
COMP 520 Winter 2019 Virtual Machines (1)

Virtual Machines
COMP 520: Compiler Design (4 credits)
Alexander Krolik
alexander.krolik@mail.mcgill.ca

MWF 8:30-9:30, TR 1080
http://www.cs.mcgill.ca/~cs520/2019/

http://www.devmanuals.com/tutorials/java/corejava/

JavaVirtualMachine.html



COMP 520 Winter 2019 Virtual Machines (2)

Announcements (Monday, March 18th)
Milestones

• Milestone 2 will be graded over the next week, programs posted shortly

• Milestone 3 out today. Due: Wednesday, March 27th 11:59 PM

• Milestone 4 out today. Due: Wednesday, April 10th 11:59 PM

• Final report out today. Due: Wednesday, April 10th 11:59 PM

• Group meeting: Week of April 8th (you may request an extension until the week of April 15th)

• Peephole due: Friday, April 12th 11:59 PM

• Final exam: Thursday, April 18th 2:00 PM



COMP 520 Winter 2019 Virtual Machines (3)

Compilation and Execution in Virtual Machines

?

?

-�

Abstract syntax trees

Virtual machine codeInterpreter

Native binary code

AOT-compile

JIT-compileInterpret



COMP 520 Winter 2019 Virtual Machines (4)

Virtual Machines
In this class we look at two different virtual machines

Java Virtual Machine: stack-based IR

VirtualRISC: register-based IR



COMP 520 Winter 2019 Virtual Machines (5)

VirtualRISC
VirtualRISC is a simple RISC machine (similar to what you’ve seen in COMP 273)

• Memory;

• Registers;

• Condition codes; and

• Execution unit.

In this model we ignore

• Caches;

• Pipelines;

• Branch prediction units; and

• Advanced features.

We focus instead on the basic architecture of register-based machines.



COMP 520 Winter 2019 Virtual Machines (6)

VirtualRISC Memory
VirtualRISC has several types of memory for storing program information

• A stack
(used for function call frames);

• A heap
(used for dynamically allocated memory);

• A global pool
(used to store global variables); and

• A code segment
(used to store VirtualRISC instructions).



COMP 520 Winter 2019 Virtual Machines (7)

VirtualRISC Registers
VirtualRISC has general purpose registers used for computation, and special registers that are
managed by the machine

• Unbounded number of general purpose registers Ri;

• Stack pointer (sp) which points to the top of the stack;

• Frame pointer (fp) which points to the current stack frame; and

• Program counter (pc) which points to the current instruction.



COMP 520 Winter 2019 Virtual Machines (8)

VirtualRISC Execution
Condition codes

• Condition codes are set by instructions which evaluate a predicate (i.e. comparisons); and

• Are used for branching instructions.

Execution unit

• Reads the VirtualRISC instruction at the current pc, decodes the instruction and executes it;

• This may change the state of the machine (memory, registers, condition codes);

• The pc is automatically incremented after executing an instruction; but

• Function calls and branches explicitly change the pc.



COMP 520 Winter 2019 Virtual Machines (9)

VirtualRISC Program
A VirtualRISC program consists of a list of instructions and labels

Instruction types

• Moves between registers and memory;

• Mathematical operations;

• Comparisons;

• Branches; or

• Other, special instructions.

Operands to instructions can either be memory addresses, registers, or constants.



COMP 520 Winter 2019 Virtual Machines (10)

Memory Move Instructions
[..] indicates the memory location stored in the register

Store

Store instructions copy the contents from a register to a memory location: st <src>,<dst>

st Ri,[Rj] [Rj] := Ri

st Ri,[Rj+C] [Rj+C] := Ri

Load

Load instructions copy the contents from a memory location to a register: ld <src>,<dst>

ld [Ri],Rj Rj := [Ri]

ld [Ri+C],Rj Rj := [Ri+C]

Move

The last move instruction mov <src>,<dst> copies the contents between registers. The source
register may also be replaced by a constant (i.e. mov 5,R1)

mov Ri,Rj Rj := Ri



COMP 520 Winter 2019 Virtual Machines (11)

Mathematical Operations
Mathematical operations are performed between two source registers and stored in a destination
register

op <src1>,<src2>,<dst>

The source registers may be replaced by constants (i.e. add R1,5,R2)

add Ri,Rj,Rk Rk := Ri + Rj

sub Ri,Rj,Rk Rk := Ri - Rj

mul Ri,Rj,Rk Rk := Ri * Rj

div Ri,Rj,Rk Rk := Ri / Rj



COMP 520 Winter 2019 Virtual Machines (12)

Branching Instructions
The cmp instruction sets the condition codes depending on the relation between its operands

cmp Ri,Rj

Just like the mathematical operators, constants may be used as operands.

Branching instructions

Depending on the condition codes, the branch operation may/may not be executed

b L

bg L

bge L

bl L

ble L

bne L

To express if R1 <= 0 goto L1 we write

cmp R1,0

ble L1



COMP 520 Winter 2019 Virtual Machines (13)

Other Special Instructions
VirtualRISC also has the following special instructions for managing the stack with function calls

call L R15:=pc; pc:=L

save sp,-C,sp save registers,

allocating C bytes

on the stack

restore restore registers

ret pc:=R15+8

nop do nothing



COMP 520 Winter 2019 Virtual Machines (14)

Stack Frame



COMP 520 Winter 2019 Virtual Machines (15)

Stack Frames
• Store the function call hierarchy and the respective program memory;

• sp and fp point to stack frames;

• When a function is called a new stack frame is created:
push fp; fp := sp; sp := sp + C;

• When a function returns, the top stack frame is popped:
sp := fp; fp = pop;

• Local variables are stored relative to fp;

• The figure shows additional features of the SPARC architecture.



COMP 520 Winter 2019 Virtual Machines (16)

Calling semantics
Calling

• Functions start by allocating the stack frame using save sp,-C,sp;

• Functions end by restoring the previous stack frame and register window (restore) and
returning (ret); and

• The return value is stored in register R0.

Parameters

• Passed in registers R0,R1,etc; and

• May be stored in memory. By convention we use fp+68+4k where k is some non-negative
integer. Note that this means we are storing parameters in the callers frame!

Local variables

• Use any general purpose register; and

• May be stored in memory. By convention we use fp-4k where k is some non-zero integer



COMP 520 Winter 2019 Virtual Machines (17)

Writing VirtualRISC Code
Write the following C code in VirtualRISC. Try using no register allocation scheme - this means that
values should be loaded into registers directly before operations and the value stored back to
memory immediately.

int fact(int n) {
int i, sum;
sum = 1;
i = 2;
while (i <= n) {

sum = sum * i;
i = i + 1;

}
return sum;

}



COMP 520 Winter 2019 Virtual Machines (18)

Writing VirtualRISC Code

int fact(int n) {
int i, sum;
sum = 1;
i = 2;
while (i <= n) {

sum = sum * i;
i = i + 1;

}
return sum;

}

_fact:

save sp,-112,sp // save stack frame

st R0,[fp+68] // save arg n in frame of CALLER

mov 1,R0 // R0 := 1

st R0,[fp-16] // [fp-16] is location for sum

mov 2,R0 // RO := 2

st RO,[fp-12] // [fp-12] is location for i

L3:

ld [fp-12],R0 // load i into R0

ld [fp+68],R1 // load n into R1

cmp R0,R1 // compare R0 to R1

ble L5 // if R0 <= R1 goto L5

b L4 // goto L4

L5:

ld [fp-16],R0 // load sum into R0

ld [fp-12],R1 // load i into R1

mul R0,R1,R0 // R0 := R0 * R1

st R0,[fp-16] // store R0 into sum

ld [fp-12],R0 // load i into R0

add R0,1,R1 // R1 := R0 + 1

st R1,[fp-12] // store R1 into i

b L3 // goto L3

L4:

ld [fp-16],R0 // put return value of sum into R0

restore // restore register window

ret // return from function



COMP 520 Winter 2019 Virtual Machines (19)

Fibonacci
More practice! Write the following C program in VirtualRISC

int fib(int x) {
int current, last, sum;

current = 1;
last = 1;
sum = 1;

x = x - 2;
while (x > 0) {

sum = current + last;
last = current;
current = sum;
x = x - 1;

}

return sum;
}



COMP 520 Winter 2019 Virtual Machines (20)

Goto!

https://xkcd.com/292/



COMP 520 Winter 2019 Virtual Machines (21)

What does this go?
Try writing the VirtualRISC code

int thing(int a, int b) {
int temp, iter;

while (1) {
temp = a;
iter = 0;

while (iter - b) {
temp = temp + 1;

if (temp - b) {
iter = iter + 1;

} else {
goto ret;

}
}

a = a - b;
}

ret:
return a;

}



COMP 520 Winter 2019 Virtual Machines (22)

This Class
Java bytecode

• The JOOS compiler produces Java bytecode in Jasmin format; and

• The JOOS peephole optimizer transforms bytecode into more efficient bytecode.

VirtualRISC

• Java bytecode can be converted into machine code at run-time using a JIT (Just-In-Time)
compiler;

• We will study some examples of converting Java bytecode into a language similar to
VirtualRISC;

• We will study some simple, standard optimizations on VirtualRISC.



COMP 520 Winter 2019 Virtual Machines (23)

Let’s Practice!
Write VirtualRISC code for the following function

int power1(int x, int n) {
int i;
int prod = 1;
for (i = 0; i < n; i++)

prod = prod * (x + 1);
return prod;

}

Assumptions

• x is in R0 and n is in R1 on input;

• The result should be returned in R0; and

• The variables are mapped to following spots in the stack frame.

Parameters: x -> [fp+68] n -> [fp+72]

Locals: i -> [fp-12] prod -> [fp-16]

Try, gcc -S power1.c and gcc -O -S power1.c, and compare the difference.



COMP 520 Winter 2019 Virtual Machines (24)

VirtualRISC Code (Loop Invariant Removal)
_power1:

save sp,-112,sp // save stack frame

st R0,[fp+68] // save input args x, n in frame of CALLER

st R1,[fp+72] // R0 holds x, R1 holds n

mov 1,R2 // R2 :=1, R2 holds prod

add R0,1,R4 // R4 := x + 1, loop invariant

mov 0,R3 // R3 := 0, R3 holds i

begin_loop:

cmp R3,R1 // if (i < n)

bge end_loop

begin_body:

mul R2,R4,R2 // prod = prod * (x+1)

add R3,1,R3 // i = i + 1

goto begin_loop

end_loop:

mov R2, R0 // put return value of prod into R0

restore // restore register window

ret // return from function


