
COMP 520 Winter 2019 Native Code Generation (1)

Native Code Generation
COMP 520: Compiler Design (4 credits)
Alexander Krolik
alexander.krolik@mail.mcgill.ca

MWF 8:30-9:30, TR 1080
http://www.cs.mcgill.ca/~cs520/2019/

Compiley “Mompiler” McCompilerface



COMP 520 Winter 2019 Native Code Generation (2)

Announcements (Wednesday, March 20th)
Friday’s class

• Tutorial on Go codegen;

• Recommended to get tips and tricks for the codegen part of your project.

Milestones

• Milestone 2 nearly finished grading

• Milestone 3 due: Wednesday, March 27th 11:59 PM

• Milestone 4 due: Wednesday, April 10th 11:59 PM

• Final report due: Wednesday, April 10th 11:59 PM

• Group meeting: Week of April 8th (you may request an extension until the week of April 15th)

• Peephole due: Friday, April 12th 11:59 PM

• Final exam: Thursday, April 18th 2:00 PM



COMP 520 Winter 2019 Native Code Generation (3)

Executing JOOS Code
The JOOS compiler translates a subset of Java to bytecode, but bytecode cannot be executed on
any machine directly. Execution occurs thanks to either

1. An interpreter;

2. An Ahead-Of-Time (AOT) compiler; or

3. A Just-In-Time (JIT) compiler.

In all cases, bytecode must be implicitly or explicitly translated into native code suitable for the host
architecture before execution.



COMP 520 Winter 2019 Native Code Generation (4)

Interpreters
Execute bytecode one instruction at a time, by simulating the progression on a virtual machine

• “Easy” to implement;

• Can be very portable since they are target independent; but

• Suffer an inherent inefficiency.



COMP 520 Winter 2019 Native Code Generation (5)

Interpreters
As we saw in an earlier lecture, a simple interpreter for Java bytecode is quite easy to implement
pc = code.start;
while(true)
{

npc = pc + instruction_length(code[pc]);
switch (opcode(code[pc]))
{

case ILOAD_1:
push(local[1]);
break;

case ILOAD:
push(local[code[pc+1]]);
break;

case ISTORE:
t = pop();
local[code[pc+1]] = t;
break;

case IADD:
t1 = pop(); t2 = pop();
push(t1 + t2);
break;

case IFEQ:
t = pop();
if (t == 0) npc = code[pc+1];
break;

...
}
pc = npc;

}



COMP 520 Winter 2019 Native Code Generation (6)

Ahead-of-Time Compilers
• Typically run on the developer’s machine;

• Translate the low-level intermediate form into native code;

• Create object files to be linked and executed.

This is not so useful for Java and JOOS

• Method code is fetched as it is needed;

• From across the internet; and

• From multiple hosts with different native code sets.



COMP 520 Winter 2019 Native Code Generation (7)

Just-in-Time Compilers
Just-in-time (JIT) compilers are an alternative to interpreters and AOT compilerw which

• Merge interpreters with traditional compilation techniques;

• Have the overall structure of an interpreter; but

• Method code is handled differently.

When a method is invoked for the first time

• The bytecode is fetched;

• It is translated into native code; and

• Control is given to the newly generated native code.

When a method is invoked subsequently

• Control is simply given to the previously generated native code.



COMP 520 Winter 2019 Native Code Generation (8)

Just-in-Time Compilers
Efficiency

For a JIT compiler to be worthwhile

• It must be fast, because the compilation occurs at runtime (Just-In-Time is really Just-Too-Late);

• It may concurrently interpret and compile a method (Better-Late-Than-Never); and

• It may have several levels of optimization, and recompile long-running methods.

Cutting corners

Since we require high performance

• It does not necessarily generate optimized code;

• It does not necessarily compile every instruction into native code, but relies on the runtime
library for complex instructions; and

• It need not necessarily compile every method;



COMP 520 Winter 2019 Native Code Generation (9)

Generating Native Code
When generating native code, there are 4 important problems to solve

• Instruction selection
Choose the correct instructions based on the native code instruction set;

• Memory modelling
Decide where to store variables and how to allocate registers;

• Method calling
Determine calling conventions; and

• Branch handling
Allocate branch targets.



COMP 520 Winter 2019 Native Code Generation (10)

Compiling JVM Bytecode to VirtualRISC
In this class we focus on generating VirtualRISC from JVM bytecode. In a JIT compiler this requires

• Mapping the Java local stack into registers and memory;

• Instruction selection on the fly;

• Branch target allocation on the fly.

This is successfully done in the Kaffe system.



COMP 520 Winter 2019 Native Code Generation (11)

Mapping Locals/Stack to the Frame
The first task before generating native code is to place variables in memory

name offset location register

a 1 [fp-4]

stack 0 R1

stack 1 R2

scratch 0 R3

We have a choice of storing variables in memory (RAM) locations, and/or in registers.

Stack memory

• In theory, the stack frame can become arbitrarily large, so there will always be enough space;

• In practice, the frame is limited by the stack limit (ulimit -a).

Registers

• Limited number depending on the hardware;

• Usually much less than the number of program variables; and

• Requires spilling if there are not enough registers.



COMP 520 Winter 2019 Native Code Generation (12)

Register Allocation
Problem: Find the mapping scheme which keeps as many variables in registers as possible

• Requires program analysis to understand loads/stores and operations;

• In particular, the ranges over which variables are used.

Liveness analysis

A variable is live if its value may be read at some point in the future

• Exact liveness is undecidable; but

• Using static analysis, we can determine conservative sets of variables which are live for each
program point;

• The more precise the liveness information, the better the register allocation.



COMP 520 Winter 2019 Native Code Generation (13)

Liveness Analysis
A detailed view at liveness analysis is presented in COMP 621 (some material is also available from
past COMP 520 slides - https://www.cs.mcgill.ca/~cs520/2015/slides/staticanalysis.pdf)

For this class, we will focus on small, human-solvable problems.

Examples

For the following programs, determine the set of variables which are live at each program point.

a := 0

b := 1

c := 0

c := a + b

d := 5

e := b + c + d

return e

a := 0

b := 1

if a > b {

c := 0

} else {

c := a

}

d := b + c

return d

a := 0

b := 1

while a > b {

a := a - 1

}

c := a

return d



COMP 520 Winter 2019 Native Code Generation (14)

Interference Graph
An interference graph represents liveness relationships between program variables.

• One node for each program variable; and

• Edges between variables whose live ranges overlap (i.e. live at the same time).

Some approaches also include a k-clique for the registers, but it isn’t always necessary.

Construction

We can construct the interference graph using the results of live variable analysis.

1. For each program variable n, add one node n to the graph

2. For each program point p, add an edge (a, b) to the graph if variables a and b are both live at
point p



COMP 520 Winter 2019 Native Code Generation (15)

Graph Colouring
The last step in register allocation performs the mapping using the interference graph.

If the system has n registers, we want to find if the graph is n-colourable, and what the colouring
would be. As register allocation reduces to graph colouring, and is therefore NP-complete.

Example

a b

c d

e

In practice, a heuristic approach to graph colouring is used to approximate the solution.



COMP 520 Winter 2019 Native Code Generation (16)

Live Range Splitting
Variables may be redefined throughout the program, essentially acting as separate variables. In the
following example, a naive approach requires 3 registers, yet only 2 are required.

a := 0

b := 1

c := a + b

a := b

d := a + c

return d

We can split the live range and represent the two definitions of a as separate variables a0 and a1.
This allows us to obtain a 2-colouring of the interference graph.



COMP 520 Winter 2019 Native Code Generation (17)

Announcements (Monday, March 25th)
Milestones

• Milestone 2 finished grading

• Milestone 3 due: Wednesday, March 27th 11:59 PM

• Milestone 4 due: Wednesday, April 10th 11:59 PM

• Final report due: Wednesday, April 10th 11:59 PM

• Group meeting: Week of April 8th (you may request an extension until the week of April 15th)

• Peephole due: Friday, April 12th 11:59 PM

• Final exam: Thursday, April 18th 2:00 PM



COMP 520 Winter 2019 Native Code Generation (18)

Allocation Schemes
Applying graph-based register allocation schemes directly to stack-based IR is not trivial.

In class we will instead show 3 basic schemes used for generating native code from Java bytecode
which ignore the complexities of liveness and graph colouring.

• Naïve (no allocation);

• Fixed; and

• Basic block.

We will produce a mapping of both local variables and stack positions to the memory and registers.



COMP 520 Winter 2019 Native Code Generation (19)

Instruction Selection
Translating from a stack-based IR to a register-based IR is

• Non-trivial; and

• (Typically) requires generating other register-based intermediate representations.

In class we take a simple approach, simulating the stack operations to directly produce machine
code. For example iload_0 may be represented as

ld [fp-4], R0

st R0, [fp-8]

where [fp-4] and [fp-8] represent local 0 and the top of the stack respectively.



COMP 520 Winter 2019 Native Code Generation (20)

Compiling JVM Bytecode to VirtualRISC
The general algorithm for generating native code consists of

• Finding the local stack height for each bytecode;

• Determining the number of slots in frame: locals limit + stack limit + #temps;

• Mapping memory/registers;

• Emitting prologue;

• Emitting native code for each bytecode; and

• Fixing up branches.

For VirtualRSIC, we assume that input parameters arrive in registers R0 through Rn, and the return
value must be in R0



COMP 520 Winter 2019 Native Code Generation (21)

NaÏve Allocation
The naïve approach assumes that registers are very volatile, where the value stored in a register
from one bytecode cannot be accessed from another.

iload_0 // loads value into R0

ineg // cannot assume anything about R0

i.e. Even though iload_0 loads the value into R0, then the next instruction can make no
assumption about the contents of R0. To transfer data, we must use memory.

Generating code

• Each local and stack location is mapped to an offset in the native frame;

• Each bytecode is translated into a series of native instructions, which

• Constantly move locations between memory and registers.

This is similar to the native code generated by a non-optimizing compiler.



COMP 520 Winter 2019 Native Code Generation (22)

NaÏve Allocation Example
Input code

public void foo() {
int a, b, c;

a = 1;
b = 13;
c = a + b;

}

Procedure

• Compute frame size = 4 + 2 + 0 = 6;

• Map locals/stack to frame;

• Find stack height for each bytecode;

• Emit prologue; and

• Emit native code for each bytecode.

Generated bytecode

.method public foo()V

.limit locals 4

.limit stack 2

iconst_1 ; 1

istore_1 ; 0

ldc 13 ; 1

istore_2 ; 0

iload_1 ; 1

iload_2 ; 2

iadd ; 1

istore_3 ; 0

return ; 0

.end method



COMP 520 Winter 2019 Native Code Generation (23)

NaÏve Allocation Example
Assignment of frame slots

name offset location

a 1 [fp-32]

b 2 [fp-36]

c 3 [fp-40]

stack 0 [fp-44]

stack 1 [fp-48]

Native code generation

save sp,-136,sp

a = 1; iconst_1 mov 1,R1

st R1,[fp-44]

istore_1 ld [fp-44],R1

st R1,[fp-32]

b = 13; ldc 13 mov 13,R1

st R1,[fp-44]

istore_2 ld [fp-44],R1

st R1,[fp-36]

c = a + b; iload_1 ld [fp-32],R1

st R1,[fp-44]

iload_2 ld [fp-36],R1

st R1,[fp-48]

iadd ld [fp-48],R1

ld [fp-44],R2

add R2,R1,R1

st R1,[fp-44]

istore_3 ld [fp-44],R1

st R1,[fp-40]

return restore

ret



COMP 520 Winter 2019 Native Code Generation (24)

NaÏve Allocation
Naïve allocation is not a very good allocation scheme (although it is typically used when the
optimizer is turned off - always use -O !)

• Clear very slow;

• Many unnecessary loads and stores, which

• Are the most expensive operations.

We wish to replace repeated loads and stored with register operations



COMP 520 Winter 2019 Native Code Generation (25)

Improved Allocation
We wish to replace loads and stores

c = a + b; iload_1 ld [fp-32],R1

st R1,[fp-44]

iload_2 ld [fp-36],R1

st R1,[fp-48]

iadd ld [fp-48],R1

ld [fp-44],R2

add R2,R1,R1

st R1,[fp-44]

istore_3 ld [fp-44],R1

st R1,[fp-40]

by registers operations

c = a + b; iload_1 ld [fp-32],R1

iload_2 ld [fp-36],R2

iadd add R1,R2,R1

istore_3 st R1,[fp-40]

where R1 and R2 represent the stack.



COMP 520 Winter 2019 Native Code Generation (26)

Announcements (Wednesday, March 27th)
Milestones

• Milestone 3 due: Wednesday, March 27th 11:59 PM

• Milestone 4 due: Wednesday, April 10th 11:59 PM

• Final report due: Wednesday, April 10th 11:59 PM

• Group meeting: Week of April 8th (you may request an extension until the week of April 15th)

• Peephole due: Friday, April 12th 11:59 PM

• Final exam: Thursday, April 18th 2:00 PM



COMP 520 Winter 2019 Native Code Generation (27)

Fixed Register Allocation
• Assign m registers to the first m locals;

• Assign n registers to the first n stack locations;

• Assign k scratch registers; and

• Spill remaining locals and locations into memory.

Example

Given 6 registers (m = n = k = 2), show the register allocation table

name offset location register

a 1 R1

b 2 R2

c 3 [fp-40]

stack 0 R3

stack 1 R4

scratch 0 R5

scratch 1 R6



COMP 520 Winter 2019 Native Code Generation (28)

Fixed Register Allocation Example
Memory allocation map

name offset location register

a 1 R1
b 2 R2
c 3 [fp-40]

stack 0 R3
stack 1 R4
...

Improved native code generation

save sp,-136,sp

a = 1; iconst_1 mov 1,R3

istore_1 mov R3,R1

b = 13; ldc 13 mov 13,R3

istore_2 mov R3,R2

c = a + b; iload_1 mov R1,R3

iload_2 mov R2,R4

iadd add R3,R4,R3

istore_3 st R3,[fp-40]

return restore

ret



COMP 520 Winter 2019 Native Code Generation (29)

Fixed Register Allocation
• Registers are allocated once; and

• The allocation does not change within a method.

This works quite well if

• The architecture has a large register set;

• The stack is small most of the time; and

• The first locals are used most frequently.

Advantages

• It’s simple to do the allocation; and

• No problems with different control flow paths.

Disadvantages

• Assumes the first locals and stack locations are most important; and

• May waste registers within a region of a method.



COMP 520 Winter 2019 Native Code Generation (30)

Basic Blocks
A basic block is a sequence of instructions that

• Are linear;

• Have no incoming or outgoing branches except at boundaries; and thus

• Have only one entry point (the start) and only one exit point (the end).

Basic blocks form the nodes of a control flow graph.

Wikimedia User: JMP EAX



COMP 520 Winter 2019 Native Code Generation (31)

Basic Block Register Allocation
• Assign frame slots to registers on demand within a basic block; and

• Update descriptors at each bytecode.

The descriptor maps a slot to an element of the set { ⊥, mem, Ri, mem&Ri }

a R2

b mem

c mem&R4

s_0 R1

s_1 ⊥

We also maintain the inverse register map

R1 s_0

R2 a

R3 ⊥

R4 c

R5 ⊥



COMP 520 Winter 2019 Native Code Generation (32)

Basic Block Register Allocation
In a control flow graph, divergent paths can merge at basic block boundaries (i.e. loops, if
statements, etc.)

J
JJ 






a R1

b R2

a R3

b R4

a ?

b ?

To correctly merge the paths, registers must be spilled after basic blocks

J
JJ 






a R1

b R2

st R1,[fp-32]

st R2,[fp-36]

a R3

b R4

st R3,[fp-32]

st R4,[fp-36]

a mem

b mem

At the beginning of a basic block, all slots are therefore assumed to be in memory.



COMP 520 Winter 2019 Native Code Generation (33)

Basic Block Register Allocation Example

save sp,-136,sp

R1 ⊥
R2 ⊥
R3 ⊥
R4 ⊥
R5 ⊥

a mem

b mem

c mem

s_0 ⊥
s_1 ⊥

iconst_1 mov 1,R1

R1 s_0

R2 ⊥
R3 ⊥
R4 ⊥
R5 ⊥

a mem

b mem

c mem

s_0 R1

s_1 ⊥

istore_1 mov R1,R2

R1 ⊥
R2 a

R3 ⊥
R4 ⊥
R5 ⊥

a R2

b mem

c mem

s_0 ⊥
s_1 ⊥

ldc 13 mov 13,R1

R1 s_0

R2 a

R3 ⊥
R4 ⊥
R5 ⊥

a R2

b mem

c mem

s_0 R1

s_1 ⊥

istore_2 mov R1,R3

R1 ⊥
R2 a

R3 b

R4 ⊥
R5 ⊥

a R2

b R3

c mem

s_0 ⊥
s_1 ⊥



COMP 520 Winter 2019 Native Code Generation (34)

iload_1 mov R2,R1

R1 s_0

R2 a

R3 b

R4 ⊥
R5 ⊥

a R2

b R3

c mem

s_0 R1

s_1 ⊥

iload_2 mov R3,R4

R1 s_0

R2 a

R3 b

R4 s_1

R5 ⊥

a R2

b R3

c mem

s_0 R1

s_1 R4

iadd add R1,R4,R1

R1 s_0

R2 a

R3 b

R4 ⊥
R5 ⊥

a R2

b R3

c mem

s_0 R1

s_1 ⊥

istore_3 st R1,R4

R1 ⊥
R2 a

R3 b

R4 c

R5 ⊥

a R2

b R3

c R4

s_0 ⊥
s_1 ⊥

return
st R2,[fp-32]
st R3,[fp-36]
st R4,[fp-40]

R1 ⊥
R2 ⊥
R3 ⊥
R4 ⊥
R5 ⊥

a mem

b mem

c mem

s_0 ⊥
s_1 ⊥

restore
ret



COMP 520 Winter 2019 Native Code Generation (35)

Basic Block vs. Fixed Register Allocation
So far, this is actually no better than the fixed scheme, in fact, it is worse (3 memory stores from
spilling vs. 1 memory store). But if we add the statement

c = c * c + c;

Then the fixed scheme and basic block schemes generate

Fixed Basic block

iload_3 ld [fp-40],R3 mov R4,R1

iload_3 ld [fp-40],R4 mov R4,R5

imul mul R3,R4,R3 mul R1,R5,R1

iload_3 ld [fp-40],R4 mov R4,R5

iadd add R3,R4,R3 add R1,R5,R1

istore_3 st R3,[fp-40] mov R1,R4

Note: When comparing both approaches we must consider the cost of spilling



COMP 520 Winter 2019 Native Code Generation (36)

Basic Block Register Allocation
• Registers are allocated on demand; and

• Slots are kept in registers within a basic block.

Advantages

• Registers are not wasted on unused slots; and

• Less spill code within a basic block.

Disadvantages

• Much more complex than the fixed register allocation scheme;

• Registers must be spilled at the end of a basic block; and

• We may spill locals that are never needed.



COMP 520 Winter 2019 Native Code Generation (37)

Further Optimizations
The schemes up until this point explicitly modelled the stack. If we remove this requirement, the
code gets even faster

save sp,-136,sp save sp,-136,sp

mov 1,R1 mov 1,R2

mov R1,R2

mov 13,R1 mov 13,R3

mov R1,R3

mov R2,R1

mov R3,R4

add R1,R4,R1 add R2,R3,R1

st R1,[fp-40] st R1,[fp-40]

restore restore

ret ret



COMP 520 Winter 2019 Native Code Generation (38)

Further Optimizations
Peephole optimization

mov 1,R3 =⇒ mov 1,R1

mov R3,R1

The optimization is unsound if R3 is used in a later instruction

mov 1,R3 =⇒ mov 1,R1

mov R3,R1

...
...

mov R3,R4 mov R3,R4

Control flow

Just like basic block allocation, care must also be taken when merging divergent control flow.

JJ 



mov R1,R3 · · ·

st R3,[fp-4]

JJ 



· · · · · ·

st R1,[fp-4]

Such optimizations require dataflow analysis (COMP 621).



COMP 520 Winter 2019 Native Code Generation (39)

Method Invocation
Invoking methods in bytecode

• Evaluate each argument leaving results on the stack; and

• Emit invokevirtual instruction.

Invoking methods in native code

• Call library routine soft_get_method_code to perform the method lookup;

• Generate code to load arguments into registers; and

• Branch to the resolved address.

Up until now we ignored the scratch registers since all operations were performed on locals/stack
locations. This is where scratch registers come into play



COMP 520 Winter 2019 Native Code Generation (40)

Method Invocation Example
Consider a method invocation

c = t.foo(a, b);

Memory map

name offset location register

a 1 [fp-60] R3

b 2 [fp-56] R4

c 3 [fp-52]

t 4 [fp-48] R2

stack 0 [fp-36] R1

stack 1 [fp-40] R5

stack 2 [fp-44] R6

scratch 0 [fp-32] R7

scratch 1 [fp-28] R8



COMP 520 Winter 2019 Native Code Generation (41)

Method Invocation Example
aload_4 mov R2,R1

iload_1 mov R3,R5

iload_2 mov R4,R6

invokevirtual foo // soft call to get address

ld [R2+4],R7

ld [R7+52],R8

// spill all registers

st R3,[fp-60]

st R4,[fp-56]

st R2,[fp-48]

st R6,[fp-44]

st R5,[fp-40]

st R1,[fp-36]

st R7,[fp-32]

st R8,[fp-28]

// make call

mov R8,R0

call soft_get_method_code

// result is in R0

// put args in R2, R1, and R0

st R0,[fp-32] // spill result

ld [fp-44],R2 // R2 := stack_2

ld [fp-40],R1 // R1 := stack_1

ld [fp-36],R0 // R0 := stack_0

ld [fp-32],R7 // reload result

jmp [R7] // call method



COMP 520 Winter 2019 Native Code Generation (42)

Method Invocation
• Long and costly; and

• The lack of dataflow analysis causes massive spills within basic blocks.



COMP 520 Winter 2019 Native Code Generation (43)

Handling Branches
Native code is generated linearly, from first instruction to last. When branches jump forward in the
code

• The target address is not yet known (the code has not been generated);

• Assemblers normally handle this; but

• The JIT compiler produces binary code directly in memory.

Example

if (a < b) iload_1 ld [fp-44], R1

iload_2 ld [fp-48], R2

if_icmpge 17 cmp R1,R2

bge ??

To generate branch targets

• Previously encountered branch targets are already known;

• Keep unresolved branches in a table; and

• Patch targets when the code is eventually generated.


