
COMP-520 – GoLite project

Vincent Foley-Bourgon

Sable Lab
McGill University

Winter 2019

Agenda

I Overview of Go

I Why Go for a compiler class?

I GoLite

Feel free to ask questions at any time.

2 / 43

Renee French, licensed under CC 3.0 Attributions

Go

I Created by Rob Pike, Ken Thompson and Robert
Griesemer

I Google employees

I Not a Google project like Gmail; open source

I Initial release in 2009

I 1.0 release in 2012

5 / 43

Motivation
I Simplify development

class AbstractSingletonProxyFactoryBean { ... }

I Built-in concurrency support

I Faster compilation

6 / 43

Motivation
I Simplify development

class AbstractSingletonProxyFactoryBean { ... }

I Built-in concurrency support

I Faster compilation

6 / 43

Motivation
I Simplify development

class AbstractSingletonProxyFactoryBean { ... }

I Built-in concurrency support

I Faster compilation

6 / 43

Motivation
I Simplify development

class AbstractSingletonProxyFactoryBean { ... }

I Built-in concurrency support

I Faster compilation

6 / 43

Features

I Imperative

I Goroutines and channels

I Interfaces and methods

I Closures

I defer

I Maps and slices

I Multiple return values

I Module system

I Garbage collection

I Optional semi-colons (tricky scanner!)

7 / 43

Notable missing features

I User-defined parametrized types (source of 95% of all Go
arguments online)

I Exceptions

I Classes and inheritance

I Operator overloading

8 / 43

Example Go program

package main

import "fmt"

func fib(n int) int {

a, b := 0, 1

for i := 0; i < n; i++ {

a, b = b, a+b

}

return a

}

func main() {

var f int = fib (42)

fmt.Println(f)

}

9 / 43

Who uses Go?

I Google

I Github

I Bitbucket

I CloudFlare

I Dropbox

I New York Times

I Many others 1

Extremely quick adoption!

1https://github.com/golang/go/wiki/GoUsers
10 / 43

https://github.com/golang/go/wiki/GoUsers

Who uses Go?

The authors expected Java and C++ programmers to be the
primary Go audience.

In actual fact, Go is more popular with Python, Ruby and
other dynamically typed languages programmers.

Why?

I Better performance

I Static typing

I Good concurrency support

I Good libraries and tools

I Can deploy a single binary file

11 / 43

Who uses Go?

The authors expected Java and C++ programmers to be the
primary Go audience.

In actual fact, Go is more popular with Python, Ruby and
other dynamically typed languages programmers.

Why?

I Better performance

I Static typing

I Good concurrency support

I Good libraries and tools

I Can deploy a single binary file

11 / 43

Useful addresses

I http://golang.org

I http://play.golang.org

I http://golang.org/ref/spec

12 / 43

http://golang.org
http://play.golang.org
http://golang.org/ref/spec

Why Go for a compiler
class?

Why use Go for a compiler class?
Useful and popular

It is more fun to write a compiler for a language that is alive
and kicking than for a made-up language (minilang) or for a
dead language (Pascal).

Writing a compiler forces you to really learn the language, a
nice addition on your C.V.!

14 / 43

Why use Go for a compiler class?
Simple language

Go is simpler than a lot of other popular languages such as
Java or C++.

Go is surprisingly quick to learn.

Not nearly as tricky as MATLAB, JavaScript or PHP.

15 / 43

Why use Go for a compiler class?
Detailed online specification

You can find pretty much everything you need to know about
Go on a single page: http://golang.org/ref/spec

The syntax is described in EBNF notation.
(Warning! Ambiguous!)

Less specification work for the T.A. ;-)

16 / 43

http://golang.org/ref/spec

Why use Go for a compiler class?
Encompasses all the classical compiler phases

The things you learn in class and from reading the textbook
apply to writing a Go compiler. It doesn’t have specialized
phases like pre-processing or macro expansion.

17 / 43

Why use Go for a compiler class?
Go is open source

Parser used to be written with bison (now hand-written)

The old sources of the parser can be found on Github (e.g. 1.2
release tag)

You can look, do not copy/paste!

18 / 43

Why use Go for a compiler class?
Your work is publishable!

Not only will you learn some Go for this class, but you can
publish the complete compiler on GitHub after the class and
include it on your C.V.!

Note: We know that previous year’s submissions are available online.
We have 2 requirements for this class:

1. You must come up with your own solutions; any inspiration
that comes from other sources must be reported.

2. No grading material may be used at any point, under any
circumstance, nor may it be published.

19 / 43

Why use Go for a compiler class?
Your work is publishable!

Not only will you learn some Go for this class, but you can
publish the complete compiler on GitHub after the class and
include it on your C.V.!

Note: We know that previous year’s submissions are available online.
We have 2 requirements for this class:

1. You must come up with your own solutions; any inspiration
that comes from other sources must be reported.

2. No grading material may be used at any point, under any
circumstance, nor may it be published.

19 / 43

Features

I Imperative

I Goroutines and channels

I Interfaces and methods

I Closures

I defer

I Maps and slices

I Multiple return values

I Module system

I Garbage collection

I Optional semi-colons

21 / 43

Features

I Imperative

I Goroutines and channels

I Interfaces and methods

I Closures

I defer

I Maps and slices

I Multiple return values

I Module system

I Garbage collection

I Optional semi-colons

22 / 43

Is this still Go?

I You have a few weeks to build the compiler (took 2 years
before first Go release)

I It still is a lot of work (likely more than you ever put in a
class)

I You can add more features when the course is finished :)

23 / 43

Lexical syntax

Go GoLite
Encoding UTF-8 ASCII
Number precision Arbitrary Fixed
Integers 255, 0377, 0xff 255, 0377, 0xff
Floats 0.12, .12, 12. 0.12, .12, 12.
Imaginary 3i No thanks
Strings “Chrono\n” “Marle\n”
Raw strings ‘Lucca\n‘ ‘Ayla\n‘
Keywords Bunch of ’em Slighlty more
Line comments // Sabin // Edgar
Block comments /* Celes */ /* Locke */
Semicolons Optional Optional

24 / 43

Basic types
int
float64
bool
rune (char)
string
uint8
uint16
uint32
uint64
int8
int16
int32
int64
float32
complex64
complex128
byte

25 / 43

General structure

// Go structure

// package declaration

// import statements

// vars , consts , types , functions

26 / 43

General structure

// GoLite structure

// package declaration

// vars , types , functions

27 / 43

Declarations

In Go, top-level declarations can be in any order

In GoLite, declarations must come before their first use

// Valid in Go; invalid in GoLite

var x int = max(y, 32)

var y = 42

func max(a, b int) int {

if a > b {

return a

} else {

return b

}

}

28 / 43

Variable declarations

var x1, x2 int // implicitly initialized to 0

var y int = 12

var z = 24

var (

x1, x2 int

y int = 12

z = 24

)

GoLite should support all of these.

29 / 43

Variable declarations

var x1, x2 int // implicitly initialized to 0

var y int = 12

var z = 24

var (

x1, x2 int

y int = 12

z = 24

)

GoLite should support all of these.

29 / 43

Constant declarations

GoLite won’t support constant declarations.

30 / 43

Type declarations

type natural int

type real float64

type (

point struct {

x, y, z real

}

)

31 / 43

Function declarations

// Allowed in GoLite

func f(a int , b int) int {

...

}

// Allowed in GoLite

func f(a, b int) int {

...

}

// Not allowed in GoLite

func f(int , int) int {

...

}

I GoLite functions should always have a body.

I We’ll allow zero or one return value.

32 / 43

Statements
Declarations

I Variables and types can be declared within functions.

I Short variable declaration allowed within functions.

func demo() {

type number int

var x int = 12

best_ff := 6

}

33 / 43

Statements
Loops

I All loops use the for keyword

I No parentheses, mandatory braces

I GoLite should not support for/range loops

// Infinite loop

for {

...

}

// ‘‘While ’’ loop

for x < 10 {

...

}

// ‘‘For ’’ loop

for i := 0; i < 10; i++ {

...

}

34 / 43

Statements
Loops

We’ll support unlabelled break and continue in loops

35 / 43

Statements
If

I No parentheses, mandatory braces

if x == 0 {

...

}

if x < 0 {

...

} else {

...

}

if x < 0 {

...

} else if x > 0 {

...

} else {

...

}

36 / 43

Statements
Switch

I Allows expressions in cases

I No explicit break (although it may be used)

switch x {

case 0, 1, 2: println("Small")

default: println("Other")

}

switch { // Same as switch true

case x < 0: println("Negative")

case x > 0: println("Positive")

default: println("Zero")

}

37 / 43

Expressions

Literals 42, 3.14, "Go", ‘H’

Identifiers x, my dog, Alakazou

Unary expressions !x, +y, -(a*b), ^0

Binary expressions a || b, 3 + x, 1 << 12

Function calls fib(42), max(0, 1)

Casts int(3.4), mytype(x)

Indexing slice[0], point.x

38 / 43

Built-ins

In Go:

I Look like function calls

I Not reserved keywords

I Can accept a type as a first parameter (make([]int, 4))

I Can be polymorphic (append())

Real tricky to parse function calls, casts and builtins nicely

39 / 43

Built-ins

In GoLite:

I Reserved keywords to make parsing easier

I Only a subset (print, println, append, len, cap)

I Limited functionality

40 / 43

References

I Go presentation:
http://www.youtube.com/watch?v=rKnDgT73v8s

I Gopher: http://golang.org/doc/gopher/frontpage.png

I Gopher + helmet: http:
//golang.org/doc/gopher/pencil/gopherhelmet.jpg

I Xkcd, compiling: http://xkcd.com/303/

41 / 43

http://www.youtube.com/watch?v=rKnDgT73v8s
http://golang.org/doc/gopher/frontpage.png
http://golang.org/doc/gopher/pencil/gopherhelmet.jpg
http://golang.org/doc/gopher/pencil/gopherhelmet.jpg
http://xkcd.com/303/

Advice

I This is a project that takes a lot of time: start milestones
early!

I Pick an implementation language that you know well
enough to not get painted into a corner.

I Be careful with your AST design, it’s extremely important.

I Don’t be afraid of asking questions and using the
Facebook group.

42 / 43

Gophers!
Thanks Google :)

43 / 43

