
COMP 520 Winter 2020 Garbage Collection (1)

Garbage Collection
COMP 520: Compiler Design (4 credits)
Alexander Krolik
alexander.krolik@mail.mcgill.ca

MWF 10:30-11:30, TR 1100
http://www.cs.mcgill.ca/~cs520/2020/

qqqqqqqqqqqqqqqq

�

-
-

�

�

�

- �

qqqqqqqqqqqq

qqqqqq
qq
q

-
-

�
-

--

-

-

-

-

�

�

��

��

�
Dot Gitignore

COMP 520 Winter 2020 Garbage Collection (2)

Announcements (Monday/Wednesday, March 9th/11th)
Milestones

• Milestone 1 graded (programs on myCourses)

• Milestone 2 due: Sunday, March 15th 11:59 PM

• Peephole due: Friday, April 10th 11:59 PM

To come

• Milestone 3 out: Monday, March 16th. Due: Friday, March 27th 11:59 PM

• Milestone 4 out: Monday, March 16th. Due: Friday, April 10th 11:59 PM

• Final report out: Monday, March 16th. Due: Friday, April 10th 11:59 PM

• Group meeting: Week of April 13th

• Final exam: Tuesday, April 21st 2:00 PM

COMP 520 Winter 2020 Garbage Collection (3)

Garbage Collection
Memory management

Reference counting

Mark-and-sweep

Stop-and-copy

Practical

COMP 520 Winter 2020 Garbage Collection (4)

Memory Allocation
Stack Memory Allocation

• Space allocated in the function call stack;

• Is used for function call information, local variables, and return values;

• Typically contains fixed size data; and

• Is allocated and deallocated at the beginning and end of a function.

Information stored in the stack is therefore specific to a particular function invocation (i.e. call).

Example Stack

Stack Frame

Stack Frame Local Variables

Constant Pool

Baby Stack

COMP 520 Winter 2020 Garbage Collection (5)

Memory Allocation
Heap Memory Allocation

• Space allocated in the program heap;

• Is very dynamic in nature:

– Unknown size; and

– Unknown time;

• Requires additional runtime support for managing the heap space.

Information stored in the heap is therefore not necessarily tied to any particular function invocation.

Example Heap

1

2

3

Heap variables may be referred to by other objects in the heap, or from the stack.

COMP 520 Winter 2020 Garbage Collection (6)

Heap Memory Allocation
Data stored in the heap is controlled by a heap allocator (i.e. malloc).

• Manages the memory in the heap space;

• Takes as input an integer representing the size needed for the allocation;

• Finds unallocated space in the heap large enough to accommodate the request; and

• Returns a pointer to the newly allocated space.

You will find more details in an operating systems course.

COMP 520 Winter 2020 Garbage Collection (7)

Heap Memory Deallocations
Memory allocated on the heap are freed when they are no longer live (i.e. free). This can be:

• Manual: User code making the necessary decisions on what is live;

• Continuous: Runtime code determining on the spot which objects are live; or

• Periodic: Runtime code determining at specific times which objects are live.

Without runtime support it is up to the program to return the memory when it is no longer needed.

COMP 520 Winter 2020 Garbage Collection (8)

Heap Memory Deallocations
For this class, we will assume that the freed heap blocks are stored on a freelist (a linked list of
heap blocks). Freeing an object prepends the heap block onto the list.

rr
rrr
rr
rrr
rr

r

-

�

�

-

�

-

-

�

p
q
r

12

15

7

37

59

20

9

37

freelist

COMP 520 Winter 2020 Garbage Collection (9)

Manual Deallocation Mechanisms
Heap memory can be freed manually at any point in the program.

• Leaves programmers to determine when an object is no longer live; and

• Requires calls to a deallocator (i.e. free).

Consider the following code

int *a = malloc(sizeof(int));

free(a);

[...]

*a = 5; // what happens?

COMP 520 Winter 2020 Garbage Collection (10)

Manual Deallocation Mechanisms
Advantages

• Reduces runtime complexity;

• Gives the programmer full control on what is live; and

• Can be more efficient in some circumstances.

Disadvantages

• Requires extensive effort from the programmer;

• Gives the programmer full control on what is live;

• Error-prone; and

• Can be less efficient in some circumstances.

COMP 520 Winter 2020 Garbage Collection (11)

Manual Deallocation Mechanisms
Sometimes manual deallocation is slower than automatic methods. Consider the following example
code, which allocates 100 integers and then deallocates them one-by-one.

for (int i = 0; i < 100; ++i)
{

a[i] = malloc(sizeof(int));
}

[...]

for (int i = 0; i < 100; ++i)
{

free(a[i]);
}

This is potentially inefficient. Why?

The allocations are potentially contiguous, and could therefore be reclaimed as a block instead of
one-by-one.

COMP 520 Winter 2020 Garbage Collection (12)

Manual Deallocation Mechanisms
Life Without Garbage Collection

• Dead records must be explicitly deallocated;

• “Superior” if done correctly; but

• It is easy to miss some records;

• It is “dangerous” to handle pointers; and

• May be less efficient in some cases.

Memory leaks in real life (ical v.2.1)

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

0 1 2 3 4 5 6 7 8 9 101112131415161718192021222324

hours

MB

COMP 520 Winter 2020 Garbage Collection (13)

Runtime Deallocation Mechanisms
A correct runtime deallocation mechanism must answer the fundamental question:

Which records are dead, i.e. no longer in use?

The more precise the answer, the better the deallocation mechanism.

Ideally

• Records that will never be accessed in the future execution of the program; but

• This is undecidable.

Basic conservative assumption

• A record is live if it is reachable from a stack-based program variable (or global variable),
otherwise dead.

COMP 520 Winter 2020 Garbage Collection (14)

Example Heap

Consider the following example heap, with stack
variables: p, q and r.

• Which records are live?

• Which records are dead?

rr
rr
rrr
rr
rrr
rr

-

�

�

-

-

�

�

-
p
q
r

37

12

15

7

37

59

20

9

COMP 520 Winter 2020 Garbage Collection (15)

Runtime Deallocation Mechanisms
A garbage collector

• Is part of the runtime system; and

• Automatically reclaims heap-allocated records that are no longer used.

A garbage collector should

• Reclaim all unused records;

• Spend very little time per record;

• Not cause significant delays; and

• Allow all of memory to be used.

These are difficult and often conflicting requirements.

COMP 520 Winter 2020 Garbage Collection (16)

Garbage Collection
In this class we will study 3 types of garbage collection:

• Reference counting;

• Mark-and-sweep; and

• Stop-and-copy.

For each algorithm we will discuss the implementation, an example, and the associated
advantages/disadvantages.

COMP 520 Winter 2020 Garbage Collection (17)

Garbage Collection
Memory management

Reference counting

Mark-and-sweep

Stop-and-copy

Practical

COMP 520 Winter 2020 Garbage Collection (18)

Reference Counting
• Is a type of continuous (or incremental) garbage collection;

• Uses a field on each object (the reference count) to track incoming pointers; and

• Determines an object is dead when its reference count reaches zero.

The reference count is updated

• Whenever a reference is changed;

– Created
e.g. int *a = b; // b refcount++

– Destroyed
e.g. a = c; // b refcount--

• Whenever a local variable goes out of scope;

• Whenever an object is deallocated (all objects it points to have their reference counts
decremented).

COMP 520 Winter 2020 Garbage Collection (19)

Reference Counting
Reference counting inserts calls to Increment and Decrement in the source program as needed.
When the object is no longer needed, the call to Free is made.

Pseudo code for reference counting

function Increment(x)
x.count := x.count+1

function Decrement(x)
x.count := x.count−1

if x.count = 0 then
Free(x)

function Free(x)
for i:=1 to |x| do

Decrement(x.fi)
x.f1 := freelist

freelist := x

COMP 520 Winter 2020 Garbage Collection (20)

Reference Counting

Reference counting has one large problem:
What about objects 7 and 9?

rr
rr
rrr
rr
rrr
rr

-

�

�

-

-

�

�

-
p
q
r

37

12

15

7

37

59

20

9

COMP 520 Winter 2020 Garbage Collection (21)

Reference Counting
Advantages

• Is incremental, distributing the cost over a long period;

• Does not require long pauses to handle deallocations;

• Catches dead objects immediately; and

• Requires no effort from the user.

Disadvantages

• Is incremental, slowing down the program continuously and unnecessarily;

• Requires a more complex runtime system; and

• Cannot handle circular data structures.

COMP 520 Winter 2020 Garbage Collection (22)

Aside: Automatic Reference Counting (ARC)
Initially for Objective-C (now also for Swift), automatic reference counting (ARC) is a reference
counting implementation designed by Apple and integrated into Clang.

• Inserts calls to retain (increment) and release at compile time;

• Optimizes away unnecessary updates; and

• Is preferred to garbage collection.

Previously, developers inserted calls to the memory management methods.

COMP 520 Winter 2020 Garbage Collection (23)

Garbage Collection
Memory management

Reference counting

Mark-and-sweep

Stop-and-copy

Practical

COMP 520 Winter 2020 Garbage Collection (24)

Mark-and-Sweep
The mark-and-sweep algorithm is a periodic approach to garbage collection that has 3 main steps:

1. Explore pointers starting from the program (stack) variables, and mark all records encountered;

2. Sweep through all records in the heap and reclaim the unmarked ones; and

3. Finish by unmarking all marked records.

Assumptions

• We know which fields are pointers;

• We know the size of each record; and

• Reclaimed records are kept in a freelist.

COMP 520 Winter 2020 Garbage Collection (25)

Mark-and-Sweep
The 3 steps of the mark-and-sweep algorithm are shown below (steps 2 and 3 are merged).

Pseudo code for mark-and-sweep

function Mark()
for each program variable v do

DFS(v)

function DFS(x)
if x is a pointer into the heap then

if record x is not marked then
mark record x

for i:=1 to |x| do
DFS(x.fi)

function Sweep()
p := first address in heap
while p < last address in heap do

if record p is marked then
unmark record p

else
p.f1 := freelist

freelist := p

p := p+sizeof(record p)

COMP 520 Winter 2020 Garbage Collection (26)

Mark-and-Sweep

rr
rr
rrr
rr
rrr
rr

rr
rrr
rr
rrr
rr

r

-

�

�

-

-

�

�

-

-

�

�

-

�

-

-

�

37
p
q
r

12

15

7

37

59

20

9

p
q
r

12

15

7

37

59

20

9

37

freelist

COMP 520 Winter 2020 Garbage Collection (27)

Analysis of Mark-and-Sweep
• Assume the heap has size H words; and

• Assume that R words are reachable.

The cost of garbage collection

c1R + c2H

Realistic values

10R + 3H

The cost per reclaimed word
c1R + c2H

H −R

• If R is close to H, then this is expensive;

• The lower bound is c2;

• Increase the heap when R > 0.5H; then

• The cost per word is c1 + 2c2 ≈ 16.

COMP 520 Winter 2020 Garbage Collection (28)

Mark-and-Sweep
Advantages

• Is periodic, so does not slow down each operation in your program;

• Can be run in parallel to your program;

• Mark and sweep steps can be parallelized too;

• Requires no effort from the user.

Disadvantages

• Scanning the heap can be expensive;

• The heap may become fragmented : containing many small free records but none that are large
enough for the next allocation.

COMP 520 Winter 2020 Garbage Collection (29)

Heap Fragmentation
To deal with fragmented heaps we can use compaction.

• Once mark-and-sweep has finished, collect all live objects at the beginning of the heap;

• Adjust pointers pointing to all moved objects;

• The adjustment depends on the amount of space freed before the object;

• This removes fragmentation and improves locality.

This is not possible in all programming languages as garbage collection is conservative.

⇒ How do we know which fields are pointers?

COMP 520 Winter 2020 Garbage Collection (30)

DFS Recursion Stack
For mark-and-sweep, the recursion stack could have size H (and has at least size logH).
However, given that we have (potentially) run out of memory, it may be impossible to allocate!

Pointer reversal

Pointer reversal is a clever method for traversing a tree that embeds the stack in the nodes
themselves.

Idea: Instead of recursively calling DFS, temporarily update the field in the record to point to the
parent node in the traversal.

http://www.cs.cmu.edu/afs/cs/academic/class/15745-s06/web/handouts/garbage.pdf

COMP 520 Winter 2020 Garbage Collection (31)

Garbage Collection
Memory management

Reference counting

Mark-and-sweep

Stop-and-copy

Practical

COMP 520 Winter 2020 Garbage Collection (32)

Stop-and-Copy
The stop-and-copy algorithm is a periodic approach to garbage collection that:

• Divides the heap into two parts;

• Only uses one part at a time;

Conceptually this results in a simple high-level algorithm:

1. Use the active half of the heap for all allocations;

2. When it runs full, copy live records to the other part; and

3. Switch the roles of the two parts.

COMP 520 Winter 2020 Garbage Collection (33)

Stop-and-Copy
Consider the following snapshots of stop-and-copy before/after execution.

• next and limit indicate the available heap space; and

• Copied records are contiguous in memory.

qqq qqqqqqqqq
qqq
qqqqqq

qqqq�

�

-

-

�
-

�

�

�
from-space to-space to-space from-space

next

limit

next
limit

COMP 520 Winter 2020 Garbage Collection (34)

Stop-and-Copy
The stop-and-copy algorithm internals are much more complicated. Intuitively, it forwards each
record on the heap in a breadth-first manner (starting from the stack).

Pseudo code for stop-and-copy

function Copy()
scan := next := start of to-space
for each program variable v do

v := Forward(v)
while scan < next do

for i:=1 to |scan| do
scan.fi := Forward(scan.fi)

scan := scan + sizeof(record scan)

function Forward(p)
if p ∈ from-space then

if p.f1 ∈ to-space then
return p.f1

else
for i:=1 to |p| do

next.fi := p.fi

p.f1 := next

next := next + sizeof(record p)
return p.f1

else return p

COMP 520 Winter 2020 Garbage Collection (35)

Stop-and-Copy
The follow are snapshots of stop-and-copy before executing and after forwarding the top-level and
scanning 1 record.

qq37
p
q
r

qq37
p
q
r

qqqqq
qqqqq
qq

�

-
-

�

�

�

- �

12

15

7

37

59

20

9

before

qqqqq
qqqqq
qq

qqqqqq
q
q

q

-
-

�

-

--

-

-

-

-

�

�

��

��

�

7

59

20

9

15

37

12

scan

next

after forwarding p, q, and r and scanning 1 record

COMP 520 Winter 2020 Garbage Collection (36)

Analysis of Stop-and-Copy
• Assume the heap has size H words; and

• Assume that R words are reachable.

The cost of garbage collection

c3R

A realistic value

10R

The cost per reclaimed word
c3R

H
2
−R

• This has no lower bound as H grows;

• If H = 4R then the cost is c3 ≈ 10.

COMP 520 Winter 2020 Garbage Collection (37)

Stop-and-Copy
Advantages

• Allows fast allocation (no freelist);

• Avoids fragmentation;

• Collects in time proportional to R; and

• Avoids stack and pointer reversal.

Disadvantage

• Wastes half your memory; and

• Stops the program to execute.

COMP 520 Winter 2020 Garbage Collection (38)

Garbage Collection
Memory management

Reference counting

Mark-and-sweep

Stop-and-copy

Practical

COMP 520 Winter 2020 Garbage Collection (39)

Practical Considerations
In practice, we use either mark-and-sweep or stop-and-copy (and in some systems ref. counting).

This can lead to better memory management, but garbage collection is still expensive: ≈ 100
instructions for a small object!

Each algorithm can be further extended by

• Generational collection (to make it run faster); and

• Incremental (or concurrent) collection (to make it run smoother).

COMP 520 Winter 2020 Garbage Collection (40)

Generational Collection
Observation: the young die quickly

Given this assumption, the garbage collector should:

• Focus on young records;

• Divide the heap into generations: G0, G1, G2, . . .;

• All records in Gi are younger than records in Gi+1;

• Collect G0 often, G1 less often, and so on; and

• Promote a record from Gi to Gi+1 when it survives several collections.

COMP 520 Winter 2020 Garbage Collection (41)

Generational Collection
How to collect the G0 generation

• It might be very expensive to find those pointers;

• Fortunately, they are rare; so

• We can try to remember them.

Ways to remember

• Maintain a list of all updated records (use marks to make this a set); or

• Mark pages of memory that contain updated records (in hardware or software).

COMP 520 Winter 2020 Garbage Collection (42)

Other Optimizations
Incremental collection

• Garbage collection may cause long pauses;

• This is undesirable for interactive or real-time programs; so

• Try to interleave the garbage collection with the program execution.

Two players access the heap

• The mutator: creates records and moves pointers around; and

• The collector: tries to collect garbage.

Some invariants are clearly required to make this work. The mutator will suffer some slowdown to
maintain these invariants.

COMP 520 Winter 2020 Garbage Collection (43)

Earlier Assumptions
The presented garbage collection algorithms assumed that:

• We know the size of each record; and

• We know which fields are pointers.

For object-oriented languages, each record already contains a pointer to a class descriptor, so
garbage collection is straightforward to implement.

For general languages, we must sacrifice a few bytes per record to indicate its size, and its
organization.

