
COMP-520 – GoLite Tutorial

Alexander Krolik

Sable Lab
McGill University

Winter 2019

Plan

I Target languages

I Language constructs, emphasis on special cases

I General execution semantics

I Declarations

I Types

I Statements

I Expressions

I Implementation advice

Feel free to ask questions at any time.

2 / 68

Reference compiler

I ssh <socs username>@teaching.cs.mcgill.ca

I ~cs520/golitec {keyword} < {file}

I Codegen outputs C++ code (can be compiled with g++

--std=c++11 {file})

I If you find errors in the reference compiler, bonus points!

3 / 68

Reminder

We know that previous year’s submissions are available
online. There are 3 requirements for this class:

1. You must come up with your own solutions; any
inspiration that comes from other sources must be
reported.

2. You must have permission to use any outside resources
from the original authors.

3. No grading material may be used at any point, under any
circumstance, nor may it be published.

4 / 68

Target language

For the project, carefully choosing the right target language is
important. You should consider the following factors:

I Low-level vs. high-level

I Statically-typed vs. dynamically-typed

I Similarity to Go

I (No C++ as this is used in the reference implementation)

5 / 68

Target language

For the project, carefully choosing the right target language is
important. You should consider the following factors:

I Low-level vs. high-level

I Statically-typed vs. dynamically-typed

I Similarity to Go

I (No C++ as this is used in the reference implementation)

5 / 68

Target language

For the project, carefully choosing the right target language is
important. You should consider the following factors:

I Low-level vs. high-level

I Statically-typed vs. dynamically-typed

I Similarity to Go

I (No C++ as this is used in the reference implementation)

5 / 68

Target language

For the project, carefully choosing the right target language is
important. You should consider the following factors:

I Low-level vs. high-level

I Statically-typed vs. dynamically-typed

I Similarity to Go

I (No C++ as this is used in the reference implementation)

5 / 68

Target language

For the project, carefully choosing the right target language is
important. You should consider the following factors:

I Low-level vs. high-level

I Statically-typed vs. dynamically-typed

I Similarity to Go

I (No C++ as this is used in the reference implementation)

5 / 68

Target language
Previous years

I C

I Java

I Swift

I JavaScript

I TypeScript

I Python

I Java Bytecode

I LLVM

I x86

6 / 68

Go execution

An executable Go program consists of:

I Zero-or-more init functions

I One main function

I Zero-or-more other top-level declarations

During program execution, Go is:

I Pass-by-value

I Return-by-value

I (Mostly) left-to-right evaluation order

7 / 68

Go execution

An executable Go program consists of:

I Zero-or-more init functions

I One main function

I Zero-or-more other top-level declarations

During program execution, Go is:

I Pass-by-value

I Return-by-value

I (Mostly) left-to-right evaluation order

7 / 68

Go execution

An executable Go program consists of:

I Zero-or-more init functions

I One main function

I Zero-or-more other top-level declarations

During program execution, Go is:

I Pass-by-value

I Return-by-value

I (Mostly) left-to-right evaluation order

7 / 68

Go execution

An executable Go program consists of:

I Zero-or-more init functions

I One main function

I Zero-or-more other top-level declarations

During program execution, Go is:

I Pass-by-value

I Return-by-value

I (Mostly) left-to-right evaluation order

7 / 68

Go execution

An executable Go program consists of:

I Zero-or-more init functions

I One main function

I Zero-or-more other top-level declarations

During program execution, Go is:

I Pass-by-value

I Return-by-value

I (Mostly) left-to-right evaluation order

7 / 68

Go execution

An executable Go program consists of:

I Zero-or-more init functions

I One main function

I Zero-or-more other top-level declarations

During program execution, Go is:

I Pass-by-value

I Return-by-value

I (Mostly) left-to-right evaluation order

7 / 68

Go execution

An executable Go program consists of:

I Zero-or-more init functions

I One main function

I Zero-or-more other top-level declarations

During program execution, Go is:

I Pass-by-value

I Return-by-value

I (Mostly) left-to-right evaluation order

7 / 68

Go execution

An executable Go program consists of:

I Zero-or-more init functions

I One main function

I Zero-or-more other top-level declarations

During program execution, Go is:

I Pass-by-value

I Return-by-value

I (Mostly) left-to-right evaluation order

7 / 68

Go execution
Special functions

Special functions are used as entry points into the program.
When a Go program is executed, the control code:

1. Invokes the init functions in lexical order

2. Invokes the main function

You may assume our tests always include a main method
package main

func init() { ... } // init1

func main() { ... }

func init() { ... } // init2

In which order are the functions executed? init1, init2, main

8 / 68

Go execution
Special functions

Special functions are used as entry points into the program.
When a Go program is executed, the control code:

1. Invokes the init functions in lexical order

2. Invokes the main function

You may assume our tests always include a main method
package main

func init() { ... } // init1

func main() { ... }

func init() { ... } // init2

In which order are the functions executed? init1, init2, main

8 / 68

Go execution
Special functions

Special functions are used as entry points into the program.
When a Go program is executed, the control code:

1. Invokes the init functions in lexical order

2. Invokes the main function

You may assume our tests always include a main method
package main

func init() { ... } // init1

func main() { ... }

func init() { ... } // init2

In which order are the functions executed? init1, init2, main

8 / 68

Go execution
Special functions

Special functions are used as entry points into the program.
When a Go program is executed, the control code:

1. Invokes the init functions in lexical order

2. Invokes the main function

You may assume our tests always include a main method

package main

func init() { ... } // init1

func main() { ... }

func init() { ... } // init2

In which order are the functions executed? init1, init2, main

8 / 68

Go execution
Special functions

Special functions are used as entry points into the program.
When a Go program is executed, the control code:

1. Invokes the init functions in lexical order

2. Invokes the main function

You may assume our tests always include a main method
package main

func init() { ... } // init1

func main() { ... }

func init() { ... } // init2

In which order are the functions executed?

init1, init2, main

8 / 68

Go execution
Special functions

Special functions are used as entry points into the program.
When a Go program is executed, the control code:

1. Invokes the init functions in lexical order

2. Invokes the main function

You may assume our tests always include a main method
package main

func init() { ... } // init1

func main() { ... }

func init() { ... } // init2

In which order are the functions executed? init1, init2, main

8 / 68

Declarations

Like most languages, Go has 3 kinds of declarations:

I Function declarations

I Variable declarations

I Type declarations

While it might seem easy, there are 3 common issues
translating declarations:

I Naming conflicts with keywords

I Scoping differences

I Blank identifiers

9 / 68

Declarations

Like most languages, Go has 3 kinds of declarations:

I Function declarations

I Variable declarations

I Type declarations

While it might seem easy, there are 3 common issues
translating declarations:

I Naming conflicts with keywords

I Scoping differences

I Blank identifiers

9 / 68

Declarations

Like most languages, Go has 3 kinds of declarations:

I Function declarations

I Variable declarations

I Type declarations

While it might seem easy, there are 3 common issues
translating declarations:

I Naming conflicts with keywords

I Scoping differences

I Blank identifiers

9 / 68

Declarations

Like most languages, Go has 3 kinds of declarations:

I Function declarations

I Variable declarations

I Type declarations

While it might seem easy, there are 3 common issues
translating declarations:

I Naming conflicts with keywords

I Scoping differences

I Blank identifiers

9 / 68

Declarations

Like most languages, Go has 3 kinds of declarations:

I Function declarations

I Variable declarations

I Type declarations

While it might seem easy, there are 3 common issues
translating declarations:

I Naming conflicts with keywords

I Scoping differences

I Blank identifiers

9 / 68

Declarations
Naming conflicts

Naming conflicts occur when an identifier is legal in Go, but a
keyword in the target language.

var restrict int // Conflict in C

func None() {} // Conflict in Python

What approach avoids all possible keyword conflicts?

Renaming all identifiers with a unique prefix/suffix

Be careful, we must ensure that the renaming does not cause
any further conflicts.

10 / 68

Declarations
Naming conflicts

Naming conflicts occur when an identifier is legal in Go, but a
keyword in the target language.

var restrict int // Conflict in C

func None() {} // Conflict in Python

What approach avoids all possible keyword conflicts?

Renaming all identifiers with a unique prefix/suffix

Be careful, we must ensure that the renaming does not cause
any further conflicts.

10 / 68

Function declarations

Function declarations consist of a name, set of parameters, and
an optional return type.

I Nearly the same across all programming languages

I Beware: test all types!

Is it valid to have untagged struct parameters in all languages?
func foo(a struct { a int; }) { ... }

No! In particular, this is not legal in C or C++

How can we overcome the limitation of these languages?

typedef the struct

11 / 68

Function declarations

Function declarations consist of a name, set of parameters, and
an optional return type.

I Nearly the same across all programming languages

I Beware: test all types!

Is it valid to have untagged struct parameters in all languages?
func foo(a struct { a int; }) { ... }

No! In particular, this is not legal in C or C++

How can we overcome the limitation of these languages?

typedef the struct

11 / 68

Function declarations

Function declarations consist of a name, set of parameters, and
an optional return type.

I Nearly the same across all programming languages

I Beware: test all types!

Is it valid to have untagged struct parameters in all languages?
func foo(a struct { a int; }) { ... }

No! In particular, this is not legal in C or C++

How can we overcome the limitation of these languages?

typedef the struct

11 / 68

Function declarations

Function declarations consist of a name, set of parameters, and
an optional return type.

I Nearly the same across all programming languages

I Beware: test all types!

Is it valid to have untagged struct parameters in all languages?
func foo(a struct { a int; }) { ... }

No! In particular, this is not legal in C or C++

How can we overcome the limitation of these languages?

typedef the struct

11 / 68

Function declarations

Function declarations consist of a name, set of parameters, and
an optional return type.

I Nearly the same across all programming languages

I Beware: test all types!

Is it valid to have untagged struct parameters in all languages?
func foo(a struct { a int; }) { ... }

No! In particular, this is not legal in C or C++

How can we overcome the limitation of these languages?

typedef the struct

11 / 68

Variable declarations

Variable declarations are relatively straightforward. In Go,
there are 4 special cases:

I Implicit initialization
var a int // Implicitly initialized to 0

I Multiple declarations
var a, b int

We’ll come back to this with assignment statements

I Shadowing of true and false constants
var true bool = false

I Scoping

12 / 68

Variable declarations

Variable declarations are relatively straightforward. In Go,
there are 4 special cases:

I Implicit initialization
var a int // Implicitly initialized to 0

I Multiple declarations
var a, b int

We’ll come back to this with assignment statements

I Shadowing of true and false constants
var true bool = false

I Scoping

12 / 68

Variable declarations

Variable declarations are relatively straightforward. In Go,
there are 4 special cases:

I Implicit initialization
var a int // Implicitly initialized to 0

I Multiple declarations
var a, b int

We’ll come back to this with assignment statements

I Shadowing of true and false constants
var true bool = false

I Scoping

12 / 68

Variable declarations

Variable declarations are relatively straightforward. In Go,
there are 4 special cases:

I Implicit initialization
var a int // Implicitly initialized to 0

I Multiple declarations
var a, b int

We’ll come back to this with assignment statements

I Shadowing of true and false constants
var true bool = false

I Scoping

12 / 68

Variable declarations

Variable declarations are relatively straightforward. In Go,
there are 4 special cases:

I Implicit initialization
var a int // Implicitly initialized to 0

I Multiple declarations
var a, b int

We’ll come back to this with assignment statements

I Shadowing of true and false constants
var true bool = false

I Scoping

12 / 68

Variable declarations
Scoping

Scoping rules vary widely and wildly between different
programming languages.

var a int

{

var b int = a

var a int = a // ‘a’ points to the parent scope

}

Can we directly translate the above code to C? JavaScript?

No! C: declaration points to itself. JS: no block scoping

What is an easy solution to this problem?

Renaming!

13 / 68

Variable declarations
Scoping

Scoping rules vary widely and wildly between different
programming languages.

var a int

{

var b int = a

var a int = a // ‘a’ points to the parent scope

}

Can we directly translate the above code to C? JavaScript?

No! C: declaration points to itself. JS: no block scoping

What is an easy solution to this problem?

Renaming!

13 / 68

Variable declarations
Scoping

Scoping rules vary widely and wildly between different
programming languages.

var a int

{

var b int = a

var a int = a // ‘a’ points to the parent scope

}

Can we directly translate the above code to C? JavaScript?

No! C: declaration points to itself. JS: no block scoping

What is an easy solution to this problem?

Renaming!

13 / 68

Variable declarations
Scoping

Scoping rules vary widely and wildly between different
programming languages.

var a int

{

var b int = a

var a int = a // ‘a’ points to the parent scope

}

Can we directly translate the above code to C? JavaScript?

No! C: declaration points to itself. JS: no block scoping

What is an easy solution to this problem?

Renaming!

13 / 68

Type declarations

Do we need to generate type declarations (i.e. defined types) if
our target language is:

I Dynamically-typed?

No!

I Statically-typed? No!

Defined types are only required for the purpose of
type-checking. In terms of storage it makes no difference.

14 / 68

Type declarations

Do we need to generate type declarations (i.e. defined types) if
our target language is:

I Dynamically-typed? No!

I Statically-typed? No!

Defined types are only required for the purpose of
type-checking. In terms of storage it makes no difference.

14 / 68

Type declarations

Do we need to generate type declarations (i.e. defined types) if
our target language is:

I Dynamically-typed? No!

I Statically-typed?

No!

Defined types are only required for the purpose of
type-checking. In terms of storage it makes no difference.

14 / 68

Type declarations

Do we need to generate type declarations (i.e. defined types) if
our target language is:

I Dynamically-typed? No!

I Statically-typed? No!

Defined types are only required for the purpose of
type-checking. In terms of storage it makes no difference.

14 / 68

Declarations
Blank identifiers

Blank identifiers may be used in:

I Function names

I Function parameters

I Variable names (declarations/assignments)

I Struct fields

Blank functions and struct fields are easy to generate. Why?

They may never be accessed and can thus be ignored

15 / 68

Declarations
Blank identifiers

Blank identifiers may be used in:

I Function names

I Function parameters

I Variable names (declarations/assignments)

I Struct fields

Blank functions and struct fields are easy to generate. Why?

They may never be accessed and can thus be ignored

15 / 68

Declarations
Blank parameters

If a function has blank parameters, they must still be
generated as function calls will include the arguments.

func foo(_ int , a int , _ int) { ... }

func main() {

foo(1, 2, 3)

}

What problem will occur in the above code?

Naming conflicts between parameters

What approach can we use to guarantee unique naming?

Temporary variable names

16 / 68

Declarations
Blank parameters

If a function has blank parameters, they must still be
generated as function calls will include the arguments.

func foo(_ int , a int , _ int) { ... }

func main() {

foo(1, 2, 3)

}

What problem will occur in the above code?

Naming conflicts between parameters

What approach can we use to guarantee unique naming?

Temporary variable names

16 / 68

Declarations
Blank parameters

If a function has blank parameters, they must still be
generated as function calls will include the arguments.

func foo(_ int , a int , _ int) { ... }

func main() {

foo(1, 2, 3)

}

What problem will occur in the above code?

Naming conflicts between parameters

What approach can we use to guarantee unique naming?

Temporary variable names

16 / 68

Declarations
Blank parameters

If a function has blank parameters, they must still be
generated as function calls will include the arguments.

func foo(_ int , a int , _ int) { ... }

func main() {

foo(1, 2, 3)

}

What problem will occur in the above code?

Naming conflicts between parameters

What approach can we use to guarantee unique naming?

Temporary variable names

16 / 68

Declarations
Blank variables

When assigning into a blank identifier, the value is discarded.
var _ int = ...

Can we therefore eliminate the declaration?

No!

func foo() int {

println ("foo")

return 0

}

var _ int = foo()

Expressions evaluated as part of declarations may have
side-effects and should still be executed.

17 / 68

Declarations
Blank variables

When assigning into a blank identifier, the value is discarded.
var _ int = ...

Can we therefore eliminate the declaration?

No!

func foo() int {

println ("foo")

return 0

}

var _ int = foo()

Expressions evaluated as part of declarations may have
side-effects and should still be executed.

17 / 68

Types

Basic types:

I int (may be either 32 or 64 bit depending on the
architecture)

I float64

I bool

I rune

I string

Composite types:

I Arrays

I Slices

I Structs

18 / 68

Arrays

What is an array?

I Data structure for homogeneous data

I Fixed number of elements

I Typically implemented as a contiguous section of memory

In Go they have two interesting properties:

I Bounds checking

I Equality

19 / 68

Arrays

What is an array?

I Data structure for homogeneous data

I Fixed number of elements

I Typically implemented as a contiguous section of memory

In Go they have two interesting properties:

I Bounds checking

I Equality

19 / 68

Arrays

What is an array?

I Data structure for homogeneous data

I Fixed number of elements

I Typically implemented as a contiguous section of memory

In Go they have two interesting properties:

I Bounds checking

I Equality

19 / 68

Arrays

What is an array?

I Data structure for homogeneous data

I Fixed number of elements

I Typically implemented as a contiguous section of memory

In Go they have two interesting properties:

I Bounds checking

I Equality

19 / 68

Arrays
Bounds checking

Go provides bounds checking for arrays, producing runtime
error if the index is out of bounds.

var a [5] int

a[10] = 0 // Runtime out -of-bounds error

What approaches can we use to implement bounds checking?

1. Use a container with built-in bounds checking

2. Wrap all indexes in a special “bounds-checking”
function

20 / 68

Arrays
Bounds checking

Go provides bounds checking for arrays, producing runtime
error if the index is out of bounds.

var a [5] int

a[10] = 0 // Runtime out -of-bounds error

What approaches can we use to implement bounds checking?

1. Use a container with built-in bounds checking

2. Wrap all indexes in a special “bounds-checking”
function

20 / 68

Arrays
Bounds checking

Go provides bounds checking for arrays, producing runtime
error if the index is out of bounds.

var a [5] int

a[10] = 0 // Runtime out -of-bounds error

What approaches can we use to implement bounds checking?

1. Use a container with built-in bounds checking

2. Wrap all indexes in a special “bounds-checking”
function

20 / 68

Arrays
Equality

Go also provides element-wise equality for arrays, returning
true iff all elements are equal.

var a, b [5]int

println(a == b) // Ouputs true

b[0] = 1

println(a == b) // Ouputs false

What approaches can we use to implement array equality?

1. Use a container with built-in equality

2. Implement helper functions for each kind of array

Beware! Arrays can contain other arrays or structures - your
helper methods must account for this.

21 / 68

Arrays
Equality

Go also provides element-wise equality for arrays, returning
true iff all elements are equal.

var a, b [5]int

println(a == b) // Ouputs true

b[0] = 1

println(a == b) // Ouputs false

What approaches can we use to implement array equality?

1. Use a container with built-in equality

2. Implement helper functions for each kind of array

Beware! Arrays can contain other arrays or structures - your
helper methods must account for this.

21 / 68

Arrays
Equality

Go also provides element-wise equality for arrays, returning
true iff all elements are equal.

var a, b [5]int

println(a == b) // Ouputs true

b[0] = 1

println(a == b) // Ouputs false

What approaches can we use to implement array equality?

1. Use a container with built-in equality

2. Implement helper functions for each kind of array

Beware! Arrays can contain other arrays or structures - your
helper methods must account for this.

21 / 68

Slices

What is a slice?

I Data structure for homogeneous data

I Dynamic number of elements

Slices in Go are implemented internally using two structures:

I An underlying array storing the elements

I A header struct

I Pointer to the underlying array

I Capacity and length

As the size of the slice changes, the header is updated and the
underlying array reallocated if needed.

You will likely face a trade-off between correctness and efficiency.

22 / 68

Slices

What is a slice?

I Data structure for homogeneous data

I Dynamic number of elements

Slices in Go are implemented internally using two structures:

I An underlying array storing the elements

I A header struct

I Pointer to the underlying array

I Capacity and length

As the size of the slice changes, the header is updated and the
underlying array reallocated if needed.

You will likely face a trade-off between correctness and efficiency.

22 / 68

Slices

What is a slice?

I Data structure for homogeneous data

I Dynamic number of elements

Slices in Go are implemented internally using two structures:

I An underlying array storing the elements

I A header struct

I Pointer to the underlying array

I Capacity and length

As the size of the slice changes, the header is updated and the
underlying array reallocated if needed.

You will likely face a trade-off between correctness and efficiency.

22 / 68

Slices

What is a slice?

I Data structure for homogeneous data

I Dynamic number of elements

Slices in Go are implemented internally using two structures:

I An underlying array storing the elements

I A header struct

I Pointer to the underlying array

I Capacity and length

As the size of the slice changes, the header is updated and the
underlying array reallocated if needed.

You will likely face a trade-off between correctness and efficiency.

22 / 68

Slices

What is a slice?

I Data structure for homogeneous data

I Dynamic number of elements

Slices in Go are implemented internally using two structures:

I An underlying array storing the elements

I A header struct

I Pointer to the underlying array

I Capacity and length

As the size of the slice changes, the header is updated and the
underlying array reallocated if needed.

You will likely face a trade-off between correctness and efficiency.

22 / 68

Slices

What is a slice?

I Data structure for homogeneous data

I Dynamic number of elements

Slices in Go are implemented internally using two structures:

I An underlying array storing the elements

I A header struct

I Pointer to the underlying array

I Capacity and length

As the size of the slice changes, the header is updated and the
underlying array reallocated if needed.

You will likely face a trade-off between correctness and efficiency.

22 / 68

Slices
Bounds checking

Go provides bounds checking for slices, producing runtime
error if the index is out of bounds.

var a []int

a[10] = 0 // Runtime out -of-bounds error

What approaches can we use to implement bounds checking?

1. Use a container with built-in bounds checking

2. Wrap all indexes in a special “bounds-checking”
function

The special function is trickier for slices - it must use the
dynamic size from the slice header.

23 / 68

Slices
Bounds checking

Go provides bounds checking for slices, producing runtime
error if the index is out of bounds.

var a []int

a[10] = 0 // Runtime out -of-bounds error

What approaches can we use to implement bounds checking?

1. Use a container with built-in bounds checking

2. Wrap all indexes in a special “bounds-checking”
function

The special function is trickier for slices - it must use the
dynamic size from the slice header.

23 / 68

Slices
Bounds checking

Go provides bounds checking for slices, producing runtime
error if the index is out of bounds.

var a []int

a[10] = 0 // Runtime out -of-bounds error

What approaches can we use to implement bounds checking?

1. Use a container with built-in bounds checking

2. Wrap all indexes in a special “bounds-checking”
function

The special function is trickier for slices - it must use the
dynamic size from the slice header.

23 / 68

Struct

What is a struct?

I Data structure for heterogeneous data

I Fixed structure

Languages like C already provide this data structure. How do
we implement this in other higher-level languages?

Objects, records, etc.

We will not check nor implement any low-level details such as
alignment or padding.

24 / 68

Struct

What is a struct?

I Data structure for heterogeneous data

I Fixed structure

Languages like C already provide this data structure. How do
we implement this in other higher-level languages?

Objects, records, etc.

We will not check nor implement any low-level details such as
alignment or padding.

24 / 68

Structs
Equality

Go provides field-wise equality for structs, returning true iff
all non-blank fields are equal. Empty structs are trivially equal.

var a, b struct {

f int

_ float64

}

println(a == b) // Ouputs true

b.f = 1

println(a == b) // Ouputs false

What approaches can we use to implement struct equality?

1. Use a container with built-in equality

2. Implement helper functions for each kind of struct

Beware! Structs can contain other structs or arrays - your
helper methods must account for this.

25 / 68

Structs
Equality

Go provides field-wise equality for structs, returning true iff
all non-blank fields are equal. Empty structs are trivially equal.

var a, b struct {

f int

_ float64

}

println(a == b) // Ouputs true

b.f = 1

println(a == b) // Ouputs false

What approaches can we use to implement struct equality?

1. Use a container with built-in equality

2. Implement helper functions for each kind of struct

Beware! Structs can contain other structs or arrays - your
helper methods must account for this.

25 / 68

Structs
Equality

Go provides field-wise equality for structs, returning true iff
all non-blank fields are equal. Empty structs are trivially equal.

var a, b struct {

f int

_ float64

}

println(a == b) // Ouputs true

b.f = 1

println(a == b) // Ouputs false

What approaches can we use to implement struct equality?

1. Use a container with built-in equality

2. Implement helper functions for each kind of struct

Beware! Structs can contain other structs or arrays - your
helper methods must account for this.

25 / 68

Statements

I Assignments

I Short declarations

I Increment/decrement

I Ifs

I For loops

I Switches

I Returns

I Prints

26 / 68

Assignments

An assignment statement:

I Copies the value of the expression to the variable

I Ignores assignments of blank identifiers

I May assign multiple values simultaneously

var a, b int

a = 5 // ‘‘Copies ’’ 5 to the variable ‘a’

_ = 5 // Ignored

a, b = b, a // Swaps the values of ‘a’ and ‘b’

27 / 68

Assignments

An assignment statement:

I Copies the value of the expression to the variable

I Ignores assignments of blank identifiers

I May assign multiple values simultaneously

var a, b int

a = 5 // ‘‘Copies ’’ 5 to the variable ‘a’

_ = 5 // Ignored

a, b = b, a // Swaps the values of ‘a’ and ‘b’

27 / 68

Assignments

Are the copying semantics different for composite types?
var a, b [5]int

b = a

a[0] = 1

var c, d []int

c = append(c, 0)

d = c

c[0] = 1

var e, f struct { f int; }

f = e

e.f = 1

What are the values for b[0], d[0] and f.f respectively?

28 / 68

Assignments
Are the copying semantics different for composite types?

No!

var a, b [5]int

b = a // Copies the contents of ‘a’

a[0] = 1 // Does not change ‘b’

var c, d []int

c = append(c, 0)

d = c // Copies the *header* of ‘c’

c[0] = 1 // *Does* change ‘d’!

var e, f struct { f int; }

f = e // Copies the contents of ‘e’

e.f = 1 // Does not change ‘f’

What are the values for b[0], d[0] and f.f respectively? 0, 1, 0

29 / 68

Assignments
Blank assignments

Can we eliminate blank assignments altogether?

No! The expression must still be evaluated

30 / 68

Assignments
Blank assignments

Can we eliminate blank assignments altogether?

No! The expression must still be evaluated

30 / 68

Assignments
Multiple assignments

How can we implement the swapping semantics of multiple
assignments?

Use temporaries to store old values of all RHS expressions
before assigning

int tmp__0 = b;

int tmp__1 = a;

a = tmp__0;

b = tmp__1;

31 / 68

Assignments
Multiple assignments

How can we implement the swapping semantics of multiple
assignments?

Use temporaries to store old values of all RHS expressions
before assigning

int tmp__0 = b;

int tmp__1 = a;

a = tmp__0;

b = tmp__1;

31 / 68

Short declarations

Short declarations are a cross between assignments and
declarations.

I If the variable is already declared, assign

I If the variable is not declared, define

Otherwise, they follow the same logic as assignment:

I Copies the value of the expression to the variable

I Ignores assignments of blank identifiers

I May assign multiple values simultaneously

32 / 68

Short declarations

Short declarations are a cross between assignments and
declarations.

I If the variable is already declared, assign

I If the variable is not declared, define

Otherwise, they follow the same logic as assignment:

I Copies the value of the expression to the variable

I Ignores assignments of blank identifiers

I May assign multiple values simultaneously

32 / 68

Short declarations

Short declarations are a cross between assignments and
declarations.

I If the variable is already declared, assign

I If the variable is not declared, define

Otherwise, they follow the same logic as assignment:

I Copies the value of the expression to the variable

I Ignores assignments of blank identifiers

I May assign multiple values simultaneously

32 / 68

Short declarations

Short declarations are a cross between assignments and
declarations.

I If the variable is already declared, assign

I If the variable is not declared, define

Otherwise, they follow the same logic as assignment:

I Copies the value of the expression to the variable

I Ignores assignments of blank identifiers

I May assign multiple values simultaneously

32 / 68

Short declarations

Short declarations are a cross between assignments and
declarations.

I If the variable is already declared, assign

I If the variable is not declared, define

Otherwise, they follow the same logic as assignment:

I Copies the value of the expression to the variable

I Ignores assignments of blank identifiers

I May assign multiple values simultaneously

32 / 68

Short declarations

Short declarations are a cross between assignments and
declarations.

I If the variable is already declared, assign

I If the variable is not declared, define

Otherwise, they follow the same logic as assignment:

I Copies the value of the expression to the variable

I Ignores assignments of blank identifiers

I May assign multiple values simultaneously

32 / 68

Short declarations

Short declarations are a cross between assignments and
declarations.

I If the variable is already declared, assign

I If the variable is not declared, define

Otherwise, they follow the same logic as assignment:

I Copies the value of the expression to the variable

I Ignores assignments of blank identifiers

I May assign multiple values simultaneously

32 / 68

Increment/decrement

Increment/decrement statements change the value of a
numerical variable by 1. This is valid for:

I int

I float64

I rune

Most languages support this functionality. If not, you can
carefully generate another equivalent operation.

Beware! The following statements are not equivalent.
a[foo()]++ // foo() called once

a[foo()] = a[foo()] + 1 // foo() called twice

33 / 68

Increment/decrement

Increment/decrement statements change the value of a
numerical variable by 1. This is valid for:

I int

I float64

I rune

Most languages support this functionality. If not, you can
carefully generate another equivalent operation.

Beware! The following statements are not equivalent.
a[foo()]++ // foo() called once

a[foo()] = a[foo()] + 1 // foo() called twice

33 / 68

If statements

If statements in Go consist of:

I Optional init statement

I Condition expression

I True branch

I Zero-or-more else-if branches

I Optional init statement

I Condition expression

I Optional else branch

The conditions are evaluated lexically until one evaluates to
true and the branch is executed. Otherwise, the else branch is
taken.

34 / 68

If statements

If statements in Go consist of:

I Optional init statement

I Condition expression

I True branch

I Zero-or-more else-if branches

I Optional init statement

I Condition expression

I Optional else branch

The conditions are evaluated lexically until one evaluates to
true and the branch is executed. Otherwise, the else branch is
taken.

34 / 68

If statements

If statements in Go consist of:

I Optional init statement

I Condition expression

I True branch

I Zero-or-more else-if branches

I Optional init statement

I Condition expression

I Optional else branch

The conditions are evaluated lexically until one evaluates to
true and the branch is executed. Otherwise, the else branch is
taken.

34 / 68

If statements

If statements in Go consist of:

I Optional init statement

I Condition expression

I True branch

I Zero-or-more else-if branches

I Optional init statement

I Condition expression

I Optional else branch

The conditions are evaluated lexically until one evaluates to
true and the branch is executed. Otherwise, the else branch is
taken.

34 / 68

If statements

If statements in Go consist of:

I Optional init statement

I Condition expression

I True branch

I Zero-or-more else-if branches

I Optional init statement

I Condition expression

I Optional else branch

The conditions are evaluated lexically until one evaluates to
true and the branch is executed. Otherwise, the else branch is
taken.

34 / 68

If statements

If statements in Go consist of:

I Optional init statement

I Condition expression

I True branch

I Zero-or-more else-if branches

I Optional init statement

I Condition expression

I Optional else branch

The conditions are evaluated lexically until one evaluates to
true and the branch is executed. Otherwise, the else branch is
taken.

34 / 68

If statements

If statements in Go consist of:

I Optional init statement

I Condition expression

I True branch

I Zero-or-more else-if branches

I Optional init statement

I Condition expression

I Optional else branch

The conditions are evaluated lexically until one evaluates to
true and the branch is executed. Otherwise, the else branch is
taken.

34 / 68

If statements
Init scoping

Be careful of scoping when translating to your target language
- init statements are visible to all subsequent branches.

if a := false; a { // Branch 1

...

} else if a := true; !a { // Branch 2

...

} else if a { // Branch 3

...

} else { // Branch 4

...

}

Which branch executes?

Branch 3

What approach easily implements this functionality?

Decompose “else if” into “else { if”

35 / 68

If statements
Init scoping

Be careful of scoping when translating to your target language
- init statements are visible to all subsequent branches.

if a := false; a { // Branch 1

...

} else if a := true; !a { // Branch 2

...

} else if a { // Branch 3

...

} else { // Branch 4

...

}

Which branch executes?

Branch 3

What approach easily implements this functionality?

Decompose “else if” into “else { if”

35 / 68

If statements
Init scoping

Be careful of scoping when translating to your target language
- init statements are visible to all subsequent branches.

if a := false; a { // Branch 1

...

} else if a := true; !a { // Branch 2

...

} else if a { // Branch 3

...

} else { // Branch 4

...

}

Which branch executes?

Branch 3

What approach easily implements this functionality?

Decompose “else if” into “else { if”

35 / 68

If statements
Init scoping

Be careful of scoping when translating to your target language
- init statements are visible to all subsequent branches.

if a := false; a { // Branch 1

...

} else if a := true; !a { // Branch 2

...

} else if a { // Branch 3

...

} else { // Branch 4

...

}

Which branch executes?

Branch 3

What approach easily implements this functionality?

Decompose “else if” into “else { if”
35 / 68

If statements
Init scoping

Also note that the init statements are not visible outside of the
if statement context.

What two approaches can we use to solve this?

1. Renaming (again)!

2. Nesting the entire if structure in another scope

The above is valid for for and switch init statements as well

36 / 68

If statements
Init scoping

Also note that the init statements are not visible outside of the
if statement context.

What two approaches can we use to solve this?

1. Renaming (again)!

2. Nesting the entire if structure in another scope

The above is valid for for and switch init statements as well

36 / 68

If statements
Init scoping

Also note that the init statements are not visible outside of the
if statement context.

What two approaches can we use to solve this?

1. Renaming (again)!

2. Nesting the entire if structure in another scope

The above is valid for for and switch init statements as well

36 / 68

For loops
Infinite loops

Easy! Implicitly, the condition is always true.
for {

...

}

37 / 68

For loops
While loops

Still easy! The condition is a simple expression evaluated
every iteration.

var a, b int

for a + b == 0 {

...

}

38 / 68

For loops
3-part loops

Very hard! We now have optional init and post statements.
for a, b := 0, 1; a < b; a, b = b, a {

...

if (a > b) {

continue

}

...

}

What issues are present? How can we correctly translate the
above code?

1. Initialization may be several target statements

2. Post may be several target statements

3. continue may conditionally execute

39 / 68

For loops
3-part loops

Very hard! We now have optional init and post statements.
for a, b := 0, 1; a < b; a, b = b, a {

...

if (a > b) {

continue

}

...

}

What issues are present? How can we correctly translate the
above code?

1. Initialization may be several target statements

2. Post may be several target statements

3. continue may conditionally execute

39 / 68

For loops
3-part loops

Very hard! We now have optional init and post statements.
for a, b := 0, 1; a < b; a, b = b, a {

...

if (a > b) {

continue

}

...

}

What issues are present? How can we correctly translate the
above code?

1. Initialization may be several target statements

2. Post may be several target statements

3. continue may conditionally execute

39 / 68

For loops
3-part loops

Very hard! We now have optional init and post statements.
for a, b := 0, 1; a < b; a, b = b, a {

...

if (a > b) {

continue

}

...

}

What issues are present? How can we correctly translate the
above code?

1. Initialization may be several target statements

2. Post may be several target statements

3. continue may conditionally execute

39 / 68

For loops
3-part loops

In most languages, representing the 3-part loop as a while

loop is natural. For continue we can use labels and jumps.
{

int tmp__0 = 0;

int tmp__1 = 1;

int a = tmp__0;

int b = tmp__1;

while (a < b) {

if (a > b) {

goto continue__lbl;

}

continue__lbl:

int tmp__2 = b;

int tmp__3 = a;

a = tmp_2;

b = tmp_3;

}

}

Beware! You must be very careful of scoping issues when
placing the post-statement in the loop body.

40 / 68

Switch statements

Switch statements in Go consist of:

I Optional init statement

I Optional switch expression

I Zero-or more cases

I List of one-or-more non-constant expressions

I Body

I Optional break(s)

I Optional default case

Phew! Likely the hardest statement kind to implement
correctly.

41 / 68

Switch statements

Switch statements in Go consist of:

I Optional init statement

I Optional switch expression

I Zero-or more cases

I List of one-or-more non-constant expressions

I Body

I Optional break(s)

I Optional default case

Phew! Likely the hardest statement kind to implement
correctly.

41 / 68

Switch statements

Switch statements in Go consist of:

I Optional init statement

I Optional switch expression

I Zero-or more cases

I List of one-or-more non-constant expressions

I Body

I Optional break(s)

I Optional default case

Phew! Likely the hardest statement kind to implement
correctly.

41 / 68

Switch statements

Switch statements in Go consist of:

I Optional init statement

I Optional switch expression

I Zero-or more cases

I List of one-or-more non-constant expressions

I Body

I Optional break(s)

I Optional default case

Phew! Likely the hardest statement kind to implement
correctly.

41 / 68

Switch statements

Switch statements in Go consist of:

I Optional init statement

I Optional switch expression

I Zero-or more cases

I List of one-or-more non-constant expressions

I Body

I Optional break(s)

I Optional default case

Phew! Likely the hardest statement kind to implement
correctly.

41 / 68

Switch statements

Switch statements in Go consist of:

I Optional init statement

I Optional switch expression

I Zero-or more cases

I List of one-or-more non-constant expressions

I Body

I Optional break(s)

I Optional default case

Phew! Likely the hardest statement kind to implement
correctly.

41 / 68

Switch statements

Switch statements in Go consist of:

I Optional init statement

I Optional switch expression

I Zero-or more cases

I List of one-or-more non-constant expressions

I Body

I Optional break(s)

I Optional default case

Phew! Likely the hardest statement kind to implement
correctly.

41 / 68

Switch statements

Switch statements in Go consist of:

I Optional init statement

I Optional switch expression

I Zero-or more cases

I List of one-or-more non-constant expressions

I Body

I Optional break(s)

I Optional default case

Phew! Likely the hardest statement kind to implement
correctly.

41 / 68

Switch statements

Switch statements in Go consist of:

I Optional init statement

I Optional switch expression

I Zero-or more cases

I List of one-or-more non-constant expressions

I Body

I Optional break(s)

I Optional default case

Phew! Likely the hardest statement kind to implement
correctly.

41 / 68

Switch statements

We want to codegen the following Go program fragment in C.

switch foo() {

case a, baz():

if (b > c) {

break

}

default:

}

42 / 68

Switch statements

Proposal 1: Implement switches using switch from C.

Does it work?

No!

switch (foo()) {

case a:

case baz(): // Problem: illegal in C

if (b > c) {

break;

}

break;

default:

}

43 / 68

Switch statements

Proposal 1: Implement switches using switch from C.

Does it work?

No!

switch (foo()) {

case a:

case baz(): // Problem: illegal in C

if (b > c) {

break;

}

break;

default:

}

43 / 68

Switch statements

Proposal 2: Implement switches using if-elseif-else.

Does it work?

Mostly! Two smaller issues

// Problem 1: foo() is evaluated twice

if (foo() == a || foo() == bar()) {

if (b > c) {

break; // Problem 2: illegal in C

}

} else {

// Default branch

}

44 / 68

Switch statements

Proposal 2: Implement switches using if-elseif-else.

Does it work?

Mostly! Two smaller issues

// Problem 1: foo() is evaluated twice

if (foo() == a || foo() == bar()) {

if (b > c) {

break; // Problem 2: illegal in C

}

} else {

// Default branch

}

44 / 68

Switch statements
Proposal 3: Implement switches using if-elseif-else from
C using:

I Temporary for the condition

I Labels for break

Does it work?

Yes!

int tmp__0 = foo()

if (tmp__0 == a || tmp__0 == bar()) {

if (b > c) {

goto break__lbl;

}

} else {

// Default branch

}

break__lbl :;

45 / 68

Switch statements
Proposal 3: Implement switches using if-elseif-else from
C using:

I Temporary for the condition

I Labels for break

Does it work?

Yes!

int tmp__0 = foo()

if (tmp__0 == a || tmp__0 == bar()) {

if (b > c) {

goto break__lbl;

}

} else {

// Default branch

}

break__lbl :;

45 / 68

Return statements
Go is a return-by-value language (i.e. the return value is
copied into the calling function’s stack frame).

I Easy for basic types

I Trickier for composite types

var a [5] int

var b []int // b = append(b, 0)

var c struct { f int; }

func foo() [5]int { return a; }

func bar() []int { return b; }

func baz() struct{ f int; } { return c; }

func main() {

var d, e, f = foo(), bar(), baz()

d[0], e[0], f.f = 1, 1, 1

}

What are the values for a[0], b[0] and c.f respectively? 0, 1, 0

46 / 68

Return statements
Go is a return-by-value language (i.e. the return value is
copied into the calling function’s stack frame).

I Easy for basic types

I Trickier for composite types

var a [5] int

var b []int // b = append(b, 0)

var c struct { f int; }

func foo() [5]int { return a; }

func bar() []int { return b; }

func baz() struct{ f int; } { return c; }

func main() {

var d, e, f = foo(), bar(), baz()

d[0], e[0], f.f = 1, 1, 1

}

What are the values for a[0], b[0] and c.f respectively? 0, 1, 0

46 / 68

Return statements
Go is a return-by-value language (i.e. the return value is
copied into the calling function’s stack frame).

I Easy for basic types

I Trickier for composite types

var a [5] int

var b []int // b = append(b, 0)

var c struct { f int; }

func foo() [5]int { return a; }

func bar() []int { return b; }

func baz() struct{ f int; } { return c; }

func main() {

var d, e, f = foo(), bar(), baz()

d[0], e[0], f.f = 1, 1, 1

}

What are the values for a[0], b[0] and c.f respectively? 0, 1, 0

46 / 68

Return statements
Go is a return-by-value language (i.e. the return value is
copied into the calling function’s stack frame).

I Easy for basic types

I Trickier for composite types

var a [5] int

var b []int // b = append(b, 0)

var c struct { f int; }

func foo() [5]int { return a; }

func bar() []int { return b; }

func baz() struct{ f int; } { return c; }

func main() {

var d, e, f = foo(), bar(), baz()

d[0], e[0], f.f = 1, 1, 1

}

What are the values for a[0], b[0] and c.f respectively?

0, 1, 0

46 / 68

Return statements
Go is a return-by-value language (i.e. the return value is
copied into the calling function’s stack frame).

I Easy for basic types

I Trickier for composite types

var a [5] int

var b []int // b = append(b, 0)

var c struct { f int; }

func foo() [5]int { return a; }

func bar() []int { return b; }

func baz() struct{ f int; } { return c; }

func main() {

var d, e, f = foo(), bar(), baz()

d[0], e[0], f.f = 1, 1, 1

}

What are the values for a[0], b[0] and c.f respectively? 0, 1, 0
46 / 68

Print statements

Print statements in Go output zero-or-more printable
expressions to stdout. In the case of println, they also:

I Separate expressions by spaces

I End with a newline

println(5, 4) // 5 4 [newline]

print(5, 4) // 54 [no newline]

47 / 68

Print statements

Print statements in Go output zero-or-more printable
expressions to stdout. In the case of println, they also:

I Separate expressions by spaces

I End with a newline

println(5, 4) // 5 4 [newline]

print(5, 4) // 54 [no newline]

47 / 68

Print statements

Print statements in Go output zero-or-more printable
expressions to stdout. In the case of println, they also:

I Separate expressions by spaces

I End with a newline

println(5, 4) // 5 4 [newline]

print(5, 4) // 54 [no newline]

47 / 68

Print statements

Print statements in Go output zero-or-more printable
expressions to stdout. In the case of println, they also:

I Separate expressions by spaces

I End with a newline

println(5, 4) // 5 4 [newline]

print(5, 4) // 54 [no newline]

47 / 68

Print statements

What are the printing formats for basic types?
// Integers

print (255)

// 255

print (0377)

// 255

// Floats

print (0.12)

// +1.200000e-001

// Booleans

print(true)

// true

// Runes

print(’L’)

// 76

// Strings

print(" hello\n")

// hello [newline]

print(‘hello\n‘)

// hello\n

48 / 68

Print statements

What are the printing formats for basic types?
// Integers

print (255) // 255

print (0377) // 255

// Floats

print (0.12)

// +1.200000e-001

// Booleans

print(true)

// true

// Runes

print(’L’)

// 76

// Strings

print(" hello\n")

// hello [newline]

print(‘hello\n‘)

// hello\n

48 / 68

Print statements

What are the printing formats for basic types?
// Integers

print (255) // 255

print (0377) // 255

// Floats

print (0.12) // +1.200000e-001

// Booleans

print(true)

// true

// Runes

print(’L’)

// 76

// Strings

print(" hello\n")

// hello [newline]

print(‘hello\n‘)

// hello\n

48 / 68

Print statements

What are the printing formats for basic types?
// Integers

print (255) // 255

print (0377) // 255

// Floats

print (0.12) // +1.200000e-001

// Booleans

print(true) // true

// Runes

print(’L’)

// 76

// Strings

print(" hello\n")

// hello [newline]

print(‘hello\n‘)

// hello\n

48 / 68

Print statements

What are the printing formats for basic types?
// Integers

print (255) // 255

print (0377) // 255

// Floats

print (0.12) // +1.200000e-001

// Booleans

print(true) // true

// Runes

print(’L’) // 76

// Strings

print(" hello\n")

// hello [newline]

print(‘hello\n‘)

// hello\n

48 / 68

Print statements

What are the printing formats for basic types?
// Integers

print (255) // 255

print (0377) // 255

// Floats

print (0.12) // +1.200000e-001

// Booleans

print(true) // true

// Runes

print(’L’) // 76

// Strings

print(" hello\n") // hello [newline]

print(‘hello\n‘) // hello\n

48 / 68

Binary expressions
Binary expressions are the same throughout most languages.
Two possible exceptions:

I Integer vs. float division

I Bit clear (&^) may be missing

You should also implement string concatenation and
comparisons.

var a string = "apple"

var b string = "Apple"

println(a + b)

println(a < b)

What does the above program print?

appleApple
false

49 / 68

Binary expressions
Binary expressions are the same throughout most languages.
Two possible exceptions:

I Integer vs. float division

I Bit clear (&^) may be missing

You should also implement string concatenation and
comparisons.

var a string = "apple"

var b string = "Apple"

println(a + b)

println(a < b)

What does the above program print?

appleApple
false

49 / 68

Binary expressions
Binary expressions are the same throughout most languages.
Two possible exceptions:

I Integer vs. float division

I Bit clear (&^) may be missing

You should also implement string concatenation and
comparisons.

var a string = "apple"

var b string = "Apple"

println(a + b)

println(a < b)

What does the above program print?

appleApple
false

49 / 68

Binary expressions
Binary expressions are the same throughout most languages.
Two possible exceptions:

I Integer vs. float division

I Bit clear (&^) may be missing

You should also implement string concatenation and
comparisons.

var a string = "apple"

var b string = "Apple"

println(a + b)

println(a < b)

What does the above program print?

appleApple
false

49 / 68

Binary expressions
Binary expressions are the same throughout most languages.
Two possible exceptions:

I Integer vs. float division

I Bit clear (&^) may be missing

You should also implement string concatenation and
comparisons.

var a string = "apple"

var b string = "Apple"

println(a + b)

println(a < b)

What does the above program print?

appleApple
false

49 / 68

Call expressions
Go is a pass-by-value language (i.e. function arguments are
copied into the new stack frame).

I Easy for basic types

I Trickier for composite types

func foo(a [5]int , b []int , c struct{ f int; }) {

a[0] = 1

b[0] = 1

c.f = 1

}

func main() {

var a [5] int

var b []int // b = append(b, 0)

var c struct { f int; }

foo(a, b, c)

}

What are the values for a[0], b[0] and c.f respectively? 0, 1, 0

50 / 68

Call expressions
Go is a pass-by-value language (i.e. function arguments are
copied into the new stack frame).

I Easy for basic types

I Trickier for composite types

func foo(a [5]int , b []int , c struct{ f int; }) {

a[0] = 1

b[0] = 1

c.f = 1

}

func main() {

var a [5] int

var b []int // b = append(b, 0)

var c struct { f int; }

foo(a, b, c)

}

What are the values for a[0], b[0] and c.f respectively? 0, 1, 0

50 / 68

Call expressions
Go is a pass-by-value language (i.e. function arguments are
copied into the new stack frame).

I Easy for basic types

I Trickier for composite types

func foo(a [5]int , b []int , c struct{ f int; }) {

a[0] = 1

b[0] = 1

c.f = 1

}

func main() {

var a [5] int

var b []int // b = append(b, 0)

var c struct { f int; }

foo(a, b, c)

}

What are the values for a[0], b[0] and c.f respectively? 0, 1, 0

50 / 68

Call expressions
Go is a pass-by-value language (i.e. function arguments are
copied into the new stack frame).

I Easy for basic types

I Trickier for composite types

func foo(a [5]int , b []int , c struct{ f int; }) {

a[0] = 1

b[0] = 1

c.f = 1

}

func main() {

var a [5] int

var b []int // b = append(b, 0)

var c struct { f int; }

foo(a, b, c)

}

What are the values for a[0], b[0] and c.f respectively?

0, 1, 0

50 / 68

Call expressions
Go is a pass-by-value language (i.e. function arguments are
copied into the new stack frame).

I Easy for basic types

I Trickier for composite types

func foo(a [5]int , b []int , c struct{ f int; }) {

a[0] = 1

b[0] = 1

c.f = 1

}

func main() {

var a [5] int

var b []int // b = append(b, 0)

var c struct { f int; }

foo(a, b, c)

}

What are the values for a[0], b[0] and c.f respectively? 0, 1, 0
50 / 68

Append expressions

Recall: Slices are dynamically sized containers of
homogeneous data implemented using a header and an
underlying array.

The append built-in function adds data onto the end of the
underlying array, and updates the header.

I If len < cap, the same underlying array is used

I If len == cap, a new underlying array is allocated and
the data copied

Beware! This creates very unnerving behaviour if you’re not
careful (and of course we test it).

51 / 68

Append expressions
Slice growth

How does the capacity/length change over time?
var a []int

for i := 0; i < 10; i++ {

println ("Cap:", cap(a), ", len:", len(a))

a = append(a, 0)

}

Cap: 0 , len: 0
Cap: 2 , len: 1
Cap: 2 , len: 2
Cap: 4 , len: 3
Cap: 4 , len: 4
Cap: 8 , len: 5
Cap: 8 , len: 6
Cap: 8 , len: 7
Cap: 8 , len: 8

Cap: 16 , len: 9

52 / 68

Append expressions
Slice growth

How does the capacity/length change over time?
var a []int

for i := 0; i < 10; i++ {

println ("Cap:", cap(a), ", len:", len(a))

a = append(a, 0)

}

Cap: 0 , len: 0
Cap: 2 , len: 1
Cap: 2 , len: 2
Cap: 4 , len: 3
Cap: 4 , len: 4
Cap: 8 , len: 5
Cap: 8 , len: 6
Cap: 8 , len: 7
Cap: 8 , len: 8

Cap: 16 , len: 9

52 / 68

Append expressions
Edge cases

var a, b []int

a = append(a, 0)

b = a

// ‘a’ and ‘b’ headers: len=1, cap=2, ptr=0 xDEADBEEF

a = append(a, 1)

What are the length and capacity of a and b?

a: len=2, cap=2
b: len=1, cap=2

Interestingly, b[1] is out of bounds.

53 / 68

Append expressions
Edge cases

var a, b []int

a = append(a, 0)

b = a

// ‘a’ and ‘b’ headers: len=1, cap=2, ptr=0 xDEADBEEF

a = append(a, 1)

What are the length and capacity of a and b?

a: len=2, cap=2
b: len=1, cap=2

Interestingly, b[1] is out of bounds.

53 / 68

Append expressions
Edge cases

var a, b []int

a = append(a, 0)

b = a

// ‘a’ and ‘b’ headers: len=1, cap=2, ptr=0 xDEADBEEF

a = append(a, 1)

b = append(b, 2)

What are the values of a[1] and b[1]?

Both 2

Yes, we can overwrite data if we’re not careful!

54 / 68

Append expressions
Edge cases

var a, b []int

a = append(a, 0)

b = a

// ‘a’ and ‘b’ headers: len=1, cap=2, ptr=0 xDEADBEEF

a = append(a, 1)

b = append(b, 2)

What are the values of a[1] and b[1]?

Both 2

Yes, we can overwrite data if we’re not careful!

54 / 68

Append expressions
Edge cases

var a, b []int

a = append(a, 0)

// a = append(a, 1)

b = a

// ‘a’ and ‘b’ headers: len=1, cap=2, ptr=0 xDEADBEEF

a = append(a, 13)

a[0] = 1

What are the values of a[0] and b[0]?

Both 1

55 / 68

Append expressions
Edge cases

var a, b []int

a = append(a, 0)

// a = append(a, 1)

b = a

// ‘a’ and ‘b’ headers: len=1, cap=2, ptr=0 xDEADBEEF

a = append(a, 13)

a[0] = 1

What are the values of a[0] and b[0]?

Both 1

55 / 68

Append expressions
Edge cases

var a, b []int

a = append(a, 0)

a = append(a, 1)

b = a

// ‘a’ and ‘b’ headers: len=2, cap=2, ptr=0 xDEADBEEF

a = append(a, 2)

a[0] = 13

What are the values of a[0] and b[0]?

a[0] = 13, b[0] = 0

Yes, we can change the underlying array of one header but not
another!

56 / 68

Append expressions
Edge cases

var a, b []int

a = append(a, 0)

a = append(a, 1)

b = a

// ‘a’ and ‘b’ headers: len=2, cap=2, ptr=0 xDEADBEEF

a = append(a, 2)

a[0] = 13

What are the values of a[0] and b[0]?

a[0] = 13, b[0] = 0

Yes, we can change the underlying array of one header but not
another!

56 / 68

Length expressions

The length built-in supports the following types:

I Strings

I Arrays

I Slices

Given an expression, it returns the current number of
elements. For strings and arrays this is easy.

The length of a slice uses the header information and not the
size of the underlying array.

57 / 68

Capacity expressions

The capacity built-in supports the following types:

I Arrays

I Slices

Given an expression, it returns the allocated number of
elements - again easy for arrays.

The capacity of a slice uses the header information and returns
the size of the underlying array.

58 / 68

Cast expressions

Easy! But be sure to correctly implement string casting.
var a int = 65

println(string(a))

What is the output of the above progam?

A

59 / 68

Cast expressions

Easy! But be sure to correctly implement string casting.
var a int = 65

println(string(a))

What is the output of the above progam?

A

59 / 68

Order of evaluation
Go uses left-to-right order of evaluation in most instances.

Implementing the correct order of evaluation if your language
is different (e.g. C or C++) is very hard, so it is not required.

var a int = 0

func foo() int {

a++

return a

}

func main() {

var b, c, d int = foo(), a, foo()

}

What are the values of b, c and d?

1, 1, 2

A nice, simple, understandable outcome which is perfectly
left-to-right. But then...

60 / 68

Order of evaluation
Go uses left-to-right order of evaluation in most instances.

Implementing the correct order of evaluation if your language
is different (e.g. C or C++) is very hard, so it is not required.

var a int = 0

func foo() int {

a++

return a

}

func main() {

var b, c, d int = foo(), a, foo()

}

What are the values of b, c and d?

1, 1, 2

A nice, simple, understandable outcome which is perfectly
left-to-right. But then...

60 / 68

Order of evaluation

var a int = 0

func foo() int {

a++

return a

}

func main() {

b, c, d := foo(), a, foo()

}

What are the values of b, c and d?

1, 2, 2

Go decomposes the expressions and evaluates all function calls
before other operations in assignments and short declarations.

61 / 68

Order of evaluation

var a int = 0

func foo() int {

a++

return a

}

func main() {

b, c, d := foo(), a, foo()

}

What are the values of b, c and d?

1, 2, 2

Go decomposes the expressions and evaluates all function calls
before other operations in assignments and short declarations.

61 / 68

Order of evaluation
We can also look at the order of operation with logicals.

var g int = 0

func bar(a string) int {

println(a)

g++

return g

}

func main() {

var a, b, c = bar("lhs1") == 2 || bar("rhs1") == 3,

g, bar("call3 ")

}

In which order are the functions called, and what is the value
of b?

lhs1, rhs1, call3, and 2

A nice, simple, understandable outcome which is perfectly
left-to-right. But then...

62 / 68

Order of evaluation
We can also look at the order of operation with logicals.

var g int = 0

func bar(a string) int {

println(a)

g++

return g

}

func main() {

var a, b, c = bar("lhs1") == 2 || bar("rhs1") == 3,

g, bar("call3 ")

}

In which order are the functions called, and what is the value
of b?

lhs1, rhs1, call3, and 2

A nice, simple, understandable outcome which is perfectly
left-to-right. But then...

62 / 68

Order of evaluation

var g int = 0

func bar(a string) int {

println(a)

g++

return g

}

func main() {

a, b, c := bar("lhs1") == 2 || bar("rhs1") == 3, g,

bar("call3")

}

In which order are the functions called, and what is the value
of b?

lhs1, call3, rhs1, and 3

Go decomposes the function calls on the LHS of logical
operators, and leaves the RHS untouched.

63 / 68

Order of evaluation

var g int = 0

func bar(a string) int {

println(a)

g++

return g

}

func main() {

a, b, c := bar("lhs1") == 2 || bar("rhs1") == 3, g,

bar("call3")

}

In which order are the functions called, and what is the value
of b?

lhs1, call3, rhs1, and 3

Go decomposes the function calls on the LHS of logical
operators, and leaves the RHS untouched.

63 / 68

Recursive types

Recursive types are also quite tricky depending on the
language - C++ being hard. We will not evaluate this feature.

64 / 68

Useful addresses

I http://golang.org

I http://play.golang.org

I http://golang.org/ref/spec

65 / 68

http://golang.org
http://play.golang.org
http://golang.org/ref/spec

References

I Gopher: http://golang.org/doc/gopher/frontpage.png

I Vincent Foley-Bourgon

I David Herrera

I Classes of 2015-2019

66 / 68

http://golang.org/doc/gopher/frontpage.png

Advice

I This is a project that takes a lot of time: start early!

I Pick an target language that you know well enough to not
get painted into a corner.

I Don’t be afraid of asking questions and using the
Facebook group.

I Build a test set of semantics programs using the slides and
test often!

67 / 68

Gophers!
Thanks Google :)

68 / 68

