
COMP 520 Winter 2019 JOOS (1)

JOOS
COMP 520: Compiler Design (4 credits)
Alexander Krolik
alexander.krolik@mail.mcgill.ca

MWF 8:30-9:30, TR 1080
http://www.cs.mcgill.ca/~cs520/2019/

COMP 520 Winter 2019 JOOS (2)

Java Language
Overview

The Java programming language was

• Originally called Oak;

• Developed as a small, clean, OO language for programming consumer devices; and

• Used as the implementation language for (many) large applications.

Basic compilation (.java→ .class)

• Java programs are developed as source code for a collection of Java classes;

• Each class is compiled into Java Virtual Machine (JVM) bytecode; and

• Bytecode is interpreted or JIT-compiled using some implementation of the JVM.

COMP 520 Winter 2019 JOOS (3)

Java Language

Advantages of Java

• Object-oriented;

• A “cleaner” OO language than C++;

• Portable (except for native code);

• Distributed and multithreaded;

• “Secure”;

• Semantics are completely standardized;

• Huge standard libraries; and

• Officially open source.

Major Drawbacks of Java

• Missing many language features, e.g.
genericity (until 1.5), multiple inheritance,
operator overloading;

• There is no single standard (JDK 1.0.2

vs. JDK 1.1.* vs. . . .);

• Slower than C++ for expensive numeric
computations due to dynamic array-
bounds checks; and

• It’s not JOOS.

COMP 520 Winter 2019 JOOS (4)

Java Security
Given the number of security updates and threats, you might not think of Java as an especially
secure language. However, the language itself does have some secure features.

• Programs are strongly type-checked at compile-time;

• Array bounds are checked at run-time;

• null pointers are checked at run-time;

• There are no explicit pointers;

• Dynamic linking is checked at run-time; and

• Class files are verified at load-time.

COMP 520 Winter 2019 JOOS (5)

JOOS Language
The JOOS subset of Java was designed with the following goals in mind

• Extract the object-oriented essence of Java;

• Make the language small enough for course work, yet large enough to be interesting;

• Provide a mechanism to link to existing Java code; and

• Ensure that every JOOS program is a valid Java program, such that JOOS is a strict subset of
Java.

Programming in JOOS

Like with Java, a JOOS program consists of a collection of classes. An ordinary class consists of

• Protected fields;

• Constructors; and

• Public methods.

COMP 520 Winter 2019 JOOS (6)

Cons.java
Recursive definition of a list – think COMP 302

public class Cons {
protected Object first;
protected Cons rest;

public Cons(Object f, Cons r) {
super();
first = f;
rest = r;

}

public void setFirst(Object newfirst) {
first = newfirst;

}

public Object getFirst() {
return first;

}

public Cons getRest() {
return rest;

}

public boolean member(Object item) {
if (first.equals(item))

return true;
else if (rest == null)

return false;
else

return rest.member(item);
}

public String toString() {
if (rest == null)

return first.toString();
else

return first + " " + rest;
}

}

COMP 520 Winter 2019 JOOS (7)

Programming in JOOS
As seen in the Cons.java example

• Fields must be protected: they can only be accessed via objects of the class or its subclasses;

• Constructors must start by invoking a constructor of the superclass (super(..));

• Methods must be public: they can be invoked by any object; and

• Only constructors can be overloaded, other methods cannot.

Other important notes

• Subclassing must not change the signature of a method;

• Local declarations must come at the beginning of the statement sequence in a block; and

• Every path through a non-void method must return a value (in Java such methods can also
throw exceptions).

COMP 520 Winter 2019 JOOS (8)

Class Hierarchies
The class hierarchies in JOOS and Java are both single inheritance, i.e. each class has exactly one
superclass, except for the root class

!!!!!!
�
��
@
@@

�
��
@
@@

!!!!!!
�
��
S
SS

aaaaaa

The root class is called Object, and any class without an explicit extends clause is a subclass of
Object.

COMP 520 Winter 2019 JOOS (9)

Class Hierarchies - Example
The definition of the Cons class is equivalent to

public class Cons extends Object {
...

}

which gives the class hierarchy

Object

public String toString();

public boolean equals(Object obj);

Cons

public void setFirst(Object newfirst);

public Object getFirst();

public Cons getRest();

public boolean member(Object item);

public String toString();

COMP 520 Winter 2019 JOOS (10)

Types in JOOS
Primitive types

• boolean: true and false;

• int: −231 . . . 231 − 1;

• char: the ASCII characters;

User-defined class types

Externally defined class types

• Object;

• Boolean;

• Integer;

• Character;

• String;

• BitSet;

• Vector;

• Date.

Note that boolean and Boolean are different.

COMP 520 Winter 2019 JOOS (11)

Types in Java and JOOS
• Java is strongly-typed;

• Java uses the name of a class as its type;

• Given a type of class C, any instance of class C or a subclass of C is a permitted value;

• “Down-casting” is automatically checked at run-time:

SubObject subobj = (SubObject)obj;

• There are explicit instanceof checks; and

if (subobj instanceof Object)
return true;

else
return false;

• Some type-checking must be done at run-time.

COMP 520 Winter 2019 JOOS (12)

Expressions in JOOS
An expression is a computation which evaluates to a value

• Constant expressions

true, 13, ’\n’, "abc", null

• Variable expressions

i, first, rest

• Binary operators

||
&&
!= ==
< > <= >= instanceof
+ -
* / %

• Unary operators

-
!

• Class instance creation

new Cons("abc",null)

• Cast expressions

(String)getFirst(list)
(char)119

• Method invocation

l.getFirst()
super.getFirst();
l.getFirst().getFirst();
this.getFirst();

COMP 520 Winter 2019 JOOS (13)

Statements in JOOS
A statement is an action that has no associated value (i.e. structures, controls, etc)

• Expression statements

x = y + z;
x = y = z;
a.toString(l);
new Cons("abc", null);

• Block statements

{
int x;
x = 3;

}

• Return statements

return;
return true;

• Control structures

if (l.member("z")) {
// do something

}

while (l != null) {
l = l.getRest();

}

COMP 520 Winter 2019 JOOS (14)

JOOS Representations
Converting between JOOS & Java source code (*.java, *.joos), Jasmin assembler (*.j) and
Java bytecode (*.class)

joosc simply calls joos and then jasmin.

COMP 520 Winter 2019 JOOS (15)

JOOS AST Nodes
JOOS follows the same idea of 1 AST node per programming language construct

PROGRAM CLASSFILE CLASS

FIELD TYPE LOCAL

CONSTRUCTOR METHOD FORMAL

STATEMENT EXP RECEIVER

ARGUMENT LABEL CODE

Each node consists of the child nodes, resources, and code.

typedef struct METHOD {
int lineno;
char *name;
ModifierKind modifier;
int localslimit; /* resource */
int labelcount; /* resource */
struct TYPE *returntype;
struct FORMAL *formals;
struct STATEMENT *statements;
char *signature; /* code */
struct LABEL *labels; /* code */
struct CODE *opcodes; /* code */
struct METHOD *next;

} METHOD;

COMP 520 Winter 2019 JOOS (16)

JOOS Constructors
And each AST node kind has an associated constructor function for ease of use.

METHOD *makeMETHOD(char *name, ModifierKind modifier, TYPE *returntype,
FORMAL *formals, STATEMENT *statements, METHOD *next)

{
METHOD *m = malloc(sizeof(METHOD));
m->lineno = lineno;
m->name = name;
m->modifier = modifier;
m->returntype = returntype;
m->formals = formals;
m->statements = statements;
m->next = next;
return m;

}

STATEMENT *makeSTATEMENTwhile(EXP *condition, STATEMENT *body)
{

STATEMENT *s = malloc(sizeof(STATEMENT));
s->lineno = lineno;
s->kind = whileK;
s->val.whileS.condition = condition;
s->val.whileS.body = body;
return s;

}

COMP 520 Winter 2019 JOOS (17)

JOOS Scanner
[\t]+ /* ignore */;

\n lineno++;

\/\/[^\n]* /* ignore */;

abstract return tABSTRACT;

boolean return tBOOLEAN;

break return tBREAK;

byte return tBYTE;

[...]

"!=" return tNEQ;

"&&" return tAND;

"||" return tOR;

"+" return ’+’;

"-" return ’-’;

[...]

COMP 520 Winter 2019 JOOS (18)

JOOS Scanner
0|([1-9][0-9]*) {

yylval.intconst = atoi(yytext);

return tINTCONST;

}

true {

yylval.boolconst = 1;

return tBOOLCONST;

}

false {

yylval.boolconst = 0;

return tBOOLCONST;

}

\"([^\"])*\" {

yylval.stringconst = (char*)malloc(strlen(yytext)-1);

yytext[strlen(yytext)-1] = ’\0’;

sprintf(yylval.stringconst,"%s",yytext+1);

return tSTRINGCONST;

}

COMP 520 Winter 2019 JOOS (19)

JOOS Parser
method : tPUBLIC methodmods returntype tIDENTIFIER ’(’ formals ’)’ ’{’ statements ’}’

{$$ = makeMETHOD($4,$2,$3,$6,$9,NULL);}

| tPUBLIC returntype tIDENTIFIER ’(’ formals ’)’ ’{’ statements ’}’
{$$ = makeMETHOD($3,modNONE,$3,$5,$8,NULL);}

| tPUBLIC tABSTRACT returntype tIDENTIFIER ’(’ formals ’)’ ’;’
{$$ = makeMETHOD($4,modABSTRACT,$3,$6,NULL,NULL);}

| tPUBLIC tSTATIC tVOID tMAIN ’(’ mainargv ’)’ ’{’ statements ’}’
{$$ = makeMETHOD("main",modSTATIC,makeTYPEvoid(),NULL,$9,NULL);}

;

whilestatement : tWHILE ’(’ expression ’)’ statement
{$$ = makeSTATEMENTwhile($3,$5);}

;

Notice the conversion from concrete syntax to abstract syntax that involves dropping unnecessary
tokens.

