
COMP 520 Winter 2018 Abstract Syntax Trees (1)

Abstract Syntax Trees
COMP 520: Compiler Design (4 credits)

Alexander Krolik

alexander.krolik@mail.mcgill.ca

MWF 9:30-10:30, TR 1080

http://www.cs.mcgill.ca/~cs520/2018/

COMP 520 Winter 2018 Abstract Syntax Trees (2)

Announcements (Wednesday, January 24th)
Milestones

• Group signup form https://goo.gl/forms/L6Dq5CHLvbjNhT8w1

• Office hours

– Alex: Wednesdays 10:30-11:30

– David: Thursdays 11:30-12:30

Assignment 1

• Due: Sunday, January 28th 11:59 PM

Midterm

• Preferred: Friday, March 16th, 1.5 hour “in class” midterm. Thoughts?

• Otherwise: Week of Monday, March 12th, 1.5 hour “evening” midterm.

COMP 520 Winter 2018 Abstract Syntax Trees (3)

Assignment 1
Questions

• Who is using flex+bison? SableCC?

• Any questions about the tools?

• What stage is everyone at: scanner, tokens, parser?

• Any questions about the language?

• Any questions about the requirements?

Notes

• You must use the assignment template https://github.com/comp520/Assignment-Template

• You must make sure it runs using the scripts!

• No AST building or typechecking this assignment

Due: Sunday, January 28th 11:59 PM

COMP 520 Winter 2018 Abstract Syntax Trees (4)

Compiler Architecture

• A compiler pass is a traversal of the program; and

• A compiler phase is a group of related passes.

One-pass compiler

A one-pass compiler scans the program only once - it is naturally single-phase. The following all happen at

the same time

• Scanning

• Parsing

• Weeding

• Symbol table creation

• Type checking

• Resource allocation

• Code generation

• Optimization

• Emitting

COMP 520 Winter 2018 Abstract Syntax Trees (5)

Compiler Architecture
This is a terrible methodology!

• It ignores natural modularity;

• It gives unnatural scope rules; and

• It limits optimizations.

Historically

It used to be popular for early compilers since

• It’s fast (if your machine is slow); and

• It’s space efficient (if you only have 4K).

A modern multi-pass compiler uses 5–15 phases, some of which may have many individual passes: you

should skim through the optimization section of ‘man gcc’ some time!

COMP 520 Winter 2018 Abstract Syntax Trees (6)

Intermediate Representations
A multi-pass compiler needs an intermediate representation of the program between passes that may be

updated/augmented along the pipeline. It should be

• An accurate representation of the original source program;

• Relatively compact;

• Easy (and quick) to traverse; and

• In optimizing compilers, easy and fruitful to analyze and improve.

These are competing demands, so some intermediate representations are more suited to certain tasks

than others. Some intermediate representations are also more suited to certain languages than others.

In this class, we focus on tree representations.

COMP 520 Winter 2018 Abstract Syntax Trees (7)

Concrete Syntax Trees
A parse tree, also called a concrete syntax tree (CST), is a tree formed by following the exact CFG rules.

Below is the corresponding CST for the expression a+b*c

�
��
Q
QQ

�
��

Q
QQ

E

E + T

T

F

id

T

F

id

* F

id

Note that this includes a lot of information that is not necessary to understand the original program

• Terms and factors were introduced for associativity and precedence; and

• Tokens + and * correspond to the type of theE node.

COMP 520 Winter 2018 Abstract Syntax Trees (8)

Abstract Syntax Trees
An abstract syntax tree (AST), is a much more convenient tree form that represents a more abstract

grammar. The same a+b*c expression can be represented as

�
�
@
@

�
�
@
@

+

id *

id id

In an AST

• Only important terminals are kept; and

• Intermediate non-terminals used for parsing are removed.

This representation is thus independent of the syntax.

COMP 520 Winter 2018 Abstract Syntax Trees (9)

Intermediate Language
Alternatively, instead of constructing the tree a compiler can generate code for an internal compiler-specific

grammar, also known as an intermediate language.

�
�
@
@

�
�
@
@

+

id *

id id

Early multi-pass compilers wrote their IL to disk between passes. For the above tree, the string

+(id,*(id,id)) would be written to a file and read back in for the next pass.

It may also be useful to write an IL out for debugging purposes.

COMP 520 Winter 2018 Abstract Syntax Trees (10)

Examples of Intermediate Languages

• Java bytecode

• C, for certain high-level language compilers

• Jimple, a 3-address representation of Java bytecode specific to Soot, created by Raja Vallee-Rai at

McGill

• Simple, the precursor to Jimple, created for McCAT by Prof. Hendren and her students

• Gimple, the IL based on Simple that gcc uses

In this course, you will generally use an AST as your IR without the need for an explicit IL.

Note: somewhat confusingly, both industry and academia use the terms IR and IL interchangeably.

COMP 520 Winter 2018 Abstract Syntax Trees (11)

Building IRs
Intuitively, as we recognize various parts of the source program, we assemble them into an IR.

• Requires extending the parser; and

• Executing semantic actions during the process.

Semantic actions

• Arbitrary actions executed during the parser execution.

Semantic values

• Values associated with terminals and non-terminals;

– Terminals: provided by the scanner (extra information other than the token type);

– Non-terminals: created by the parser;

COMP 520 Winter 2018 Abstract Syntax Trees (12)

Building IRs - LR Parsers
When a bottom-up parser executes it

• Maintains a syntactic stack – the working stack of symbols; and

• Also maintains a semantic stack – the values associated with each grammar symbol on the syntactic

stack.

We use the semantic stack to recursively build the AST, executing semantic actions on reduction.

In your code

A reduction using ruleA→ γ executes a semantic action that

• Synthesizes symbols in γ; and

• Produces a new node representingA.

Using this mechanism, we can build an AST.

COMP 520 Winter 2018 Abstract Syntax Trees (13)

Constructing an AST with flex/bison
Begin by defining your AST structure in a C header file tree.h. Each node type is defined in a struct

typedef struct EXP EXP;
struct EXP {

ExpressionKind kind;
union {

char *identifier;
int intLiteral;
struct { EXP *lhs; EXP *rhs; } binary;

} val;
};

Node kind

For nodes with more than one kind (i.e. expressions), we define an enumeration ExpressionKind

Node value

Node values are stored in a union. Depending on the kind of the node, a different part of the union is used.

COMP 520 Winter 2018 Abstract Syntax Trees (14)

Constructing an AST with flex/bison
Next, define constructors for each node type in tree.c

EXP *makeEXP_intLiteral(int intLiteral)
{

EXP *e = malloc(sizeof(EXP));
e->kind = k_expressionKindIntLiteral;
e->val.intLiteral = intLiteral;
return e;

}

The corresponding declaration goes in tree.h.

EXP *makeEXP_intLiteral(int intLiteral);

COMP 520 Winter 2018 Abstract Syntax Trees (15)

Constructing an AST with flex/bison
Finally, we can extend bison to include the tree-building actions in tiny.y.

Semantic values

For each type of semantic value, add an entry to bison’s union directive

%union {
int int_val;
char *string_val;
struct EXP *exp;

}

For each token type that has an associated value, extend the token directive with the association. For

non-terminals, add %type directives

%type <exp> program exp
%token <int_val> tINTVAL
%token <string_val> tIDENTIFIER

Semantic actions

exp : tINTVAL { $$ = makeEXP_intLiteral($1); }

COMP 520 Winter 2018 Abstract Syntax Trees (16)

Extending the AST
As mentioned before, a modern compiler uses 5–15 phases. Each phases of the compiler may contribute

additional information to the IR.

• Scanner: line numbers;

• Symbol tables: meaning of identifiers;

• Type checking: types of expressions; and

• Code generation: assembler code.

COMP 520 Winter 2018 Abstract Syntax Trees (17)

Extending the AST - Manual Line Numbers
If using manual line number incrementing, adding line numbers to AST nodes is simple.

1. Introduce a global lineno variable in the main.c file

int lineno;
int main(){

lineno = 1; /* input starts at line 1 */
yyparse();
return 0;

}

2. increment lineno in the scanner

%{
extern int lineno; /* declared in main.c */

%}

%%
[\t]+ /* no longer ignore \n */
\n lineno++; /* increment for every \n */

COMP 520 Winter 2018 Abstract Syntax Trees (18)

Extending the AST - Manual Line Numbers

3. Add a lineno field to the AST nodes

struct EXP {
int lineno;
[...]

};

4. Set lineno in the node constructors

EXP *makeEXP_intLiteral(int intLiteral)
{

EXP *e = malloc(sizeof(EXP));
e->lineno = lineno;
e->kind = k_expressionKindIntLiteral;
e->val.intLiteral = intLiteral;
return e;

}

COMP 520 Winter 2018 Abstract Syntax Trees (19)

Extending the AST - Automatic Line Numbers

1. Turn on line numbers in flex and add the user action

%{
#define YY_USER_ACTION yylloc.first_line = yylloc.last_line = yylineno;

%}
%option yylineno

2. Turn on line numbers in bison

%locations

3. Add a lineno field to the AST nodes

struct EXP {
int lineno;
[...]

};

COMP 520 Winter 2018 Abstract Syntax Trees (20)

Extending the AST - Automatic Line Numbers

4. Extend each constructor to take an int lineno parameter

EXP *makeEXP_intLiteral(int intLiteral, int lineno)
{

EXP *e = malloc(sizeof(EXP));
e->lineno = lineno;
e->kind = k_expressionKindIntLiteral;
e->val.intLiteral = intLiteral;
return e;

}

5. For each semantic action, call the constructor with the appropriate line number

exp : tINTVAL { $$ = makeEXP_intLiteral($1, @1.first_line); }

Accessing the token location is done using @<token position>.<attribute>

COMP 520 Winter 2018 Abstract Syntax Trees (21)

Extending the AST - Comarison
https://github.com/comp520/Examples/tree/master/flex%2Bbison/linenumbers

Given the example program 3 + 4, we expect the expression node to be located on line 1.

Manual

(3[1]+[2]4[1])

Automatic

(3[1]+[1]4[1])

What happened?

Semantic actions are executed when a rule is applied (reduction). An expression grammar can only reduce

3 + 4 if it knows the next token - in this case, the newline.

makeEXPintconst
makeEXPintconst
lineno++
makeEXPplus

COMP 520 Winter 2018 Abstract Syntax Trees (22)

Constructing an AST with SableCC
SableCC 2 automatically generates a CST for your grammar, with nodes for terminals and non-terminals.

Consider the grammar for the TinyLang language

Package tiny;
Helpers

tab = 9;
cr = 13;
lf = 10;
digit = [’0’..’9’];
lowercase = [’a’..’z’];
uppercase = [’A’..’Z’];
letter = lowercase | uppercase;
idletter = letter | ’_’;
idchar = letter | ’_’ | digit;

Tokens
eol = cr | lf | cr lf;
blank = ’ ’ | tab;
star = ’*’;
slash = ’/’;
plus = ’+’;
minus = ’-’;
l_par = ’(’;
r_par = ’)’;
number = ’0’| [digit-’0’] digit*;
id = idletter idchar*;

Ignored Tokens
blank, eol;

COMP 520 Winter 2018 Abstract Syntax Trees (23)

Constructing an AST with SableCC

Productions
exp = {plus} exp plus factor

| {minus} exp minus factor
| {factor} factor;

factor = {mult} factor star term
| {divd} factor slash term
| {term} term;

term = {paren} l_par exp r_par
| {id} id
| {number} number;

COMP 520 Winter 2018 Abstract Syntax Trees (24)

Constructing an AST with SableCC
SableCC generates subclasses of ’Node’ for terminals, non-terminals and production alternatives

• Classes for terminals: ’T’ followed by (capitalized) terminal name

TEol, TBlank, ..., TNumber, TId

• Classes for non-terminals: ’P’ followed by (capitalized) non-terminal name

PExp, PFactor, PTerm

• Classes for alternatives: ’A’ followed by (capitalized) alternative name and (capitalized) non-terminal

name

APlusExp (extends PExp), ..., ANumberTerm (extends PTerm)

Productions
exp = {plus} exp plus factor

| {minus} exp minus factor
| {factor} factor;

[...]

COMP 520 Winter 2018 Abstract Syntax Trees (25)

SableCC Directory Structure
SableCC populates an entire directory structure

tiny/
|--analysis/ Analysis.java
| AnalysisAdapter.java
| DepthFirstAdapter.java
| ReversedDepthFirstAdapter.java
|
|--lexer/ Lexer.java lexer.dat
| LexerException.java
|
|--node/ Node.java TEol.java ... TId.java
| PExp.java PFactor.java PTerm.java
| APlusExp.java ...
| AMultFactor.java ...
| AParenTerm.java ...
|
|--parser/ parser.dat Parser.java
| ParserException.java ...
|
|-- custom code directories, e.g. symbol, type, ...

COMP 520 Winter 2018 Abstract Syntax Trees (26)

SableCC - Concrete Syntax Trees
Given some grammar, SableCC generates a parser that in turn builds a concrete syntax tree (CST) for an

input program.

A parser built from the Tiny grammar creates the following CST for the program ‘a+b*c’

Start
|

APlusExp
/ \

AFactorExp AMultFactor
| / \

ATermFactor ATermFactor AIdTerm
| | |

AIdTerm AIdTerm c
| |
a b

This CST has many unnecessary intermediate nodes. Can you identify them?

COMP 520 Winter 2018 Abstract Syntax Trees (27)

SableCC - Abstract Syntax Trees
We only need an abstract syntax tree (AST) to maintain the same useful information for further analyses

and processing

APlusExp
/ \

AIdExp AMultExp
| / \
a AIdExp AIdExp

| |
b c

Recall that bison relies on user-written actions after grammar rules to construct an AST.

As an alternative, SableCC 3 actually allows the user to define an AST and the CST→AST

transformations formally, and can then translate CSTs to ASTs automatically.

COMP 520 Winter 2018 Abstract Syntax Trees (28)

Constructing an AST with SableCC
For the TinyLang expression language, the AST definition is as follows

Abstract Syntax Tree
exp = {plus} [l]:exp [r]:exp

| {minus} [l]:exp [r]:exp
| {mult} [l]:exp [r]:exp
| {divd} [l]:exp [r]:exp
| {id} id
| {number} number;

AST rules have the same syntax as productions, except that their elements define the abstract structure.

We remove all unnecessary tokens and intermediate non-terminals.

COMP 520 Winter 2018 Abstract Syntax Trees (29)

Constructing an AST with SableCC
Using the AST definition, we augment each production in the grammar with a CST→AST transformations

Productions
cst_exp {-> exp} =

{cst_plus} cst_exp plus factor
{-> New exp.plus(cst_exp.exp,factor.exp)} |

{cst_minus} cst_exp minus factor
{-> New exp.minus(cst_exp.exp,factor.exp)} |

{factor} factor {-> factor.exp};

factor {-> exp} =
{cst_mult} factor star term

{-> New exp.mult(factor.exp,term.exp)} |
{cst_divd} factor slash term

{-> New exp.divd(factor.exp,term.exp)} |
{term} term {-> term.exp};

term {-> exp} =
{paren} l_par cst_exp r_par {-> cst_exp.exp} |
{cst_id} id {-> New exp.id(id)} |
{cst_number} number {-> New exp.number(number)};

COMP 520 Winter 2018 Abstract Syntax Trees (30)

Constructing an AST with SableCC
A CST production alternative for a plus node

cst_exp = {cst_plus} cst_exp plus factor

needs extending to include a CST→AST transformation

cst_exp {-> exp} = {cst_plus} cst_exp plus factor
{-> New exp.plus(cst_exp.exp,factor.exp)}

• cst_exp {-> exp} on the LHS specifies that the CST node cst_exp should be transformed

to the AST node exp.

• {-> New exp.plus(cst_exp.exp, factor.exp)} on the RHS specifies the action

for constructing the AST node.

• exp.plus is the kind of exp AST node to create. cst_exp.exp refers to the transformed AST

node exp of cst_exp, the first term on the RHS.

COMP 520 Winter 2018 Abstract Syntax Trees (31)

Constructing an AST with SableCC
There are 5 types of explicit RHS transformations (actions)

1. Getting an existing node

{paren} l_par cst_exp r_par {-> cst_exp.exp}

2. Creating a new AST node

{cst_id} id {-> New exp.id(id)}

3. List creation

{block} l_brace stm* r_brace {-> New stm.block([stm])}

4. Elimination (but more like nullification)

{-> Null}
{-> New exp.id(Null)}

5. Empty (but more like deletion)

{-> }

COMP 520 Winter 2018 Abstract Syntax Trees (32)

Constructing an AST with SableCC
Writing down straightforward, non-abstracting CST→AST transformations can be tedious. For example,

consider the following production of optional and list elements

prod = elm1 elm2* elm3+ elm4?;

An equivalent AST construction would be

prod{-> prod} = elm1 elm2* elm3+ elm4?
{-> New prod.prod(

elm1.elm1,
[elm2.elm2],
[elm3.elm3],
elm4.elm4)

};

SableCC 3 Documentation

• http://www.natpryce.com/articles/000531.html

• http://sablecc.sourceforge.net/documentation/cst-to-ast.html

COMP 520 Winter 2018 Abstract Syntax Trees (33)

Pretty Printing
A recursive AST traversal that outputs the program in its “original”, “pretty” source form.

void prettyEXP(EXP *e)
{

switch (e->kind) {
case k_expressionKindIdentifier:

printf("%s", e->val.identifier);
break;

case k_expressionKindIntLiteral:
printf("%i", e->val.intLiteral);
break;

case k_expressionKindAddition:
printf("(");
prettyEXP(e->val.binary.lhs);
printf("+");
prettyEXP(e->val.binary.rhs);
printf(")");
break;

[...]
}

COMP 520 Winter 2018 Abstract Syntax Trees (34)

Pretty Printing
#include "tree.h"
#include "pretty.h"

void yyparse();

EXP *root;

int main()
{

yyparse();
prettyEXP(root);
return 0;

}

Pretty printing the expression a*(b-17) + 5/c in TinyLang will output

((a*(b-17))+(5/c))

Why the extra parentheses?

COMP 520 Winter 2018 Abstract Syntax Trees (35)

Pretty Printing
The testing strategy for a parser that constructs an abstract syntax tree T from a program P usually

involves a pretty printer

If parse(P) constructs T and pretty(T) reconstructs the text of P , then

pretty(parse(P)) ≈ P

Even better, we have that

pretty(parse(pretty(parse(P)))) ≡ pretty(parse(P))

Of course, this is a necessary but not sufficient condition for parser correctness.

Important observations

• Pretty printers do not output an identical program to the input (whitespace ignored, etc.); and

• Pretty printers should make some effort to be “pretty”.

