Generic parallel programming; and
 High-level parallel languages (OpenCL/CUDA).

Programming Model

@& Programming Model

The GPU parallel programming model is based on SIMT.

« SIMT

 Single Instruction, Multiple Thread
* Program specifies the behaviour of a single thread;
» Threads may diverge;

* By contrast in SIMD

* Single Instruction, Multiple Data

* Program specifies the behaviour of all threads in the width;
» All threads execute in lock-step;

* Hierarchy of threads and memory; and
« Some limited synchronization.

@@ Thread Hierarchy

A thread is the basic unit of execution on a GPU.
* Computes a single unit of data;

* Lightweight; and

* Low creation time.

Thread

@@ Thread Hierarchy

A thread group specifies a collection of threads.

* May work together;

 Can be synchronized and share data; and

* Also called a CTA (cooperative thread array) or a workgroup.

Thread Group

@& Thread Hierarchy

A thread grid is a collection of thread groups.
* Forms a kernel - the "program” for the GPU; and
» Cannot be synchronized.

Grid (Kernel)

R
e

@& Thread Hierarchy

Thread Identifier Group ldentifier
Each thread in a group has a unique Each thread group in a grid has a
identifier unique identifier
Grid (Kernel 0)
Thread Group Thread Group (0, 0) Thread Group (1, 0)
1 1 1 B J J |
T H
1 1 1 B § J]
EEEE Emmm
Thread Group (0, 1) Thread Group (1, 1)
3,2) 1 1 1 B f J]
1 1 1 mu § J J
X1 E B ..
1 1 1 B f J]

Thread + group identifiers uniquely specify a thread within a kernel

@& Memory Hierarchy

Each thread has its own private memory.
« Cannot be accessed by other threads; and
* Analogous to registers.

Thread

Private
—r
Memory

@& Memory Hierarchy

Each thread group has its own shared memory.
 Can be accessed by all threads within the group;

* Requires synchronization;

» Cannot be accessed by other groups.

Thread Group

Memory

@& Memory Hierarchy

All grids share device memory (GPU memory).
» Can be accessed by all threads in all grids; but
» Cannot be synchronized between groups or grids.

Grid (Kernel 0)

Grid (Kernel 1)

@8 Example: Image Set

Given a 2000x1000 image in RGB, how can we efficiently
increase the B value for every pixel using a GPU?

1. What high-level algorithm design should we use?
Each pixel gets its own thread
2. How many threads do we need?
2000x1000
3. Whatis the thread-hierarchy?
X groups (depends on hardware); all independent
4. Where is the image data stored?

Device memory, no shared memory needed

@& Example: Image Downsize

Given a 2000x1000 imaﬁe, compute the downsized image by taking
the average RGB of each 10x10 region.

1. What high-level algorithm design should we use?
Each block gets a thread group, each thread averages a single row
2. How many threads do we need?
200x100x10 (1 per block per row)
3. What s the thread-hierarchy?
200x100 groups (10 threads each), 1 grid
4. Where is the image data stored?

Image in device memory, intermediate values in shared memory

Machine Model

@& Machine Model

GPU hardware is geared towards high degrees of parallelism.

Processors
* Highly parallel, with thousands (and thousands of processors);
* Hierarchically parallel, processors grouped at multiple levels.

Memory
» High bandwidth, fast concurrent accesses between threads;
* Hierarchical design, levels corresponding to thread groupings.

@& Program Execution

A full GPU program consists of two code sections:

* Host code that runs on the CPU;
» Compiles the program;
» Transfers the data; and
* Specifies the thread geometry (number and organization of threads).

 Kernel (GPU code) executes the parallel section.

@%¥ Machine Model

| | MP MP
Shared Registers
Memory Page —
: Host

B Connections MP: Multiprocessor

B Memory PE: Processing Element
B Processors

Units/groupings

@%¥ Machine Model

Host System
* Multi-core out-of-order execution unit (CPU)
* Large host memory

@%¥ Machine Model

Core Core
Core Core

Host System
* Multi-core out-of-order execution unit (CPU)
* Large host memory

@%¥ Machine Model

Host
Memory
Host System

» Multi-core out-of-order execution unit (CPU)
* Large host memory

@%¥ Machine Model

| | MP
Shared Registers
Memory Page

GPU
* Single-instruction multiple-thread (SIMT) processor

MP

* Hierarchical memory

@%¥ Machine Model

PCl-e Bus
» Connection between both devices
« Transfer of data, programs, and commands

@%¥ Machine Model

-]

Processing Elements
* Processorsina GPU
« Each element computes the result for a single thread
 Slower clock speed than the CPU, but there are thousands!

@%¥ Machine Model

Processing Elements
 Grouped into “"execution blocks" (on Fermi architecture, 16 cores each)
« Each execution block executes in lock-step (SIMD)

@%¥ Machine Model

MP MP

Multi-Processors
 Grouping of processing elements (or execution blocks)
« Each will execute one or more thread groups
« There is no guarantee on execution order between multi-processors

@%¥ Machine Model

Registers
Page

Registers Page
 Private memory for each processing element (no sharing permitted)
» Lowest latency (fastest) memory on the GPU

@%¥ Machine Model

Shared
Memory

Shared Memory
« Shared memory between processing elements in the same multi-processor
« Larger size but higher latency than registers

@%¥ Machine Model

MP MP

|

Device Memory
* Shared memory between all multi-processors
 Largest size but highest latency memory
 Persistent between GPU programs (kernels) — other memory is not

@%¥ Machine Model

; é ...
| MP MP
Shared Registers
Memory Page —
: Host

B Connections MP: Multiprocessor

B Memory PE: Processing Element
B Processors

Units/groupings

Model Mapping

@& Model Mapping

Mapping from the programming to the machine model:

» Each thread group is assigned to a multi-processor;
» Shared memory = shared memory

 Each thread executes on a processing element.
* Private memory = registers page

Shared Registers
Memory Page

@& Thread Mapping

Two important questions:

1. How do we efficiently schedule 1000s of threads on a limited
number of cores?

2. How do threads in SIMD diverge?

Answers:

1. Round-robin executable threads — some threads will wait!
2. Masking.

@& Thread Mapping

A warp is the scheduling unit of threads.
 Contains a fixed number (usually 32) consecutive threads;
* Instruction scheduling occurs at the warp level.

For each cycle:

* The instruction unit picks the next executable warp;
* Not waiting for a memory load/store
 Not blocked (synchronization)

» The warp is assigned to an execution group
 Each thread in the warp executes the same instruction (SIMD);
* This overlaps computation and wait time. Throughput!

@& Thread Mapping

Thread divergence occurs when two threads within a warp
execute different branches.

if (tid.x % 2 == 0) {
a += 5;

} else {
a += 4;

}

To handle divergent execution:

* All threads within a warp execute the entire structure;
* "Inactive” threads have results masked-out;

* Serializes the execution of an if-else.

@& Memory Mapping

Synchronization instructions on a GPU:
 Execute within athread group;
Do not allow synchronization between groups.

Counting (Memory) Barrier

» Ensures all threads in a group are at the same point;
* By counting the number of threads;

* Does not interact between groups.

Why can we not synchronize between groups?
More thread groups than multiprocessors'!

@& Memory Mapping

Shared Memory
 Shared by all threads in a group.

o

- Within a group:]

* Not automatically synchronized! Shared
« Memory barrier Memory

Synchronization

* Between groups: Impossible!

@& Memory Mapping

Device Memory
 Shared by all threads on the GPU.

Synchronization
* Within a group:

* Not automatically synchronized!
* Memory barrier

* Between groups:
 Impossible (within a kernel)!
» Kernel boundary

@2 Memory Optimization

Device memory accesses are the most
expensive instructions.

T1 T1 T2 T2 T3 T3

GPUs achieve high-bandwidth by using l | |
memory transactions. 1 2 3 4 5 6
Uncoalesced Access Pattern
Coale.SCIr?g. _ _ T T2 T3 T1 T2 T3
* Avoid filling transactions with [|
unused data; and 1 2 3 4 5 6
* Merge concurrent accesses into a Coalesced Access Pattern

single transaction.

* Pattern: Access consecutive memory
locations from consecutive threads.

@2 Example: Memory Optimization

Given a kernel with 3 threads each loading 2 values and a
transaction size of 3. How many loads are required if we
coalesce/do not coalesce?

T1 T2 T3 T1 T2 T3
! ! ! ! ! !
1 2 '3 4 5 6 1 2 3 4 5 6

Tx1 T2 T3 Tt
™M T2 T3 ™M T2 T3
b4 I
1 2 3 4 5 6 1 2 3 4 5 6

Parallel Reductions

@& Parallel Reductions

Idea: Group the values of multiple rows into a single value (fold)

0 2 4 2 3 2 3 0

Common Reductions:

COUNT SUM AVG MAX MIN
8 16 2 4 0

@%@ Parallel

Reductions (SUM)

@& Parallel Reductions (SUM)

2 thread groups, 2 threads/group = 4 threads

device 0 2 4 2 3 2 3 0

@& Parallel Reductions (SUM)

2 thread groups, 2 threads/group = 4 threads

device 0 2

group 1

4 2

group 2

3

2 3 0

1 location per thread

@& Parallel Reductions (SUM)

2 thread groups, 2 threads/group = 4 threads

device 0 2

shared

group 1

4 2

group 2

3

2 3 0

1 location per thread

@& Parallel Reductions (SUM)

2 thread groups, 2 threads/group = 4 threads

device 0 2

shared

group 1

4 2

group 2

3

2 3 0

1 location per thread

@& Parallel Reductions (SUM)

2 thread groups, 2 threads/group = 4 threads

device 0 2

shared

group 1

4 2

group 2

3

2 3 0

1 location per thread

@& Parallel Reductions (SUM)

2 thread groups, 2 threads/group = 4 threads

device 0 2

shared

group 1

4 2

group 2

3

2 3 0

1 location per thread

@& Parallel Reductions (SUM)

2 thread groups, 2 threads/group = 4 threads

device 0 2

shared 3
group 1

4 2

group 2

3

2 3 0

1 location per thread

@& Parallel Reductions (SUM)

2 thread groups, 2 threads/group = 4 threads

device 0 2

shared 3 4
group 1

4 2

group 2

3

2 3 0

1 location per thread

@& Parallel Reductions (SUM)

2 thread groups, 2 threads/group = 4 threads

device 0 2

shared 3 4
group 1

4 2
7
group 2

3

2 3 0

1 location per thread

@& Parallel Reductions (SUM)

2 thread groups, 2 threads/group = 4 threads

device 0 2

shared 3 4
group 1

4 2
7 2
group 2

3

2 3 0

1 location per thread

@& Parallel Reductions (SUM)

2 thread groups, 2 threads/group = 4 threads

device 0 2

shared 3 4
group 1

4 2
7 2
group 2

3

2 3 0

1 location per thread

@& Parallel Reductions (SUM)

2 thread groups, 2 threads/group = 4 threads

device 0 2

shared 3 4
group 1

4 2
7 2
group 2

3

2 3 0

1 location per thread

@& Parallel Reductions (SUM)

2 thread groups, 2 threads/group = 4 threads

device 0 2

shared 3 4
group 1

4

7

2

2
group 2

3

2 3 0

1 location per thread

@& Parallel

Reductions (SUM)

2 thread groups, 2 threads/group = 4 threads

2 4 2 3 2 3 0

4 7 2 1 location per thread

shared synchronization (__syncthreads()) ««eeesssmermmmmmmmmmmmmmminiiisiriinirrnesnananas

@& Parallel Reductions (SUM)

2 thread groups, 2 threads/group = 4 threads

device 0 2 4 2 3 2 3 0
shared 3 4 7 2 1 location per thread
shared 3 4 7 2 Same shared memory

group 1 group 2

@& Parallel Reductions (SUM)

2 thread groups, 2 threads/group = 4 threads

device 0 2 4 2 3 2 3 0
shared 3 4 7 2 1 location per thread
shared 3 4 7 2 Same shared memory

group 1 group 2

@& Parallel Reductions (SUM)

2 thread groups, 2 threads/group = 4 threads

device 0 2 4 2 3 2 3 0
shared 3 4 7 2 1 location per thread
shared 3 4 7 2 Same shared memory

group 1 group 2

@& Parallel Reductions (SUM)

2 thread groups, 2 threads/group = 4 threads

device 0 2 4 2 3 2 3 0
shared 3 4 7 2 1 location per thread
shared 3 4 7 2 Same shared memory

group 1 group 2

@& Parallel Reductions (SUM)

2 thread groups, 2 threads/group = 4 threads

device 0 2 4 2 3 2 3 0
shared 3 4 7 2 1 location per thread
shared 7 4 7 2 Same shared memory

group 1 group 2

@& Parallel Reductions (SUM)

2 thread groups, 2 threads/group = 4 threads

device 0 2 4 2 3 2 3 0
shared 3 4 7 2 1 location per thread
shared 7 4 9 2 Same shared memory

group 1 group 2

@& Parallel Reductions (SUM)

2 thread groups, 2 threads/group = 4 threads

device 0 2 4 2 3 2 3 0
shared 3 4 7 2 1 location per thread
shared 7 4 9 2 Same shared memory

group 1 group 2

@& Parallel Reductions (SUM)

device

shared

shared

device

2 thread groups, 2 threads/group = 4 threads

2 4 2 3 2 3 0
4 7 2 1 location per thread
4 9 2 Same shared memory

1 location per group

@& Parallel Reductions (SUM)

device

shared

shared

device

2 thread groups, 2 threads/group = 4 threads

2 4 2 3 2 3 0
4 7 2 1 location per thread
4 9 2 Same shared memory

1 location per group

@& Parallel Reductions (SUM)

device

shared

shared

device

2 thread groups, 2 threads/group = 4 threads

2 4 2 3 2 3 0
4 7 2 1 location per thread
4 9 2 Same shared memory

1 location per group

@& Parallel

Reductions (SUM)

2 thread groups, 2 threads/group = 4 threads

device 0
shared 3
shared 7
device 7

2 4 2 3 2 3 0
4 7 2 1 location per thread
4 9 2 Same shared memory

1 location per group

@& Parallel

Reductions (SUM)

2 thread groups, 2 threads/group = 4 threads

device 0
shared 3
shared 7
device 7

2 4 2 3 2 3 0
4 7 2 1 location per thread
4 9 2 Same shared memory

1 location per group

@& Parallel

Reductions (SUM)

2 thread groups, 2 threads/group = 4 threads

device 0
shared 3
shared 7
device 7

2 4 2 3 2 3 0
4 7 2 1 location per thread
4 9 2 Same shared memory

1 location per group

@& Parallel

Reductions (SUM)

2 thread groups, 2 threads/group = 4 threads

device 0
shared 3
shared 7
device 7

2 4 2 3 2 3 0
4 7 2 1 location per thread
4 9 2 Same shared memory

9 1 location per group

@& Parallel

Reductions (SUM)

2 thread groups, 2 threads/group = 4 threads

device 0
shared 3
shared 7
device 7

2 4 2 3 2 3 0
4 7 2 1 location per thread
4 9 2 Same shared memory

9 1 location per group

@& Parallel Reductions (SUM)

2 thread groups, 2 threads/group = 4 threads

device 0 2 4 2 3 2 3 0
shared 3 4 7 2 1 location per thread
shared 7 4 9 2 Same shared memory
device 7 9 1 location per group

@& Parallel Reductions (SUM)

2 thread groups, 2 threads/group = 4 threads

device 0 2 4 2 3 2 3 0
shared 3 4 7 2 1 location per thread
shared 7 4 9 2 Same shared memory
device 7 9 1 location per group

device 7 9 Same device memory

@& Parallel Reductions (SUM)

2 thread groups, 2 threads/group = 4 threads

device 0 2 4 2 3 2 3 0
shared 3 4 7 2 1 location per thread
shared 7 4 9 2 Same shared memory
device 7 9 1 location per group

device 7 9 Same device memory

@& Parallel Reductions (SUM)

2 thread groups, 2 threads/group = 4 threads

device 0 2 4 2 3 2 3 0
shared 3 4 7 2 1 location per thread
shared 7 4 9 2 Same shared memory
device 7 9 1 location per group

device 7 9 Same device memory

@& Parallel Reductions (SUM)

2 thread groups, 2 threads/group = 4 threads

device 0 2 4 2 3 2 3 0
shared 3 4 7 2 1 location per thread
shared 7 4 9 2 Same shared memory
device 7 9 1 location per group

device 7 9 Same device memory

@& Parallel Reductions (SUM)

2 thread groups, 2 threads/group = 4 threads

device 0 2 4 2 3 2 3 0
shared 3 4 7 2 1 location per thread
shared 7 4 9 2 Same shared memory
device 7 9 1 location per group

device 16 9 Same device memory

@@ Parallel Thread

PTX

-xecution [SA

e L ow-level virtual machine and instruction set architecture

* First released by NVIDIA in 2007
Goals

* Futureproof across multiple GPU generations

« Machine independent

« Common ISA for optimizers and distribution

» Support scalable targets

« "Easy” hand-coding for high performance functions

@) Types

Bit Types Signed Types Vector Types
« .pred (1-bit) ¢ .58 ¢ V2 <type>
» .b8 * 516 « .v4 <type>
* .b16 ¢ 532

* .b32 * .S64

* .b64

Unsigned Types Float Types

e U8 - f16

e Uul6 « f16x2

e Uu32 - 32

e .UBL o .f64

@@ State Spaces

A state space is a storage area for variables.

 Characteristics
* Size
* Addressability
* Access speed
* Access rights (R/W or RO)
 Sharing (private, CTA, global)

[@® Register Spaces

* .regState space

* Characteristics
e Fast
« R/W
* Private to a thread

* Special register spaces

- .sreg state spaces
 Predefined registers (i.e. tid, ctaid, ...)

@@ Addressable Spaces

* .global, .local, .param State spaces

 Characteristics
* Slower
* R/W (mostly)
« Shared among CTAs or the CUDA context (.global)

* Parameter spaces
« May contain pointers to other address spaces
 Used for entry and device (non-entry) functions

@@ \/ariables

e A variable in PTX consists of
 Name
* Type
* State space

* Registers vs. other variables are distinguished by the state
space

* Note: The address of an addressable variable may either be
generic, or specific to a state space

@@ Modules

* At the highest level, a PTX program consists of a module

 Modules consist of
 PTX version
* Target device
» Address bits (32 or 64)
* List of functions

.version 6.1

.target sm 61
.address_size 64
.visible .entry AddTest(.param .u64 AddTest 0O)

[...]

@&) Functions

* Entry functions

* Entry points to a kernel
« Can be called by the CUDA API

* Device functions
» Can only be called by other PTX functions

« Parameters/return values are either in the .param or .reg state
spaces

.visible .entry AddTest(.param .u64 AddTest ©0) { [..] }

.func (.reg .u64 Return) Function(.param .f64 Return_©0) { [..] }

@& Instruction Categories

 Arithmetic

* Logical

« Data movement

* Comparison

 Control flow

 Synchronization (memory consistency)

@& Arithmetic

 The full PTX instruction opcodes typically have

* Mnemonic
* Modifiers
* Operand type

Add instruction
add.sat.s32 %r2, %ro, %»rl

where %r0-%rl are s32 registers

FMA instruction

fma.rn.fl16 %f3, %f0, %fl, %f2
where %f0-%f3 are f16 registers

@& Data Movement

« Data movement instructions move data between state spaces

Move instruction
mov.u32 %re, %tid.Xx

where %re is a u32 .regvariable, and %tid.x is a u32 .sregvariable

Load instruction
ld.param.u64 %rdo, [ExampleParam 0]

where %rdo is a ub4 .reg variable, and ExampleParam_0 is a pointer in .param space

@& Control Flow

 Control flow in PTX uses predicated execution
@p add.sat.s32 %r2, %re, %rl
pis a .pred register with 1-bit for each thread (1-execute, 0-skip)

Set predicate instruction
setp.eq.u32 p, »tid.x, ©

Branch instruction
@p bra target label

@8 Memory Consistency

* Sync, barrier, fence, ... operations ensure a consistent view of
memory from multiple threads

Barrier instruction
bar.warp.sync oxffffffff

@%@ Example: Add

.version 6.1
.target sm 61
.address_size 64

.visible .entry AddTest(.param .u64 .ptr.align 8 AddTest 0)

.reg .u32 %r; // variable declarations
.reg .u64 %rd<4>; // multiple declarations %rde, %rdl..

.reg .f64 %f<2>;
1d.param.u64 %rdo, [AddTest 0]; //
cvta.to.global.u64 %rdl, %rde; //

mov.u32 %r, %tid.Xx; //
mul.wide.u32 %rd2, %r, 8; //
add.u64 %rd3, %rdl, %rd2; //
ld.global.f64 %f0, [%rd3]; //
add.fe4 %fl, %fo, 2.000000; //
st.global.f64 [%rd3], %f1l; //

ret;

load ptr param

convert generic to global ptr
load thread id

calc offset for thread

calc position for thread

load current value

increment by 2

write value

@%@ Example: If-Else

.version 6.1

.target sm 61

.address_size 64

visible .entry ConditionalTest(.param .u64 ConditionalTest ©O)

{

.reg .pred p; // predicate register
[...]
rem.u32 %rl, %tid.x, 2; // check if even or odd
setp.ne.u32 p, %»rl, 0; // set predicate

@p bra false; // conditionally branch
add.u32 %r2, %re, 1;
bra end;

false:
add.u32 %r2, %re, 2;

end: // converge point
st.global.u32 [%rd3], %r2;
ret;

