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Announcements (Wednesday, January 23rd/Friday January
25th)
Milestones

• Group signup form https://goo.gl/forms/zq6sYn8YLUsA6QEy1, fill this out over the next 2
weeks

Assignment 1

• Questions in a few minutes!

• Due: Friday, January 25th 11:59 PM

Midterm

• Date: Tuesday, February 26th from 6:00 - 7:30 PM in McConnell 103/321



COMP 520 Winter 2019 Abstract Syntax Trees (3)

Background on Programming Languages - Expressions
An expression is a programming language construct which is associated with a value. We can
define them recursively:

• Base cases

– Literals: “string”, true, 1.0, . . .

– Identifiers: a, myVar, . . .

• Recursive cases

– Binary operations: <Expression><Op><Expression>

– Unary operations: <Op><Expression>

– Parentheticals: (Expression)

– Function calls

Note that in the above definitions, we do not specify any type information (e.g. int, float, etc.).

A grammar specifies the definition of “groupings” of non-terminals and terminals without types!

(We could do so for most cases, but it will explode the size of the grammar)
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Background on Programming Languages - Statements
A statement is a programming language construct which gives structure to expressions and defines
the flow of execution

• Control-flow constructs: if, while, for, . . .

• Assignments

• Declarations (maybe)

• Expression statements (e.g. foo();)

You can find more information in the JOOS compiler grammar
https://github.com/comp520/JOOS/blob/master/flex%2Bbison/joos.y
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Recap on Phases of the Compiler
A compiler is a modular pipeline of phases, with each phase handling different concerns.

The frontend of the compiler consists (informally) of the following phases and their responsibilities:

• Scanning: Verifying the source input characters and producing tokens;

• Parsing: Verifying the sequence of tokens and associating related tokens;

• Symbol/Type: Verifying the type correctness of expressions and their use in statements

Types are semantic information, not included in syntax!



COMP 520 Winter 2019 Abstract Syntax Trees (6)

Assignment 1
Questions

• Who is using flex+bison? SableCC?

• Any questions about the tools?

• What stage is everyone at: scanner, tokens, parser?

• Any questions about the language?

• Any questions about the requirements?

Notes

• You must use the assignment template https://github.com/comp520/Assignment-Template

• You must make sure it runs using the scripts!

• No AST building or typechecking this assignment
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Compiler Architecture
• A compiler pass is a traversal of the program; and

• A compiler phase is a group of related passes.

One-pass compiler

A one-pass compiler scans the program only once - it is naturally single-phase. The following all
happen at the same time

• Scanning

• Parsing

• Weeding

• Symbol table creation

• Type checking

• Resource allocation

• Code generation

• Optimization

• Emitting
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Compiler Architecture
This is a terrible methodology!

• It ignores natural modularity;

• It gives unnatural scope rules; and

• It limits optimizations.

Historically

It used to be popular for early compilers since

• It’s fast (if your machine is slow); and

• It’s space efficient (if you only have 4K).

A modern multi-pass compiler uses 5–15 phases, some of which may have many individual passes:
you should skim through the optimization section of ‘man gcc’ some time!
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Intermediate Representations
A multi-pass compiler needs an intermediate representation of the program between passes that
may be updated/augmented along the pipeline. It should be

• An accurate representation of the original source program;

• Relatively compact;

• Easy (and quick) to traverse; and

• In optimizing compilers, easy and fruitful to analyze and improve.

These are competing demands, so some intermediate representations are more suited to certain
tasks than others. Some intermediate representations are also more suited to certain languages
than others.

In this class, we focus on tree representations.
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Concrete Syntax Trees
A parse tree, also called a concrete syntax tree (CST), is a tree formed by following the exact CFG
rules. Below is the corresponding CST for the expression a+b*c

�
��

Q
QQ

�
��

Q
QQ

E

E + T

T

F

id

T

F

id

* F

id

Note that this includes a lot of information that is not necessary to understand the original program

• Terms and factors were introduced for associativity and precedence; and

• Tokens + and * correspond to the type of the E node.
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Abstract Syntax Trees
An abstract syntax tree (AST), is a much more convenient tree form that represents a more abstract
grammar. The same a+b*c expression can be represented as

�
�
@
@

�
�
@
@

+

id *

id id

In an AST

• Only important terminals are kept; and

• Intermediate non-terminals used for parsing are removed.

This representation is thus independent of the syntax.
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Intermediate Language
Alternatively, instead of constructing the tree a compiler can generate code for an internal
compiler-specific grammar, also known as an intermediate language.
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Early multi-pass compilers wrote their IL to disk between passes. For the above tree, the string
+(id,*(id,id)) would be written to a file and read back in for the next pass.

It may also be useful to write an IL out for debugging purposes.
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Examples of Intermediate Languages
• Java bytecode

• C, for certain high-level language compilers

• Jimple, a 3-address representation of Java bytecode specific to Soot, created by Raja
Vallee-Rai at McGill

• Simple, the precursor to Jimple, created for McCAT by Prof. Hendren and her students

• Gimple, the IL based on Simple that gcc uses

In this course, you will generally use an AST as your IR without the need for an explicit IL.

Note: somewhat confusingly, both industry and academia use the terms IR and IL interchangeably.
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Building IRs
Intuitively, as we recognize various parts of the source program, we assemble them into an IR.

• Requires extending the parser; and

• Executing semantic actions during the process.

Semantic actions

• Arbitrary actions executed during the parser execution.

Semantic values

Values associated with terminals and non-terminals;

• Terminals: provided by the scanner (extra information other than the token type);

• Non-terminals: created by the parser;

The semantic values are thus subtrees in the AST! Tokens form the leaves of the tree, while
variables form the internal nodes

Note: not all non-terminals have distinct node types, this is an AST after all!
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Building IRs - LR Parsers
When a bottom-up parser executes it

• Maintains a syntactic stack – the working stack of symbols; and

• Also maintains a semantic stack – the values associated with each grammar symbol on the
syntactic stack.

We use the semantic stack to recursively build the AST, executing semantic actions on reduction.

In your code

A reduction using rule A→ γ executes a semantic action that

• Synthesizes symbols in γ; and

• Produces a new node representing A

In other words, each time we apply a reduction, the semantic action merges subtrees into a new
rooted tree. Using this mechanism, we can build an AST.



COMP 520 Winter 2019 Abstract Syntax Trees (16)

Constructing an AST with flex/bison
Begin by defining your AST structure in a header file tree.h. Each node type is defined in a
struct

typedef struct EXP EXP;
struct EXP {

ExpressionKind kind;
union {

char *identifier;
int intLiteral;
struct { EXP *lhs; EXP *rhs; } binary;

} val;
};

Node kind

For nodes with more than one kind (i.e. expressions), we define an enumeration ExpressionKind

Node value

Node values are stored in a union. Depending on the kind of the node, a different part of the union
is used.
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Constructing an AST with flex/bison
Next, define constructors for each node type in tree.c

EXP *makeEXP_intLiteral(int intLiteral)
{

EXP *e = malloc(sizeof(EXP));
e->kind = k_expressionKindIntLiteral;
e->val.intLiteral = intLiteral;
return e;

}

The corresponding declaration goes in tree.h.

EXP *makeEXP_intLiteral(int intLiteral);
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Constructing an AST with flex/bison
Finally, we can extend bison to include the tree-building actions in tiny.y.

Semantic values

For each type of semantic value, add an entry to bison’s union directive

%union {
int int_val;
char *string_val;
struct EXP *exp;

}

For each token type that has an associated value, extend the token directive with the association.
For non-terminals, add %type directives

%type <exp> program exp
%token <int_val> tINTVAL
%token <string_val> tIDENTIFIER

Semantic actions

exp : tINTVAL { $$ = makeEXP_intLiteral($1); }
| exp ’+’ exp { $$ = makeEXP_plus($1, $3); }



COMP 520 Winter 2019 Abstract Syntax Trees (19)

Constructing an AST
Designing the right AST nodes is important for later phases of the compiler as they will extensively
use the AST. The set of AST nodes should

• Represent all distinct programming language constructs; and

• Be minimal, avoiding excess intermediate nodes (e.g. terms and factors).

A concise AST will have ~1 node type for each type of programming language construct.

Example

In MiniLang the main construct types are declarations, statements, and expressions. The AST
would therefore include

• Program

• Declaration

• Statement

• Expression



COMP 520 Winter 2019 Abstract Syntax Trees (20)

Constructing an AST
For each programming language construct there may be several variants. For example, consider a
small language with 2 kinds of statements

typedef enum {
k_statementKindAssignment,
k_statementKindWhile

} StatementKind;

struct STATEMENT {
StatementKind kind;
int lineno;

union {
struct { char *identifier; EXP *value; } assignment;
struct { EXP *condition; STATEMENT *body; } loop;

} val;
STATEMENT *next;

};

Why not use different nodes for each kind? Excessive traversal code and extremely repetitive
structures

Why not use a single node for all constructs? Lack of type information which may be useful for
designing correct methods
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LALR(1) Lists
LALR grammars typically build lists using left-recursion, largely for efficiency. Consider the following
example for lists of expressions

statements : %empty { $$ = NULL; }
| statements statement { $$ = $2; $$->next = $1; }

;

statement : tIDENT ’=’ exp ’;’ { $$ = makeSTATEMENT_assign($1, $3); }
;

The lists are naturally backwards!
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LALR(1) Lists
Processing backwards lists requires head recursion to start with the first element

struct STATEMENT {
StatementKind kind;
int lineno;

union {
struct { char *identifier; EXP *value; } assignment;
struct { EXP *condition; STATEMENT *body; } loop;

} val;
STATEMENT *next;

};

void traverseSTATEMENT(STATEMENT *s) {
if (s == NULL) {

return;
}

traverseSTATEMENT(s->next);
/* TODO: ... */

}

What effect would a call stack size limit have?
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Extending the AST
As mentioned before, a modern compiler uses 5–15 phases. Each phases of the compiler may
contribute additional information to the IR.

• Scanner: line numbers;

• Symbol tables: meaning of identifiers;

• Type checking: types of expressions; and

• Code generation: assembler code.
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Extending the AST - Manual Line Numbers
If using manual line number incrementing, adding line numbers to AST nodes is simple.

1. Introduce a global lineno variable in the main.c file

int lineno;
int main(){

lineno = 1; /* input starts at line 1 */
yyparse();
return 0;

}

2. increment lineno in the scanner

%{
extern int lineno; /* declared in main.c */

%}

%%
[ \t]+ /* no longer ignore \n */
\n lineno++; /* increment for every \n */
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Extending the AST - Manual Line Numbers
3. Add a lineno field to the AST nodes

struct EXP {
int lineno;
[...]

};

4. Set lineno in the node constructors

EXP *makeEXP_intLiteral(int intLiteral)
{

EXP *e = malloc(sizeof(EXP));
e->lineno = lineno;
e->kind = k_expressionKindIntLiteral;
e->val.intLiteral = intLiteral;
return e;

}
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Extending the AST - Automatic Line Numbers
1. Turn on line numbers in flex and add the user action

%{
#define YY_USER_ACTION yylloc.first_line = yylloc.last_line = yylineno;

%}
%option yylineno

2. Turn on line numbers in bison

%locations

3. Add a lineno field to the AST nodes

struct EXP {
int lineno;
[...]

};
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Extending the AST - Automatic Line Numbers
4. Extend each constructor to take an int lineno parameter

EXP *makeEXP_intLiteral(int intLiteral, int lineno)
{

EXP *e = malloc(sizeof(EXP));
e->lineno = lineno;
e->kind = k_expressionKindIntLiteral;
e->val.intLiteral = intLiteral;
return e;

}

5. For each semantic action, call the constructor with the appropriate line number

exp : tINTVAL { $$ = makeEXP_intLiteral($1, @1.first_line); }

Accessing the token location is done using @<token position>.<attribute>
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Extending the AST - Comparison
https://github.com/comp520/Examples/tree/master/flex%2Bbison/linenumbers

Given the example program 3 + 4, we expect the expression node to be located on line 1.

Manual

(3[1]+[2]4[1])

Automatic

(3[1]+[1]4[1])

What happened?

Semantic actions are executed when a rule is applied (reduction). An expression grammar can only
reduce 3 + 4 if it knows the next token - in this case, the newline.

makeEXPintconst

makeEXPintconst

lineno++

makeEXPplus



COMP 520 Winter 2019 Abstract Syntax Trees (29)

Constructing an AST with SableCC
SableCC 2 automatically generates a CST for your grammar, with nodes for terminals and
non-terminals. Consider the grammar for the TinyLang language

Scanner

Package tiny;

Helpers

tab = 9;

cr = 13;

lf = 10;

digit = [’0’..’9’];

lowercase = [’a’..’z’];

uppercase = [’A’..’Z’];

letter = lowercase | uppercase;

idletter = letter | ’_’;

idchar = letter | ’_’ | digit;

Tokens

eol = cr | lf | cr lf;

blank = ’ ’ | tab;

star = ’*’;

slash = ’/’;

plus = ’+’;

minus = ’-’;
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Constructing an AST with SableCC
l_par = ’(’;

r_par = ’)’;

number = ’0’| [digit-’0’] digit*;

id = idletter idchar*;

Ignored Tokens

blank, eol;

Parser

Productions

exp = {plus} exp plus factor

| {minus} exp minus factor

| {factor} factor;

factor = {mult} factor star term

| {divd} factor slash term

| {term} term;

term = {paren} l_par exp r_par

| {id} id

| {number} number;
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Constructing an AST with SableCC
SableCC generates subclasses of ’Node’ for terminals, non-terminals and production alternatives

• Classes for terminals: ’T’ followed by (capitalized) terminal name

TEol, TBlank, ..., TNumber, TId

• Classes for non-terminals: ’P’ followed by (capitalized) non-terminal name

PExp, PFactor, PTerm

• Classes for alternatives: ’A’ followed by (capitalized) alternative name and (capitalized)
non-terminal name

APlusExp (extends PExp), ..., ANumberTerm (extends PTerm)

Productions

exp = {plus} exp plus factor

| {minus} exp minus factor

| {factor} factor;

[...]
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SableCC Directory Structure
SableCC populates an entire directory structure

tiny/

|--analysis/ Analysis.java

| AnalysisAdapter.java

| DepthFirstAdapter.java

| ReversedDepthFirstAdapter.java

|

|--lexer/ Lexer.java lexer.dat

| LexerException.java

|

|--node/ Node.java TEol.java ... TId.java

| PExp.java PFactor.java PTerm.java

| APlusExp.java ...

| AMultFactor.java ...

| AParenTerm.java ...

|

|--parser/ parser.dat Parser.java

| ParserException.java ...

|

|-- custom code directories, e.g. symbol, type, ...
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SableCC - Concrete Syntax Trees
Given some grammar, SableCC generates a parser that in turn builds a concrete syntax tree (CST)
for an input program.

A parser built from the Tiny grammar creates the following CST for the program ‘a+b*c’

Start

|

APlusExp

/ \

AFactorExp AMultFactor

| / \

ATermFactor ATermFactor AIdTerm

| | |

AIdTerm AIdTerm c

| |

a b

This CST has many unnecessary intermediate nodes. Can you identify them?
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SableCC - Abstract Syntax Trees
We only need an abstract syntax tree (AST) to maintain the same useful information for further
analyses and processing

APlusExp

/ \

AIdExp AMultExp

| / \

a AIdExp AIdExp

| |

b c

Recall that bison relies on user-written actions after grammar rules to construct an AST.

As an alternative, SableCC 3 actually allows the user to define an AST and the CST→AST
transformations formally, and can then translate CSTs to ASTs automatically.
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Constructing an AST with SableCC
For the TinyLang expression language, the AST definition is as follows

Abstract Syntax Tree

exp = {plus} [l]:exp [r]:exp

| {minus} [l]:exp [r]:exp

| {mult} [l]:exp [r]:exp

| {divd} [l]:exp [r]:exp

| {id} id

| {number} number;

AST rules have the same syntax as productions, except that their elements define the abstract
structure. We remove all unnecessary tokens and intermediate non-terminals.
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Constructing an AST with SableCC
Using the AST definition, we augment each production in the grammar with a CST→AST
transformations

Productions

cst_exp {-> exp} =

{cst_plus} cst_exp plus factor

{-> New exp.plus(cst_exp.exp,factor.exp)} |

{cst_minus} cst_exp minus factor

{-> New exp.minus(cst_exp.exp,factor.exp)} |

{factor} factor {-> factor.exp};

factor {-> exp} =

{cst_mult} factor star term

{-> New exp.mult(factor.exp,term.exp)} |

{cst_divd} factor slash term

{-> New exp.divd(factor.exp,term.exp)} |

{term} term {-> term.exp};

term {-> exp} =

{paren} l_par cst_exp r_par {-> cst_exp.exp} |

{cst_id} id {-> New exp.id(id)} |

{cst_number} number {-> New exp.number(number)};
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Constructing an AST with SableCC
A CST production alternative for a plus node

cst_exp = {cst_plus} cst_exp plus factor

needs extending to include a CST→AST transformation

cst_exp {-> exp} = {cst_plus} cst_exp plus factor

{-> New exp.plus(cst_exp.exp,factor.exp)}

• cst_exp {-> exp} on the LHS specifies that the CST node cst_exp should be transformed
to the AST node exp.

• {-> New exp.plus(cst_exp.exp, factor.exp)} on the RHS specifies the action for
constructing the AST node.

• exp.plus is the kind of exp AST node to create. cst_exp.exp refers to the transformed AST
node exp of cst_exp, the first term on the RHS.
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Constructing an AST with SableCC
There are 5 types of explicit RHS transformations (actions)

1. Getting an existing node

{paren} l_par cst_exp r_par {-> cst_exp.exp}

2. Creating a new AST node

{cst_id} id {-> New exp.id(id)}

3. List creation

{block} l_brace stm* r_brace {-> New stm.block([stm])}

4. Elimination (but more like nullification)

{-> Null}

{-> New exp.id(Null)}

5. Empty (but more like deletion)

{-> }
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Constructing an AST with SableCC
Writing down straightforward, non-abstracting CST→AST transformations can be tedious. For
example, consider the following production of optional and list elements

prod = elm1 elm2* elm3+ elm4?;

An equivalent AST construction would be

prod{-> prod} = elm1 elm2* elm3+ elm4?

{-> New prod.prod(

elm1.elm1,

[elm2.elm2],

[elm3.elm3],

elm4.elm4)

};

SableCC 3 Documentation

• http://www.natpryce.com/articles/000531.html

• http://sablecc.sourceforge.net/documentation/cst-to-ast.html
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Pretty Printing
Pretty printing is a compiler function that outputs the parsed program in its “original”, “pretty” source
form (i.e. in the original source language)

The recursive form of ASTs allows us to easily construct recursive traversals as shown below.

void prettyEXP(EXP *e)
{

switch (e->kind) {
case k_expressionKindIdentifier:

printf("%s", e->val.identifier);
break;

case k_expressionKindIntLiteral:
printf("%i", e->val.intLiteral);
break;

case k_expressionKindAddition:
printf("(");
prettyEXP(e->val.binary.lhs);
printf("+");
prettyEXP(e->val.binary.rhs);
printf(")");
break;

[...]
}
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Pretty Printing
Given a parsed AST, invoking the pretty printer starts at the root node.

#include "tree.h"
#include "pretty.h"

void yyparse();

EXP *root;

int main()
{

yyparse();
prettyEXP(root);
return 0;

}

Pretty printing the expression a*(b-17) + 5/c in TinyLang will output

((a*(b-17))+(5/c))

Question: Why the extra parentheses?
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Pretty Printing
The testing strategy for a parser that constructs an abstract syntax tree T from a program P usually
involves a pretty printer.

If parse(P ) constructs T and pretty(T ) reconstructs the text of P , then

pretty(parse(P )) ≈ P

Even better, we have a stronger relation which says that

pretty(parse(pretty(parse(P )))) ≡ pretty(parse(P ))

Of course, this is a necessary but not sufficient condition for parser correctness.

Important observations

• Pretty printers do not output an identical program to the input (whitespace ignored, etc.); and

• Pretty printers should make some effort to be “pretty”.


