
COMP 520 Winter 2019 Introduction (1)

Introduction
COMP 520: Compiler Design (4 credits)
Alexander Krolik
alexander.krolik@mail.mcgill.ca

MWF 8:30-9:30, TR 1080
http://www.cs.mcgill.ca/~cs520/2019/

COMP 520 Winter 2019 Introduction (2)

I’m Alex!
• Undergrad & masters at McGill in computer science;

• Enjoy systems research and programming;

• Part of McGill’s compiler research lab since 2014; and

• Currently a PhD student in compilers;

• Originally took COMP 520 in Winter 2015;

• Taught COMP 520 in 2017 & 2018;

• Not a morning person.

COMP 520 Winter 2019 Introduction (3)

What is this class?
Purpose

This course is an introduction to the full pipeline of modern compilers

• It explores its application to both general-purpose and domain-specific languages; and

• Discusses virtual machines and runtime environments.

End Goal

By the end of this class you will have a working knowledge of compilers that allows you to

• Effectively use compiler tools for general-purpose and domain-specific projects; and

• Produce fully functional compilers for general-purpose languages.

COMP 520 Winter 2019 Introduction (4)

Contents
• Deterministic parsing: Scanners, LL/LR parsers, flex/bison and SableCC tools

• Semantic analysis: abstract syntax trees, symbol tables, type checking

• Virtual machines and run-time environments: JVM (stack machines), virtual register
machines, garbage collection

• Code generation: resources, templates, optimizations

• Special topics: GPUs, WebAssembly

COMP 520 Winter 2019 Introduction (5)

Class Information
Schedule

• Lectures: 3 hours/week (MWF 8:30-9:30)

Prerequisites

• COMP 273, COMP 302, (COMP 330), ability to read and write “large” programs

• Students without COMP 330 should read the background material available at:
http://www.cl.cam.ac.uk/teaching/2003/RLFA/notes.pdf

Lecturer

• Alexander Krolik, McConnell 226/234, Office Hours: Monday/Wednesday 9:30-10:30

TAs

• David Herrera (david.herrera@mail.mcgill.ca), McConnell 226/234, Office Hours: TBA

• Maxence Frenette & Mathieu Lapointe, TBA

If you have class at these times, send one of us an email to arrange another meeting time.

COMP 520 Winter 2019 Introduction (6)

Marking Scheme
• Assignments

– 10% for individual assignments (2 x 5%)

– 10% for the JOOS peephole optimizer (group)

• GoLite Project

– 35% for content submitted at milestones (group)

– 10% for the final compiler and report (group)

– Group members may be given different grades if the contributions are not reasonably equal

• Midterm: 10% midterm (before reading week)

• Final exam: 25% final exam (during exam period)

– A 25% supplemental exam is offered

• Assignments and project milestones are due at midnight of the due date. A penalty of 10% per
day late is given. Assignments will not be accepted after solutions have been circulated.

COMP 520 Winter 2019 Introduction (7)

Academic Integrity
• McGill University values academic integrity. Therefore all students must understand the

meaning and consequences of cheating, plagiarism and other academic offences under the
Code of Student Conduct and Disciplinary Procedures. http://www.mcgill.ca/srr/honest/

• In terms of this course, your responsibility is to ensure that all work is correctly attributed. Code
without attribution must be entirely your own work.

• If you use some third-party code you must have permission to use it and you must clearly
indicate the source.

• You may look at previous year’s solutions, but not copy.

Other Required McGill Statements

• In accord with McGill University’s Charter of Students’ Rights, students in this course have the
right to submit in English or in French any written work that is to be graded.

COMP 520 Winter 2019 Introduction (8)

Course Material
Textbook and online readings

• Recommended Textbook, Crafting a Compiler by Fischer, Cytron and LeBlanc, available in
hardcopy at the McGill Bookstore. You can find a support web site with additional tutorial and
reference information at http://www.cs.wustl.edu/~cytron/cacweb/.

You can probably find a cheaper ebook version, for example on www.amazon.ca or
www.vitalsource.com. Make sure that you get the version of the book with the three authors
listed above. There should also be a copy on reserve in the library, and you may find other
sources for the book.

• Alternate Textbook, Modern compiler implementation in Java (2nd edition) by Appel and
Palsberg. Free online version available via McGill Library (access via a McGill IP or VPN),
http://mcgill.worldcat.org/title/modern-compiler-implementation-in-java/oclc/

56796736.

• Optional but recommended background readings; and

• Required for additional exercises.

COMP 520 Winter 2019 Introduction (9)

Course Material
Slides

• Detailed (and hopefully complete) explanation of the course contents; and

• Available via the web site, either just before or after the lecture.

Course website

• http://www.cs.mcgill.ca/~cs520/2019/

• Contains links to examples, documentation and readings; and

• Updated frequently with slides, due dates, and assignment specifications.

Facebook group

• Past 2 years we used a Facebook group instead of the myCourses discussion boards.
Thoughts?

COMP 520 Winter 2019 Introduction (10)

Course Material
GitHub organization

• https://github.com/comp520

• Contains examples for scanning and parsing, and assignment starter code.

JOOS language and compiler

• Java’s Object-Oriented Subset

• Is compiled to Java bytecode;

• Illustrates a fully fledged general purpose language;

• Is used to teach by example and will be useful for your assignments and project; and

• Has source code available on GitHub;

COMP 520 Winter 2019 Introduction (11)

GoLite Project
Go Language

• https://golang.org

• Example of a modern language, “Go is an open source program-
ming language that makes it easy to build simple, reliable and effi-
cent software."

• Designed by Robert Griesemer, Rob Pike and Ken Thompson at
Google

GoLite Project

• Produce a complete compiler for a significant subset of the Go
programming language

• Use any compiler toolkit (C and Java tools shown in class)

• Produce any kind of output code, high-level code [C, JavaScript,
Python, ...], or low-level code [assembly, LLVM, Java bytecode,
Android code, ...]. We will learn Java bytecode in class.

COMP 520 Winter 2019 Introduction (12)

GitHub and Groups
• The GoLite project and Peephole Optimizer are done in groups of 2 or 3

– Undergraduates are strongly recommended to work in groups of 3

– Picking a good group is important. If your group dynamics fail, you can either work things
out, or work alone for the rest of the project

• We will use the git versioning system for the GoLite project

• Get started soon:

– Setup a GitHub account and read documentation on the website as necessary

– Start looking for your teammates! You will have to declare your group by the add/drop
deadline

COMP 520 Winter 2019 Introduction (13)

New Programming Languages per Year

0

10

20

30

40

50

60

70

80

90

100

110

120

130

52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93

COMP 520 Winter 2019 Introduction (14)

General Purpose Languages
• Allow for arbitrarily useful programs to be written;

• Are Turing-complete in the theoretical sense; and

• Are the focus of most programming language courses.

Prominent examples

• C

• C++

• Java

• JavaScript

• Rust

• . . .

General purpose languages require full-scale compiler technology to run efficiently.

COMP 520 Winter 2019 Introduction (15)

Popular Programming Languages

http://www.tiobe.com/tiobe-index/

COMP 520 Winter 2019 Introduction (16)

Domain-Specific Languages
• Extend software design;

• Permit representation, optimization, and analysis in ways that low-level languages and libraries
do not; and

• They may even be visual! (e.g. boxes & arrows)

Prominent examples

• LATEX

• yacc and lex

• Makefiles

• HTML

• SVG

• . . .

Domain-specific languages also require full-scale compiler technology.

COMP 520 Winter 2019 Introduction (17)

What is a compiler?
When talking about compilers you might think of...

• GCC

• clang/LLVM

• javac

• rustc

• . . .

A modern compiler is much more general

• Take source code written in programming language S

• Produce equivalent code in target language T

• May perform optimizations (performance, space, size) [COMP 621]

The target language T can be another high-level language or machine code.

COMP 520 Winter 2019 Introduction (18)

Phases of a Modern Compiler
Modern compilers are modular, consisting of mul-
tiple phases which form the compilation pipeline.

Each individual phase

• Is a modular software component;

• Uses input from the previous phase and out-
puts data for the next phase;

• Transforms between internal representations
as needed;

• Has its own standard technology; and

• Is increasingly supported by automated tools.

Advanced backends may contain an additional 5–
10 phases, including multiple levels of optimiza-
tion.

COMP 520 Winter 2019 Introduction (19)

Phases as illustrated in the textbook, “Crafting a Compiler”

COMP 520 Winter 2019 Introduction (20)

History: FORTRAN
The compiler for the FORTRAN language

• Implemented in 1954–1957;

• The world’s first complete compiler;

• Motivated by the economics of programming;

• Had to overcome deep skepticism;

• Paid little attention to language design;

• Focused on efficiency of the generated code;

• Pioneered many concepts and techniques; and

• Revolutionized computer programming.

COMP 520 Winter 2019 Introduction (21)

Example FORTRAN Program

C AREA OF A TRIANGLE WITH A STANDARD SQUARE ROOT FUNCTION

C INPUT - CARD READER UNIT 5, INTEGER INPUT

C OUTPUT - LINE PRINTER UNIT 6, REAL OUTPUT

C INPUT ERROR DISPLAY ERROR OUTPUT CODE 1 IN JOB CONTROL LISTING

READ INPUT TAPE 5, 501, IA, IB, IC

501 FORMAT (3I5)

C IA, IB, AND IC MAY NOT BE NEGATIVE

C FURTHERMORE, THE SUM OF TWO SIDES OF A TRIANGLE

C IS GREATER THAN THE THIRD SIDE, SO WE CHECK FOR THAT, TOO

IF (IA) 777, 777, 701

701 IF (IB) 777, 777, 702

702 IF (IC) 777, 777, 703

703 IF (IA+IB-IC) 777,777,704

704 IF (IA+IC-IB) 777,777,705

705 IF (IB+IC-IA) 777,777,799

777 STOP 1

C USING HERON’S FORMULA WE CALCULATE THE

C AREA OF THE TRIANGLE

799 S = FLOATF (IA + IB + IC) / 2.0

AREA = SQRT(S * (S - FLOATF(IA)) * (S - FLOATF(IB)) *
+ (S - FLOATF(IC)))

COMP 520 Winter 2019 Introduction (22)

WRITE OUTPUT TAPE 6, 601, IA, IB, IC, AREA

601 FORMAT (4H A= ,I5,5H B= ,I5,5H C= ,I5,8H AREA= , F10.2,

+ 13H SQUARE UNITS)

STOP

END

COMP 520 Winter 2019 Introduction (23)

Why learn about compilers?
• Understand existing languages and their implementations;

• Appreciate current limitations;

• Talk intelligently about language design;

• Implement your very own general purpose language; and

• Implement lots of useful domain-specific languages.

COMP 520 Winter 2019 Introduction (24)

The top 10 reasons why we use C for compilers
10. It’s tradition

9. It’s (truly) portable

8. It’s efficient

7. It has many different uses

6. ANSI C will never change

5. You must (almost always) learn C at some point

4. It teaches discipline (the hard way)

3. Methodology is language independent

2. We have flex and bison

1. You can say that you have implemented a large project in C

COMP 520 Winter 2019 Introduction (25)

The top 10 reasons why we use Java for compilers
10. You already know Java from previous courses

9. Run-time errors like null-pointer exceptions are easy to locate

8. It is relatively strongly typed, so many errors are caught at compile time

7. You can use the large Java library (hash maps, sets, lists, . . .)

6. Java bytecode is portable and can be executed without recompilation

5. You don’t mind slow compilers

4. It allows you to use object-orientation

3. Methodology is language independent

2. We have SableCC, developed at McGill

1. You can say that you have implemented a large project in Java

COMP 520 Winter 2019 Introduction (26)

Compiler Research at McGill (McLAB)
Current Projects

• Array based intermediate representation for optimizing database
queries (HorseIR)

• Sparse matrix operations (SpMV)

• Dynamic GPU compilation and optimization

• JavaScript and WebAssembly

Past Work

• MATLAB analysis frameworks (McSAF, Tamer)

• MATLAB static compilers (Mc2For, MiX10, Matjuice)

• JIT compilation (McVM, Velociraptor)

• Programing languages and tools (AspectMATLAB)

COMP 520 Winter 2019 Introduction (27)

GPU Compiler Research
A very different target architecture

Core

Host Memory

Core

Device Memory

SP SP

Shared
Memory

SM

SFU

 PCI-e

...

...

Register
Page

Compute languages and APIs (CUDA, OpenCL, etc.) abstract away much of the underlying
architecture. How do we efficiently exploit the power?

My research: Dynamic compilation for big data analytics

We’ll come back to this at the end of the course, with a quick look at the underlying hardware and an
overview of programming techniques.

COMP 520 Winter 2019 Introduction (28)

Bootstrapping
What we want

• A compiler for language L, written in language L

• A compiler that compiles itself!

Bootstrapping is the process by which we produce a self-compiling compiler for a new language.

Idea!

(a) Implement a basic compiler for a workable subset of L in an existing programming language

(b) Implement a full compiler for L in the subset defined in (a)

(c) Compile (b) using (a). We now have a small (but working) compiler for L!

(d) Implement the full compiler for L in L

COMP 520 Winter 2019 Introduction (29)

How to bootstrap a compiler (SCALA)
• Given a source language (L in the reading), say SCALA

• Given a target language (M in the reading), say Java

We need the following to execute on the JVM

source target

implementation

S J
J

We would rather implement SCALA in itself

source target

implementation

S J
S

COMP 520 Winter 2019 Introduction (30)

How to bootstrap a compiler (SCALA)
Define the following

• S↓ is a simple subset of SCALA

• J− is inefficient Java code

• P is our favourite programming language, here “Pizza”.

We can easily implement a compiler for a subset of SCALA in Pizza

S↓ J−

P
1

In parallel, using S↓, we implement a compiler for full SCALA

S J
S↓
2

COMP 520 Winter 2019 Introduction (31)

How to bootstrap a compiler (SCALA)
Combining the two compilers (compile 2© with 1©), we get 2’©

S J
S↓
2

S↓ J−

P
1

S J
J−

2’

which is an inefficient SCALA compiler (based on generated Java code) generating efficient Java
code.

A final combination (compiling 3© with 2’©) gives us what we want, an efficient SCALA compiler,
written in SCALA, running on the Java platform 3’©.

S J
S↓
2

S J
S
3 S J

J
3’

S↓ J−

P
1

S J
J−

2’

COMP 520 Winter 2019 Introduction (32)

Bootstrapping as illustrated in the textbook, ”Crafting a
Compiler"

