COMP 520 Winter 2018 JOOS (1)

JOOS

COMP 520: Compiler Design (4 credits)
Alexander Krolik

alexander.krolik@mail.mcgill.ca

MWF 9:30-10:30, TR 1080
http://www.cs.mcgill.ca/~cs520/2018/

—> SCAN >(| PARSE > WEED

y
SYMBOL

RESOURCE (=< TYPE

A

Y
CODE > OPTIMIZE > EMIT ——>

COMP 520 Winter 2018 JOOS (2)

Announcements (Wednesday, January 24th)

Milestones
e Group signup form https://goo.gl/forms/L6Dg5CHLVbJNhT8wl

e Office hours
— Alex: Wednesdays 10:30-11:30
— David: Thursdays 11:30-12:30

Assignment 1
e Due: Sunday, January 28th 11:59 PM
Midterm
e Option #1: Friday, March 16th, 1.5 hour “in class” midterm

e Option #2: Week of Monday, March 12th, 1.5 hour “evening” midterm

COMP 520 Winter 2018 JOOS (3)
Assignment 1
Questions?
Command line options

For testing, we will execute the run . sh script, it must support 3 options
® scan: run scanner only, OK/Error
e tokens: produce the list of tokens for the program
® parse: run scanner+parser, OK/Error
Reference compiler (MiniLang)
® ssh <socs_username>(@teaching.cs.mcgill.ca
@ ~cs520/minic {keyword} < {file}
e If you find errors in the reference compiler, up to 5 bonus points on the assignment

Due: Sunday, January 28th 11:59 PM

COMP 520 Winter 2018 JOOS (4)

Java Language
Overview

The Java programming language was
e Originally called Oak;
e Developed as a small, clean, OO language for programming consumer devices; and
e Used as the implementation language for (many) large applications.
Basic compilation (. Java — .class)
e Java programs are developed as source code for a collection of Java classes;
e Each class is compiled into Java Virtual Machine (JVM) bytecode; and

e Bytecode is interpreted or JIT-compiled using some implementation of the JVM.

COMP 520 Winter 2018 JOOS (5)

Java Language

Advantages of Java Major Drawbacks of Java
e Object-oriented; e Missing many language features, e.g.
e A “cleaner’ OO language than C++: genericity (until 1.5), multiple inheritance,

_ operator overloading;
e Portable (except for native code);

® There is no single standard (JDK 1.0.2
vs. JDK 1.1.xvs....);

e Distributed and multithreaded;

e “Secure”; _ _
e Slower than C++ for expensive numeric
® Semantics are completely standardized; computations due to dynamic array-bounds

e Huge standard libraries; and checks; and

e Officially open source. e It's not JOOS.

COMP 520 Winter 2018 JOOS (6)

Java Security

Given the number of security updates and threats, you might not think of Java as an especially secure
language. However, the language itself does have some secure features.

e Programs are strongly type-checked at compile-time;
e Array bounds are checked at run-time;

e null pointers are checked at run-time;

e There are no explicit pointers;

e Dynamic linking is checked at run-time; and

e (Class files are verified at load-time.

COMP 520 Winter 2018 JOOS (7)

JOOS Language

The JOOS subset of Java was designed with the following goals in mind
e Extract the object-oriented essence of Java;
e Make the language small enough for course work, yet large enough to be interesting;
e Provide a mechanism to link to existing Java code; and
e Ensure that every JOOS program is a valid Java program, such that JOOS is a strict subset of Java.

Programming in JOOS

Like with Java, a JOOS program consists of a collection of classes. An ordinary class consists of
e Protected fields;
e Constructors; and

e Public methods.

COMP 520 Winter 2018

Cons.java

Recursive definition of a list — think COMP 302

public class Cons {
protected Object first;
protected Cons rest;

public Cons (Object £, Cons r) {
super () ;
first = £,
rest = r;

public void setFirst (Object newfirst) {
first = newfirst;

}

public Object getFirst () {
return first;

}

public Cons getRest () ({
return rest;

}

public boolean member (Object item)
if (first.equals(item))
return true;
else if (rest == null)
return false;
else
return rest.member (item);

public String toString() ({

if (rest == null)

return first.toString();
else

return first + " " + rest;

JOOS (8)

COMP 520 Winter 2018 JOOS (9)
Programming in JOOS

As seeninthe Cons. Java example
e Fields must be protected: they can only be accessed via objects of the class or its subclasses;
e Constructors must start by invoking a constructor of the superclass (super (. .));
e Methods must be public: they can be invoked by any object; and
e Only constructors can be overloaded, other methods cannot.
Other important notes
e Subclassing must not change the signature of a method;
e Local declarations must come at the beginning of the statement sequence in a block; and

e Every path through a non-void method must return a value (in Java such methods can also throw

exceptions).

COMP 520 Winter 2018 JOOS (10)

Class Hierarchies

The class hierarchies in JOOS and Java are both single inheritance, i.e. each class has exactly one
superclass, except for the root class

/N

7\

The root class is called Ob ject, and any class without an explicit ext ends clause is a subclass of
Object.

COMP 520 Winter 2018

Class Hierarchies - Example

The definition of the Cons class is equivalent to

public class Cons extends Object {

which gives the class hierarchy

Object

public String toString();
public boolean equals (Object obj);

Cons

public
public
public
public

public

void setFirst (Object newfirst);
Object getFirst();

Cons getRest () ;

boolean member (Object item);

String toString();

JOOS (11)

COMP 520 Winter 2018 JOOS (12)

ExtCons.java

Object

] public String toString();
public class ExtCons extends Cons {

protected int intField; public boolean equals (Object obj);

public ExtCons (Object £, Cons r, int i) { I
super (£, r); Cons
intField = 1i;

public void setFirst (Object newfirst);

public Object getFirst();

public void setIntField(int i) ({ public Cons getRest () ;

intField = 3i;
! public boolean member (Object item);

}

public String toString();

public int getIntField() { I
return intField;

} ExtCons

public void setIntField(int 1i);
public int getIntField();

COMP 520 Winter 2018
Types in JOOS
Primitive types
e boolean: trueand false;
o int: —231 . .231 _ 1.
e char: the ASCII characters;

User-defined class types
Externally defined class types
e Object;
e Boolean;
e Integer;
e Character;
e String;

Note that boolean and Boolean are different.

e RitSet;
® Vector;

® Date.

JOOS (13)

COMP 520 Winter 2018 JOOS (14)
Types in Java and JOOS
e Java is strongly-typed;
e Java uses the name of a class as its type;
e Given a type of class C, any instance of class C or a subclass of C is a permitted value;

e “Down-casting” is automatically checked at run-time:

SubObject subobj = (SubObject)obj;

e There are explicit instanceof checks; and

if (subobj instanceof Object)
return true;

else
return false;

e Some type-checking must be done at run-time.

COMP 520 Winter 2018

Expressions in JOOS

An expression is a computation which evaluates to a value

e Constant expressions

true, 13, '\n’, "abc",

e Variable expressions

i, first, rest

e Binary operators

|
&&

< > <= >= instanceof
+_
* /%

e Unary operators

e (Class instance creation

new Cons ("abec",null)

e (Cast expressions

(String)getFirst (1list)
(char)119

e Method invocation

l.getFirst ()
super.getFirst () ;
l.getFirst () .getFirst();
this.getFirst();

JOOS (15)

COMP 520 Winter 2018 JOOS (16)

Statements in JOOS

A statement is an action that has no associated value (i.e. structures, controls, etc)

e Expression statements e Control structures
x =y + z; if (1.member("z")) {
X =y = Z; // do something
a.toString(1); }
new Cons ("abc¢", null);
while (1 !'= null) {
e Block statements 1 = l.getRest();

}
{

int x;
X = 3;

e Return statements

return;
return true;

COMP 520 Winter 2018 JOOS (17)

JOOS Representations

Converting between JOOS & Java source code (* . Jjava, * . Joos), Jasmin assembler (x . j) and Java

bytecode (x . class)

dejava

Java
bytecode

javac

joosc simply calls Jjoos and then Jasmin.

COMP 520 Winter 2018 JOOS (18)

JOOS AST Nodes
PROGRAM CLASSEFILE CLASS
FIELD TYPE LOCAL
CONSTRUCTOR METHOD FORMAL
STATEMENT EXP RECEIVER
ARGUMENT LABEL CODE

Each node consists of the child nodes, resources, and code.

typedef struct METHOD {
int lineno;
char xname;
ModifierKind modifier;
int localslimit; /* resource */
int labelcount; /* resource =*/
struct TYPE xreturntype;
struct FORMAL *formals;
struct STATEMENT xstatements;
char *signature; /* code */
struct LABEL *labels; /* code */
struct CODE xopcodes; /* code */
struct METHOD x*xnext;

} METHOD;

COMP 520 Winter 2018

JOOS Constructors

METHOD *makeMETHOD (char *name,

FORMAL *formals,

METHOD *m = malloc(sizeof (METHOD)) ;
m—>lineno = lineno;

m—->name = name;

m—>modifier = modifier;

m—->returntype = returntype;
m—>formals = formals;
m—->statements = statements;

m—->next =
return m;

next;

STATEMENT *makeSTATEMENTwhile (EXP *condition,

{

STATEMENT xs = malloc(sizeof (STATEMENT)) ;
s—>lineno = lineno;
s—>kind = whilekK;
s—>val.whileS.condition =
s—>val.whileS.body = body;
return s;

condition;

ModifierKind modifier,
STATEMENT *statements,

TYPE *returntype,
METHOD xnext)

STATEMENT *body)

JOOS (19)

COMP 520 Winter 2018

JOOS Scanner

[\t]+

\n
\N/\/["\n]~*
abstract
boolean
break

byte

[...]

nmy_n

"&&"

"+"

/* 1lgnore =*/;
lineno++;

/* ignore =*/;
return tABSTRACT,
return tBOOLEAN;
return tBREAK;
return tBYTE;

return tNEQ;
return tAND;
return tOR;
return "+’ ;
return ’'-';

JOOS (20)

COMP 520 Winter 2018 JOOS (21)

JOOS Scanner

Ol ([1-9][0=-9]x) {
yylval.intconst = atoil(yytext);
return tINTCONST,;

}

true {
yvylval.boolconst = 1;
return tBOOLCONST;

}

false {
yylval.boolconst = 0;
return tBOOLCONST;

}

NN R
yvylval.stringconst = (charx)malloc(strlen(yytext)-1);
yvytext [strlen(yytext)-1] = "\0’;
sprintf (yylval.stringconst, "%$s",yytext+1);
return tSTRINGCONST;

COMP 520 Winter 2018 JOOS (22)
JOOS Parser

method : tPUBLIC methodmods returntype tIDENTIFIER ' (' formals ')’ ’'{’ statements '}’
{$$ = makeMETHOD ($4, $2,$3,5$6,$9,NULL) ; }

| tPUBLIC returntype tIDENTIFIER ' ('’ formals ')’ ’'{’ statements '}’
{$$ = makeMETHOD ($3, modNONE, $3, $5, $8, NULL) ; }

| tPUBLIC tABSTRACT returntype tIDENTIFIER ’' (' formals ')’ ;'
{$$ = makeMETHOD ($4, modABSTRACT, $3, $6, NULL, NULL) ; }

| tPUBLIC tSTATIC tVOID tMAIN ’' (' mainargv ')’ ’'{’ statements '}’
{$$ = makeMETHOD ("main", modSTATIC, makeTYPEvoid () ,NULL, $9,NULL); }

4

whilestatement : tWHILE ’' (' expression ')’ statement
{$$ = makeSTATEMENTwhile ($3,$5);}

Notice the conversion from concrete syntax to abstract syntax that involves dropping unnecessary tokens.

COMP 520 Winter 2018 JOOS (23)
LALR(1) Lists

JOOS builds lists using left-recursion for efficiency (note that depending on the list, left or right recursion
might be necessary for conflicts). Consider the following example for formals in a method signature

NULL; }

formals : /* empty x/ {$$ =
= $1;}

| neformals {$$

14

neformals : formal {$$ = $1;}
| neformals ’',’ formal {$$ = $3; $S—->next = $1;}

14

formal : type tIDENTIFIER {$$ = makeFORMAL ($2,$1,NULL);}

14

The lists are naturally backwards.

COMP 520 Winter 2018 JOOS (24)
LALR(1) Lists

Processing backwards lists requires head recursion to start with the first element

typedef struct FORMAL ({
int lineno;
char *name;
int offset; /* resource */
struct TYPE xtype;
struct FORMAL x*next;
} FORMAL;

void prettyFORMAL (FORMAL *f) {
if (£ == NULL) {
return;

prettyFORMAL (f->next) ;

if (f->next != NULL) printf(", ");
prettyTYPE (£->type) ;

printf (" %s", f->name);

What effect would a call stack size limit have?

