
COMP 520 Winter 2019 Scanning (1)

Scanning
COMP 520: Compiler Design (4 credits)
Alexander Krolik
alexander.krolik@mail.mcgill.ca

MWF 8:30-9:30, TR 1080
http://www.cs.mcgill.ca/~cs520/2019/

COMP 520 Winter 2019 Scanning (2)

Announcements (Wednesday, January 9th)
Milestones

• Pick your group (3 recommended)

• Create a GitHub account, learn git as needed

Midterm

• Date: Hopefully Tuesday/Wednesday, February 26/27 from 18:00-19:30 (To be confirmed)

• Let me know if there are any conflicts!

COMP 520 Winter 2019 Scanning (3)

Readings
Textbook, Crafting a Compiler

• Chapter 2: A Simple Compiler

• Chapter 3: Scanning–Theory and Practice

Modern Compiler Implementation in Java

• Chapter 1: Introduction

• Chapter 2: Lexical Analysis

Flex tool

• Manual - https://github.com/westes/flex

• Reference book, Flex & bison -
http://mcgill.worldcat.org/title/flex-bison/oclc/457179470

COMP 520 Winter 2019 Scanning (4)

Scanning
The scanning phase of a compiler

• Is the first phase of a compiler;

• Is also called lexical analysis (Google – “relating to the words or vocabulary of a language”);

• Takes arbitrary source files as input;

• Identifies meaningful sequences of characters; and

• Outputs tokens (one per meaningful sequence).

Overall

• A scanner transforms a string of characters into a string of tokens.

• Note: at this point, we do not have any semantic or syntactic information

COMP 520 Winter 2019 Scanning (5)

Example

var a = 5

if (a == 5)

{

print "success"

}

Things of note

• Keywords are special sequences of charac-
ters that take precedence over any other rule
(reserved) and are part of the language;

• Tokens may have associated data (identifiers,
constants, etc); and

• Whitespace is ignored.

tVAR

tIDENTIFIER(a)

tASSIGN

tINTEGER(5)

tIF

tLPAREN

tIDENTIFIER(a)

tEQUALS

tINTEGER(5)

tRPAREN

tLBRACE

tIDENTIFIER(print)

tSTRING(success)

tRBRACE

COMP 520 Winter 2019 Scanning (6)

COMP 330 Review
Languages

• Σ is an alphabet, a (usually finite) set of symbols;

• A word is a finite sequence of symbols from an alphabet;

• Σ∗ is a set consisting of all possible words using symbols from Σ; and

• A language is a subset of Σ∗.

Examples

• Alphabet: Σ={0,1}

• Words: {ε, 0, 1, 00, 01, 10, 11, . . . , 0001, 1000, . . . }

• Language:

– {1, 10, 100, 1000, 10000, 100000, . . . }: “1” followed by any number of zeros

– {0, 1, 1000, 0011, 11111100, . . . }: ?!

COMP 520 Winter 2019 Scanning (7)

Regular Languages
A regular language

• Is a language for which a regular expression exists; or (equivalently)

• Is a language that can be accepted by a DFA (deterministic finite automaton).

A regular expression

• Is a string that defines a language (set of strings); and

• In fact, is a string that defines a regular language.

COMP 520 Winter 2019 Scanning (8)

Regular Expressions
In a scanner, tokens are defined by regular expressions

• ∅ is a regular expression [the empty set: a language with no strings]

• ε is a regular expression [the empty string]

• a, where a ∈ Σ is a regular expression [Σ is our alphabet]

• if M and N are regular expressions, then M |N is a regular expression
[alternation: either M or N]

• if M and N are regular expressions, then M ·N is a regular expression
[concatenation: M followed by N]

• if M is a regular expression, then M∗ is a regular expression
[zero or more occurences of M]

What are M? and M+?

COMP 520 Winter 2019 Scanning (9)

Examples of Regular Expressions
Given a language with alphabet Σ={a,b}, the following are regular expressions

• a* = {ε, a, aa, aaa, aaaa, . . . }

• (ab)* = {ε, ab, abab, ababab, . . . }

• (a|b)* = {ε, a, b, aa, bb, ab, ba, . . . }

• a*ba* = strings with exactly 1 “b”

• (a|b)*b(a|b)* = strings with at least 1 “b”

Your turn

Write regular expressions for the following languages

• {a, aa, aaa, aaaa, . . . }

• {ab, ababab, abababab, . . . }

• Strings with at most one “b”

COMP 520 Winter 2019 Scanning (10)

Are these languages regular?
Given the alphabet Σ={a,b,c}, write a regular expression for each language if possible

• n “a”s, followed by any number of “b”s, followed by n “a”s

• All sentences that contain exactly 1 “a”, exactly 2 “b”s, and any number of “c”s, in any order

• All sentences that contain an odd number of characters

• All sentences that contain an odd number of characters, and the middle character must be an
“a”

• All sentences that contain an even number of “a”s, an even number of “b”s and an even number
of “c”s in any order

COMP 520 Winter 2019 Scanning (11)

Regular Expressions for Programming Languages
We can write regular expressions for the tokens in a source language with standard POSIX notation

• Simple operators: "*", "/", "+", "-"

• Parentheses: "(", ")"

• Integer constants: 0|([1-9][0-9]*)

• Identifiers: [a-zA-Z_][a-zA-Z0-9_]*

• Keywords: if, while

• Whitespace: [\t\n\r]+

[. . .] defines a character class

• Matches a single character from a set (allows characters to be “alternated”); and

• Can be negated using “^” (i.e. [^\n]).

The wildcard character

• Is represented as “.” (dot); and

• Matches all characters except newlines (default in most implementations).

COMP 520 Winter 2019 Scanning (12)

Finite State Machines
Internally, scanners use finite state machines (FSMs) to perform lexical analysis.

A finite state machine

• Represents a set of possible states for a system; and

• Uses transitions to link related states.

Intuitively, scanners use states to represent how much of each token they have seen so far.
Transitions are executed for each input character, moving from one state to another.

A deterministic finite automaton (DFA)

• Is a machine which recognizes regular languages;

• For an input sequence of symbols, the automaton either accepts or rejects the string; and

• It works deterministically - that is given some input, there is only one sequence of steps.

COMP 520 Winter 2019 Scanning (13)

DFAs – “Crafting a Compiler”

COMP 520 Winter 2019 Scanning (14)

DFAs (for the previous example regexes)

lhl -- lhl --lhl --

lhl -- lhl --lh
lh
lh lh

lhl ?
-- \t\n

\t\n

l
l l
--

�
�3

Q
Qs
?

- -
?

-

* / +

()-

0

0-91-9

a-zA-Z0-9_
a-zA-Z_

COMP 520 Winter 2019 Scanning (15)

Your Turn!
Design DFAs for the following languages

• Canonical example: binary strings divisible by 3 using only 3 states

• Recall the regex example: All sentences that contain an even number of “a”s, an even number
of “b”s and an even number of “c”s in any order. Design a DFA using 8 states

• Floating point numbers of form: {1., 1.1, .1} (a digit on at least one side of the decimal)

The regular expression for the last example is easy, but (much) more complex for the other two

COMP 520 Winter 2019 Scanning (16)

Nondeterministic finite automaton
Constructing a DFA directly from a regular expression is hard. A more popular construction involves
an intermediate step with nondeterministric finite automata.

A nondeterministric finite automaton

• Is a machine which recognizes regular languages;

• For an input sequence of symbols, the automaton either accepts or rejects the string;

• It works nondeterministically - that is given some input, there is potentially more than one path;
and

• An NFA accepts a string if at least one path leads to an accept.

Since they both recognize regular languages, DFAs and NFAs are equally powerful!

COMP 520 Winter 2019 Scanning (17)

Regular Expressions to NFA (1) – “Crafting a Compiler”

COMP 520 Winter 2019 Scanning (18)

Regular Expressions to NFA (2) – “Crafting a Compiler"

COMP 520 Winter 2019 Scanning (19)

Regular Expressions to NFA (3) – “Crafting a Compiler"

COMP 520 Winter 2019 Scanning (20)

Converting from Regular Expressions to DFAs
Internally, scanners use DFAs to recognize tokens - not regular expressions. Therefore, they must
first perform a conversion. flex (your scanning tool) follows a well defined algorithm that

1. Accepts a list of regular expressions (regex);

2. Converts each regex internally to an NFA (Thompson construction);

3. Converts each NFA to a DFA (subset construction); and

4. May minimize DFA.

See “Crafting a Compiler", Chapter 3; or “Modern Compiler Implementation in Java", Chapter 2

COMP 520 Winter 2019 Scanning (21)

Takeaways
You should know

1. Understand the definition of a regular language, whether that be: prose, regular expression,
DFA, or NFA; and

2. Given the definition of a regular language, construct either a regular expression or an
automaton.

You do not need to know

1. Specific algorithms for converting between regular language definitions; and

2. DFA minimization.

COMP 520 Winter 2019 Scanning (22)

Announcements (Friday, January 11th)
Milestones

• Pick your group (3 recommended)

• Create a GitHub account, learn git as needed

• Learn flex/bison or SableCC

Midterm

• Date: To be determined, getting a room reserved is hard!

Office Hours

• Monday/Wednesday: 9:30-10:30

• If this does not work for you then please do send a message via email, Facebook group, etc.

COMP 520 Winter 2019 Scanning (23)

Scanners
From your perspective, a scanner (or lexer)

• Can be generated using tools like flex (or lex), JFlex, . . . ; and

• Is list of regular expressions (i.e. regular languages), one for each token type.

Internally, a scanner

• Transforms your regular expressions to deterministic finite automata (DFAs); and

• Adds some glue code to make it work.

The technology behind scanning tools is well defined theoretically, and can (relatively) easily be
implemented for the constructs in this class. But we have tools for efficiency!

The Go scanner is implemented by hand and shows a general strategy:
https://github.com/golang/go/blob/master/src/go/scanner/scanner.go

COMP 520 Winter 2019 Scanning (24)

Scanner Tables – “Crafting a Compiler”

COMP 520 Winter 2019 Scanning (25)

Scanner Algorithm – “Crafting a Compiler”

COMP 520 Winter 2019 Scanning (26)

Matching Rules
Assume the scanning tool has constructed a collection of DFAs, one for each lexical rule

reg_expr1 -> DFA1

reg_expr2 -> DFA2

...

reg_rexpn -> DFAn

How do we decide which regular expression should match the next characters to be scanned?

flex matches on all regular expressions, and follows a set of arbitrary rules to select which token is
the successful match (“first longest match”).

COMP 520 Winter 2019 Scanning (27)

Matching Rules – Algorithm
Given DFAs D1, . . . , Dn, ordered by the input rule order, a flex-generated scanner executes

while input is not empty do
si := the longest prefix that Di accepts
l := max{|si|}
if l > 0 then

j := min{i : |si| = l}
remove sj from input
perform the jth action

else (error case)
move one character from input to output

end

end

• The longest initial substring match forms the next token, and it is subject to some action;

• The first rule to match breaks any ties; and

• Non-matching characters are echoed back.

COMP 520 Winter 2019 Scanning (28)

Why the “longest match” principle?
Example: keywords

...

import return tIMPORT;

[a-zA-Z_][a-zA-Z0-9_]* return tIDENTIFIER;

...

Given a string “importedFiles”, we want the token output of the scanner to be

tIDENTIFIER(importedFiles)

and not

tIMPORT tIDENTIFIER(edFiles)

Since we prefer longer matches, we get the right result.

COMP 520 Winter 2019 Scanning (29)

Why the “first match” principle?
Example: keywords

...

continue return tCONTINUE;

[a-zA-Z_][a-zA-Z0-9_]* return tIDENTIFIER;

...

Given a string “continue foo”, we want the token output of the scanner to be

tCONTINUE tIDENTIFIER(foo)

and not

tIDENTIFIER(continue) tIDENTIFIER(foo)

Since both tCONTINUE and tIDENTIFIER match with the same length, there is a tie. Using the
“first match” rule, we break the tie by looking at the rule order and get the correct result.

COMP 520 Winter 2019 Scanning (30)

Problem Cases (of course)
In some languages, the “first longest match” (flm) rules are not enough.

FORTRAN equals

FORTRAN allows for the following tokens:
.EQ., 363, 363., .363

flm analysis of 363.EQ.363 gives us:
tFLOAT(363) E Q tFLOAT(0.363)

What we actually want is:
tINTEGER(363) tEQ tINTEGER(363)

Solution

To distinguish between a tFLOAT and a tINTEGER followed by a “.”, flex allows us to use
look-ahead, using ‘/’:

363/.EQ. return tINTEGER;

A look-ahead matches on the full pattern, but only processes the characters before the ‘/’. All
subsequent characters are returned to the input stream for further matches.

COMP 520 Winter 2019 Scanning (31)

Problem Cases (of course)
FORTRAN ignores whitespace

1. DO5I = 1.25 ; DO5I=1.25

in C, these are equivalent to an assignment:
do5i = 1.25;

2. DO 5 I = 1,25 ; DO5I=1,25

in C, these are equivalent to looping:
for (i=1; i<25; ++i) {...} (5 is interpreted as a line number)

Solution

1. First case, flm analysis is correct
tIDENTIFIER(DO5I) tASSIGN tFLOAT(1.25)

2. Second case, flm analysis gives the incorrect result. What we want is:
tDO tINTEGER(5) tIDENT(I) tASSIGN tINTEGER(1) tCOMMA tINTEGER(25)

But we cannot make decision on tDO until we see the comma, look-ahead comes to the rescue:
DO/(letter|digit)*=(letter|digit)*, return tDO;

COMP 520 Winter 2019 Scanning (32)

Context-Sensitive Grammars
In some languages, the correct token type for the sequence of characters may depend on its context

C language

Given the following snippet of a C program, is this a either cast to type a or a multiplication
expression? How do we return the correct token?

(a) * b

There are two main options used in practice to resolve this ambiguity

• Feed semantic information into the scanner (yikes!); or

• Scan a more general language and resolve the ambiguity in a later phase.

See https://en.wikipedia.org/wiki/The_lexer_hack for more details

COMP 520 Winter 2019 Scanning (33)

Context-Sensitive Grammars
Golang

Go (in a looser way) also suffers from context sensitivity in its grammar. (For some reason) both
function calls and casts share the same syntax.

int(a)

Is this a call to a function int, or a cast to type int? It all depends if int is a type or an identifier.
How do we return the correct token?

Russ Cox might disagree that this is an “ambiguity at the syntactic level” (http:
//grokbase.com/t/gg/golang-nuts/142pkyzh7r/go-nuts-parsing-go-code-without-context),
but the issue still remains

COMP 520 Winter 2019 Scanning (34)

Onto the Practice!
In practice, we use tools to generate scanners instead of writing them by hand (although some
production compilers still use hand written scanners for C)

�
�
�
�
�
�
�
�
�
�
�
�

?

?
- -

?

?

joos.l

flex

lex.yy.c gcc scanner

foo.joos

tokens

COMP 520 Winter 2019 Scanning (35)

flex

flex uses a single .l file to define the scanner. The .l file

• Has 3 main sections divided by %%

1. Declarations, helper code;

2. Regular expression rules and associated actions;

3. User code; and

• Saves much effort in compiler design.

flex supports (amongst other things)

• Line numbers; and

• Interoperability with the bison parser tool.

Example scanner: https://github.com/comp520/Examples/tree/master/flex%2Bbison/scanner

COMP 520 Winter 2019 Scanning (36)

Skeleton flex File
/* The first section of a flex file contains:

* 1. A code section for includes and other arbitrary C code

* 2. Helper definitions for regexes

* 3. Scanner options

*/

%{ /* Code section */ %}

/* Helper definitions */

DIGIT [0-9]

/* Scanner options, line number generation */

%option yylineno

/* The second section contains regular expressions, one per line, followed by

* the scanner action. Actions are executed when a token is matched. An empty

* action is treated as a NOP.

*/

%%

RULE ACTION

%%

/* User code comes in the last section */

COMP 520 Winter 2019 Scanning (37)

Example flex File - TinyLang
%{

#include <stdio.h>

%}

DIGIT [0-9]

%option yylineno

%%

[\r\n]+

[\t]+ printf("Whitespace, length %lu\n", yyleng);

"+" printf("Plus\n");

"-" printf("Minus\n");

"*" printf("Times\n");

"/" printf("Divide\n");

"(" printf("Left parenthesis\n");

")" printf("Right parenthesis\n");

0|([1-9]{DIGIT}*) { printf("Integer constant: %s\n", yytext); }

[a-zA-Z_][a-zA-Z0-9_]* { printf("Identifier: %s\n", yytext); }

. { fprintf(stderr, "Error: (line %d) unexpected character ‘%s’\n", yylineno, yytext);

exit(1); }

%%

int main() { yylex(); return 0; }

COMP 520 Winter 2019 Scanning (38)

Running a flex Scanner
After the scanner file is complete, using flex to create a scanner is really simple

$ vim tiny.l

$ flex tiny.l

flex has generated a file ‘lex.yy.c’

$ gcc -o tiny lex.yy.c -lfl

COMP 520 Winter 2019 Scanning (39)

Running a flex Scanner
$ echo "a*(b-17) + 5/c" | ./tiny

Output

Identifier: a

Times

Left parenthesis

Identifier: b

Minus

Integer constant: 17

Right parenthesis

Whitespace, length 1

Plus

Whitespace, length 1

Integer constant: 5

Div

Identifier: c

COMP 520 Winter 2019 Scanning (40)

Line Numbers
Having line information handy is essential for producing detailed error messages. There are two
different implementations: manual, and automatic

Examples on GitHub:
https://github.com/comp520/Examples/tree/master/flex%2Bbison/linenumbers

Manual line and character counting

%{

int lines = 0, chars = 0;

%}

%%

\n lines++; chars++;

. chars++;

%%

int main() {

yylex();

printf("#lines = %d, #chars = %d\n", lines, chars);

return 0;

}

COMP 520 Winter 2019 Scanning (41)

Line Numbers
Getting automated position information in flex

• Is easy for line numbers: option and variable yylineno; but

• Is more involved for character positions.

If position information is useful for further compilation phases

• It can be stored in a structure yylloc provided by the parser (bison); but

• Must be updated by a user action.

typedef struct yyltype {

int first_line, first_column, last_line, last_column;

} yyltype;

%{

#define YY_USER_ACTION yylloc.first_line = yylloc.last_line = yylineno;

%}

%option yylineno

%%

. { fprintf(stderr, "Error: (line %d) unexpected char ‘%s’\n", yylineno, yytext);

exit(1); }

COMP 520 Winter 2019 Scanning (42)

Scanner Actions
Actions in a flex file can either

• Do nothing – ignore the characters;

• Perform some arbitrary computation, call a function, etc.; and/or

• Return a token (token definitions provided by the parser).

%{

#include <stdlib.h> /* atoi */

#include <stdio.h> /* printf */

#include "y.tab.h" /* Token types */

%}

%%

[aeiouy]

[0-9]+ printf("%d", atoi(yytext) + 1);

func return tFUNCTION;

%%

int main() { yylex(); return 0; }

COMP 520 Winter 2019 Scanning (43)

Extended Scanner Actions
The basic functionality of bison expects a token type to be returned. In some cases though, a
token is not enough

• Need to capture the value of an identifier; or

• Need the value of a string, integer, or float literal.

In these cases, flex provides

• yytext: the scanned sequence of characters;

• yyleng: the length of the scanned sequence;

• yylval: a user-defined variable from the parser (bison) to be returned with the token; and

• yylloc: a bison defined variable for storing token location.

[a-zA-Z_][a-zA-Z0-9_]* {

yylval.string_const = strdup(yytext);

return tIDENTIFIER;

}

COMP 520 Winter 2019 Scanning (44)

Scanner Efficiency
Compiler efficiency is extremely important, but scanners operate on a character by character basis.
In reality, scanning is one of the more time consuming elements of a (simple) compiler.

Recall: to produce a string of tokens, we match on every regular expression in the scanner.

Something quite simple we can do is

• Reduce the number of regular expressions;

• By observing that keywords are valid identifiers; and

• Use a (fast) lookup mechanism to determine if it is a reserved word.

COMP 520 Winter 2019 Scanning (45)

Scanner Error Handling
Say in our language, integers do not have a leading zero. The following assignment is thus invalid

var a : int

a = 011

Using the standard 0|([1-9][0-9]*) regular expression for integers and the flm rules, the
scanner produces the following valid token stream

tVAR

tIDENTIFIER(a)

tCOLON

tINT

tIDENTIFIER(a)

tASSIGN

tINTVAL(0)

tINTVAL(11)

The scanner does not identify an error(?!), so the detection is left to a later phase of the compiler. In
our case, this will be identified by the parser.

However, we should ask: Is this a syntactic error, or should the scanner throw a lexical error?

COMP 520 Winter 2019 Scanning (46)

Scanner Error Handling - Syntactic Error
It’s tempting to assume this is a lexical error since integers cannot be defined with leading zeros.
However, what if the user intended to write the following addition

var a : int

a = 0 + 11

It may not be a useful computation, but it is valid. The corrected token stream is therefore

tVAR

tIDENTIFIER(a)

tCOLON

tINT

tIDENTIFIER(a)

tASSIGN

tINTVAL(0)

tPLUS // this is new

tINTVAL(11)

If we assume this is a syntactic error, the original program was simply missing the addition operator
and an informative error message can be displayed to the user

COMP 520 Winter 2019 Scanning (47)

Scanner Error Handling - Lexical Error
On the other hand, we may decide a lexical error is more appropriate.

Solution: Define 2 regular expressions

1. Valid integers: 0|([1-9][0-9]*)

2. All integers: ([0-9]*)

For an invalid integer

1. Valid integers regular expression matches on the leading zero only - this is of length 1

2. All integers regular expression matches on the entire input number (length > 1)

Using the longest match principle we choose the all integers regular expression and throw an error.

For a valid integer

1. Valid integers regular expression matches on the entire input n

2. All integers regular expression matches on the entire input n

Using the first match principle we choose the valid regex and produce a tINTVAL(n) token.

COMP 520 Winter 2019 Scanning (48)

Summary
• A scanner transforms a string of characters into a string of tokens;

• Scanner generating tools like flex allow you to define a regular expression for each type of
token;

• Internally, the regular expressions are transformed to a deterministic finite automata (DFAs) for
matching;

• The head of the input string is matched on all machines to determine the next token;

• To break ties (more than one matching token type), scanners use 2 principles: “longest match”
and “first match”.

