
COMP-520 – Review lecture

Vincent Foley-Bourgon

Sable Lab
McGill University

Winter 2018

Plan
I We’ll go over the different concepts we saw in class

I And outline some questions to practise

I You will have to provide the answers

I I know the names of many of you; if you don’t want to be
called out, volunteer an answer :)

2 / 95

Plan
I We’ll go over the different concepts we saw in class

I And outline some questions to practise

I You will have to provide the answers

I I know the names of many of you; if you don’t want to be
called out, volunteer an answer :)

2 / 95

Plan
I We’ll go over the different concepts we saw in class

I And outline some questions to practise

I You will have to provide the answers

I I know the names of many of you; if you don’t want to be
called out, volunteer an answer :)

2 / 95

Plan
I We’ll go over the different concepts we saw in class

I And outline some questions to practise

I You will have to provide the answers

I I know the names of many of you; if you don’t want to be
called out, volunteer an answer :)

2 / 95

Compiler overview

What is a compiler?

An automated program that translates programs written in a
source language into equivalent programs in a target language.

4 / 95

What is a compiler?
An automated program that translates programs written in a
source language into equivalent programs in a target language.

4 / 95

Phases of the compilers

5 / 95

Phases of the compilers

6 / 95

Phases of the compilers

7 / 95

Phases of the compilers

8 / 95

Phases of the compilers

9 / 95

Phases of the compilers

10 / 95

Phases of the compilers

11 / 95

Phases of the compilers

12 / 95

Phases of the compilers

13 / 95

Phases of the compilers

14 / 95

Phases of the compilers

15 / 95

Phases of the compilers

16 / 95

Scanner

Scanner generalities
I What is the input of a scanner?

Characters

I What is the output of a scanner? Tokens

I What formalism did we use to specify scanners? Regular
expressions

18 / 95

Scanner generalities
I What is the input of a scanner? Characters

I What is the output of a scanner? Tokens

I What formalism did we use to specify scanners? Regular
expressions

18 / 95

Scanner generalities
I What is the input of a scanner? Characters

I What is the output of a scanner?

Tokens

I What formalism did we use to specify scanners? Regular
expressions

18 / 95

Scanner generalities
I What is the input of a scanner? Characters

I What is the output of a scanner? Tokens

I What formalism did we use to specify scanners? Regular
expressions

18 / 95

Scanner generalities
I What is the input of a scanner? Characters

I What is the output of a scanner? Tokens

I What formalism did we use to specify scanners?

Regular
expressions

18 / 95

Scanner generalities
I What is the input of a scanner? Characters

I What is the output of a scanner? Tokens

I What formalism did we use to specify scanners? Regular
expressions

18 / 95

Regular expressions
What are the 5 building blocks of regular expressions?

I C

I E

I C

I A

I R

19 / 95

Regular expressions
What are the 5 building blocks of regular expressions?

I Character ’c’

I E

I C

I A

I R

20 / 95

Regular expressions
What are the 5 building blocks of regular expressions?

I Character ’c’

I Empty string ε

I C

I A

I R

21 / 95

Regular expressions
What are the 5 building blocks of regular expressions?

I Character ’c’

I Empty string ε

I Concatenation AB

I A

I R

22 / 95

Regular expressions
What are the 5 building blocks of regular expressions?

I Character ’c’

I Empty string ε

I Concatenation AB

I Alternation A|B

I R

23 / 95

Regular expressions
What are the 5 building blocks of regular expressions?

I Character ’c’

I Empty string ε

I Concatenation AB

I Alternation A|B

I Repetition A*

24 / 95

Regular expressions
More regular expressions

I Optional

A? = A|ε

I One-or-more A+ = A(A*)

25 / 95

Regular expressions
More regular expressions

I Optional A? = A|ε

I One-or-more A+ = A(A*)

25 / 95

Regular expressions
More regular expressions

I Optional A? = A|ε

I One-or-more

A+ = A(A*)

25 / 95

Regular expressions
More regular expressions

I Optional A? = A|ε

I One-or-more A+ = A(A*)

25 / 95

Regular expressions
More regular expressions

I Optional A? = A|ε

I One-or-more A+ = A(A*)

25 / 95

Scanner
How does flex match tokens?

26 / 95

Scanner
How does flex match tokens?

26 / 95

Scanner
How does flex handle multiple matches?

I Longest match rule (e.g. var vs variance)

I First match rule (e.g. keywords vs identifiers)

27 / 95

Scanner
How does flex handle multiple matches?

I Longest match rule (e.g. var vs variance)

I First match rule (e.g. keywords vs identifiers)

27 / 95

Scanner
How does flex handle multiple matches?

I Longest match rule (e.g. var vs variance)

I First match rule (e.g. keywords vs identifiers)

27 / 95

Scanner
How does flex make regular expressions executable?

Regular expression→ NFA→ DFA

28 / 95

Scanner
How does flex make regular expressions executable?

Regular expression→ NFA→ DFA

28 / 95

Regular Languages
What relationship exists between regular expressions, NFAs
and DFAs?

They are all equally powerful, and all recognize regular
languages

29 / 95

Regular Languages
What relationship exists between regular expressions, NFAs
and DFAs?

They are all equally powerful, and all recognize regular
languages

29 / 95

DFAs
What are the 4 building blocks of DFAs?

I S

I T

I 1

I n

30 / 95

DFAs
What are the 4 building blocks of DFAs?

I States

I T

I 1

I n

31 / 95

DFAs
What are the 4 building blocks of DFAs?

I States

I Transitions (A k−→ B)

I 1

I n

32 / 95

DFAs
What are the 4 building blocks of DFAs?

I States

I Transitions (A k−→ B)

I 1 start state

I n

33 / 95

DFAs
What are the 4 building blocks of DFAs?

I States

I Transitions (A k−→ B)

I 1 start state

I n accept states

34 / 95

Regular languages
Given a language, what is one sign that it is not a regular
language?

Arbitrary nesting (e.g. parentheses, control structures)

Regular languages cannot be defined recursively.

35 / 95

Regular languages
Given a language, what is one sign that it is not a regular
language?

Arbitrary nesting (e.g. parentheses, control structures)

Regular languages cannot be defined recursively.

35 / 95

Practice questions
I Is the language {anbm | n > m} regular?

I Is the language {anbm | n,m both even} regular?

I Draw the DFA for the regular language {an | n odd}

36 / 95

Parser

Parser generalities
I What is the input of a parser?

Tokens

I What is the output of a parser? Syntax tree (abstract or
concrete)

I What formalism did we use to specify parsers?
Context-free grammars

38 / 95

Parser generalities
I What is the input of a parser? Tokens

I What is the output of a parser? Syntax tree (abstract or
concrete)

I What formalism did we use to specify parsers?
Context-free grammars

38 / 95

Parser generalities
I What is the input of a parser? Tokens

I What is the output of a parser?

Syntax tree (abstract or
concrete)

I What formalism did we use to specify parsers?
Context-free grammars

38 / 95

Parser generalities
I What is the input of a parser? Tokens

I What is the output of a parser? Syntax tree (abstract or
concrete)

I What formalism did we use to specify parsers?
Context-free grammars

38 / 95

Parser generalities
I What is the input of a parser? Tokens

I What is the output of a parser? Syntax tree (abstract or
concrete)

I What formalism did we use to specify parsers?

Context-free grammars

38 / 95

Parser generalities
I What is the input of a parser? Tokens

I What is the output of a parser? Syntax tree (abstract or
concrete)

I What formalism did we use to specify parsers?
Context-free grammars

38 / 95

Context-free grammars
What are the 4 building blocks of context-free grammars?

I T

I N

I P

I S

39 / 95

Context-free grammars
What are the 4 building blocks of context-free grammars?

I Terminals (tokens)

I N

I P

I S

40 / 95

Context-free grammars
What are the 4 building blocks of context-free grammars?

I Terminals (tokens)

I Non-terminals (e.g. stmt or expr)

I P

I S

41 / 95

Context-free grammars
What are the 4 building blocks of context-free grammars?

I Terminals (tokens)

I Non-terminals (e.g. stmt or expr)

I Productions (e.g. stmt→ PRINT ’(’ expr ’)’)

I S

42 / 95

Context-free grammars
What are the 4 building blocks of context-free grammars?

I Terminals (tokens)

I Non-terminals (e.g. stmt or expr)

I Productions (e.g. stmt→ PRINT ’(’ expr ’)’)

I Start symbol

43 / 95

Context-free grammars
When is a grammar ambiguous?

When at least one sentence that has more than one
derivation/parse tree.

44 / 95

Context-free grammars
When is a grammar ambiguous?

When at least one sentence that has more than one
derivation/parse tree.

44 / 95

Ambiguous grammar
Grammar: E → id | E ‘+’ E

Program: id + id + id

What are the two parse trees for this sentence?

E

E E

E Eid

id id

+

+

E

EE

EE id

idid

+

+

45 / 95

Ambiguous grammar
Grammar: E → id | E ‘+’ E

Program: id + id + id

What are the two parse trees for this sentence?

E

E E

E Eid

id id

+

+

E

EE

EE id

idid

+

+

45 / 95

Ambiguous grammar
What are the two ways to fix this ambiguity?

Factoring the grammar using terms and factors:
E = E ‘+’ T | T;

T = id;

Precedence+associativity directives:
%left ‘+’

E = id | E ‘+’ E;

46 / 95

Ambiguous grammar
What are the two ways to fix this ambiguity?

Factoring the grammar using terms and factors:
E = E ‘+’ T | T;

T = id;

Precedence+associativity directives:
%left ‘+’

E = id | E ‘+’ E;

46 / 95

Ambiguous grammar
What are the two ways to fix this ambiguity?

Factoring the grammar using terms and factors:
E = E ‘+’ T | T;

T = id;

Precedence+associativity directives:
%left ‘+’

E = id | E ‘+’ E;

46 / 95

Parsers
What do LL(1) and LR(1) mean?

I LL(1)

I LR(1)

47 / 95

Parsers
What do LL(1) and LR(1) mean?

I LL(1): left-to-right processing, left-most derivation, one
token of lookahead

I LR(1)

48 / 95

Parsers
What do LL(1) and LR(1) mean?

I LL(1): left-to-right processing, left-most derivation, one
token of lookahead

I LR(1): left-to-right processing, right-most derivation, one
token of lookahead

49 / 95

Parsers
What is a left-most derivation? A right-most derivation?

E = E ‘+’ T
T = ID

a + b + c

E ‘+’ T

// left -most derivation
E ‘+’ T ==>

E ‘+’ T ‘+’ T

// right -most derivation
E ‘+’ T ==>

E ‘+’ ID

50 / 95

Parsers
What is a left-most derivation? A right-most derivation?

E = E ‘+’ T
T = ID

a + b + c

E ‘+’ T

// left -most derivation
E ‘+’ T ==>

E ‘+’ T ‘+’ T

// right -most derivation
E ‘+’ T ==>

E ‘+’ ID

50 / 95

Parsers
What is a left-most derivation? A right-most derivation?

E = E ‘+’ T
T = ID

a + b + c

E ‘+’ T

// left -most derivation
E ‘+’ T ==>

E ‘+’ T ‘+’ T

// right -most derivation
E ‘+’ T ==>

E ‘+’ ID

50 / 95

Parsers
What is a left-most derivation? A right-most derivation?

E = E ‘+’ T
T = ID

a + b + c

E ‘+’ T

// left -most derivation
E ‘+’ T

==>
E ‘+’ T ‘+’ T

// right -most derivation
E ‘+’ T ==>

E ‘+’ ID

50 / 95

Parsers
What is a left-most derivation? A right-most derivation?

E = E ‘+’ T
T = ID

a + b + c

E ‘+’ T

// left -most derivation
E ‘+’ T ==>

E ‘+’ T ‘+’ T

// right -most derivation
E ‘+’ T ==>

E ‘+’ ID

50 / 95

Parsers
What is a left-most derivation? A right-most derivation?

E = E ‘+’ T
T = ID

a + b + c

E ‘+’ T

// left -most derivation
E ‘+’ T ==>

E ‘+’ T ‘+’ T

// right -most derivation
E ‘+’ T

==>
E ‘+’ ID

50 / 95

Parsers
What is a left-most derivation? A right-most derivation?

E = E ‘+’ T
T = ID

a + b + c

E ‘+’ T

// left -most derivation
E ‘+’ T ==>

E ‘+’ T ‘+’ T

// right -most derivation
E ‘+’ T ==>

E ‘+’ ID

50 / 95

Parsers
What are the two types of parser we saw in class?

I T

I B

51 / 95

Parsers
What are the two types of parser we saw in class?

I Top-down

I B

52 / 95

Parsers
What are the two types of parser we saw in class?

I Top-down

I Bottom-up

53 / 95

Parsers
What is the difference between top-down and bottom-up?

I Top-down:

start symbol ↓ leaves

I Bottom-up: leaves ↑ start symbol

54 / 95

Parsers
What is the difference between top-down and bottom-up?

I Top-down: start symbol ↓ leaves

I Bottom-up:

leaves ↑ start symbol

54 / 95

Parsers
What is the difference between top-down and bottom-up?

I Top-down: start symbol ↓ leaves

I Bottom-up: leaves ↑ start symbol

54 / 95

Top-down parsers
How do we implement a top-down parser by hand?

Recursive descent

55 / 95

Top-down parsers
How do we implement a top-down parser by hand?

Recursive descent

55 / 95

Recursive descent parser
// Grammar
stmt = ID ’=’ expr ’;’

| PRINT expr ’;’
| ...

// Python code
def stmt():

next_tok = peek()
if next_tok == TOK_ID:

id = consume(TOK_ID)
consume(TOK_EQ)
e = expr()
consume(TOK_SEMI)
return astnode(AST_ASSIGN , lhs=id, rhs=e)

elif next_tok == TOK_PRINT:
consume(TOK_PRINT)
e = expr()
consume(TOK_SEMI)
return astnode(AST_PRINT , expr=e)

elif ...

56 / 95

Recursive descent parser
// Grammar
stmt = ID ’=’ expr ’;’

| PRINT expr ’;’
| ...

// Python code
def stmt():

next_tok = peek()
if next_tok == TOK_ID:

id = consume(TOK_ID)
consume(TOK_EQ)
e = expr()
consume(TOK_SEMI)
return astnode(AST_ASSIGN , lhs=id, rhs=e)

elif next_tok == TOK_PRINT:
consume(TOK_PRINT)
e = expr()
consume(TOK_SEMI)
return astnode(AST_PRINT , expr=e)

elif ...

56 / 95

Bottom-up parsers
What technique do we use in bottom-up parsing (LR) tools?

Shift/reduce

57 / 95

Bottom-up parsers
What technique do we use in bottom-up parsing (LR) tools?

Shift/reduce

57 / 95

Bottom-up parsers
What are the three actions of a bottom-up parser?

I S

I R

I A

58 / 95

Bottom-up parsers
What are the three actions of a bottom-up parser?

I Shift (move a token from input to stack)

I R

I A

59 / 95

Bottom-up parsers
What are the three actions of a bottom-up parser?

I Shift (move a token from input to stack)

I Reduce (replace elements on the top of the stack with a
non-terminal)

I A

60 / 95

Bottom-up parsers
What are the three actions of a bottom-up parser?

I Shift (move a token from input to stack)

I Reduce (replace elements on the top of the stack with a
non-terminal)

I Accept

61 / 95

Bottom-up parsers
Given the simple context-free grammar

// Grammar
S = a S b

| c

Show the shift-reduce progression for the sentence acb
stack input action

acb$

shift
a cb$ shift
ac b$ reduce S->c
aS b$ shift
aSb $ reduce S->aSb
S $ accept

62 / 95

Bottom-up parsers
Given the simple context-free grammar

// Grammar
S = a S b

| c

Show the shift-reduce progression for the sentence acb
stack input action

acb$ shift
a cb$

shift
ac b$ reduce S->c
aS b$ shift
aSb $ reduce S->aSb
S $ accept

62 / 95

Bottom-up parsers
Given the simple context-free grammar

// Grammar
S = a S b

| c

Show the shift-reduce progression for the sentence acb
stack input action

acb$ shift
a cb$ shift
ac b$

reduce S->c
aS b$ shift
aSb $ reduce S->aSb
S $ accept

62 / 95

Bottom-up parsers
Given the simple context-free grammar

// Grammar
S = a S b

| c

Show the shift-reduce progression for the sentence acb
stack input action

acb$ shift
a cb$ shift
ac b$ reduce S->c
aS b$

shift
aSb $ reduce S->aSb
S $ accept

62 / 95

Bottom-up parsers
Given the simple context-free grammar

// Grammar
S = a S b

| c

Show the shift-reduce progression for the sentence acb
stack input action

acb$ shift
a cb$ shift
ac b$ reduce S->c
aS b$ shift
aSb $

reduce S->aSb
S $ accept

62 / 95

Bottom-up parsers
Given the simple context-free grammar

// Grammar
S = a S b

| c

Show the shift-reduce progression for the sentence acb
stack input action

acb$ shift
a cb$ shift
ac b$ reduce S->c
aS b$ shift
aSb $ reduce S->aSb
S $

accept

62 / 95

Bottom-up parsers
Given the simple context-free grammar

// Grammar
S = a S b

| c

Show the shift-reduce progression for the sentence acb
stack input action

acb$ shift
a cb$ shift
ac b$ reduce S->c
aS b$ shift
aSb $ reduce S->aSb
S $ accept

62 / 95

Bottom-up parsers
What type of conflict is exhibited in this grammar?

%{
%}

%token ID
%start start

%%
start: rule1 | rule2
rule1: ID
rule2: ID
%%

Reduce/reduce

63 / 95

Bottom-up parsers
What type of conflict is exhibited in this grammar?

%{
%}

%token ID
%start start

%%
start: rule1 | rule2
rule1: ID
rule2: ID
%%

Reduce/reduce

63 / 95

Bottom-up parsers
What type of conflict is exhibited in this grammar?

%{
%}

%token ID
%start start

%%
start: ID ID | rule1 ID
rule1: ID
%%

Shift/reduce

64 / 95

Bottom-up parsers
What type of conflict is exhibited in this grammar?

%{
%}

%token ID
%start start

%%
start: ID ID | rule1 ID
rule1: ID
%%

Shift/reduce

64 / 95

Bottom-up parsers
How do precedence directives resolve grammar ambiguities?

They instruct the parser to either shift or reduce when both
options are valid

65 / 95

Bottom-up parsers
How do precedence directives resolve grammar ambiguities?

They instruct the parser to either shift or reduce when both
options are valid

65 / 95

AST

66 / 95

Concrete syntax tree
I What is a CST?

The tree that traces a parser derivation

I What are the inner nodes of a CST? The non-terminals

I What are the leaves of a CST? The terminals

67 / 95

Concrete syntax tree
I What is a CST? The tree that traces a parser derivation

I What are the inner nodes of a CST? The non-terminals

I What are the leaves of a CST? The terminals

67 / 95

Concrete syntax tree
I What is a CST? The tree that traces a parser derivation

I What are the inner nodes of a CST?

The non-terminals

I What are the leaves of a CST? The terminals

67 / 95

Concrete syntax tree
I What is a CST? The tree that traces a parser derivation

I What are the inner nodes of a CST? The non-terminals

I What are the leaves of a CST? The terminals

67 / 95

Concrete syntax tree
I What is a CST? The tree that traces a parser derivation

I What are the inner nodes of a CST? The non-terminals

I What are the leaves of a CST?

The terminals

67 / 95

Concrete syntax tree
I What is a CST? The tree that traces a parser derivation

I What are the inner nodes of a CST? The non-terminals

I What are the leaves of a CST? The terminals

67 / 95

Abstract syntax tree
I What is a AST?

A tree representation of the program
without the extraneous stuff (e.g. punctuation, extra
non-terminals)

I What are the inner nodes of an AST? Statements and
expressions

I What are the leaves of an AST? Literals and identifiers

68 / 95

Abstract syntax tree
I What is a AST? A tree representation of the program

without the extraneous stuff (e.g. punctuation, extra
non-terminals)

I What are the inner nodes of an AST? Statements and
expressions

I What are the leaves of an AST? Literals and identifiers

68 / 95

Abstract syntax tree
I What is a AST? A tree representation of the program

without the extraneous stuff (e.g. punctuation, extra
non-terminals)

I What are the inner nodes of an AST?

Statements and
expressions

I What are the leaves of an AST? Literals and identifiers

68 / 95

Abstract syntax tree
I What is a AST? A tree representation of the program

without the extraneous stuff (e.g. punctuation, extra
non-terminals)

I What are the inner nodes of an AST? Statements and
expressions

I What are the leaves of an AST? Literals and identifiers

68 / 95

Abstract syntax tree
I What is a AST? A tree representation of the program

without the extraneous stuff (e.g. punctuation, extra
non-terminals)

I What are the inner nodes of an AST? Statements and
expressions

I What are the leaves of an AST?

Literals and identifiers

68 / 95

Abstract syntax tree
I What is a AST? A tree representation of the program

without the extraneous stuff (e.g. punctuation, extra
non-terminals)

I What are the inner nodes of an AST? Statements and
expressions

I What are the leaves of an AST? Literals and identifiers

68 / 95

AST vs CST
I Can you use a CST for type checking?

Yes

I Can you use a CST for code gen? Yes

I Then why do we prefer ASTs? Simpler and shorter

69 / 95

AST vs CST
I Can you use a CST for type checking? Yes

I Can you use a CST for code gen? Yes

I Then why do we prefer ASTs? Simpler and shorter

69 / 95

AST vs CST
I Can you use a CST for type checking? Yes

I Can you use a CST for code gen?

Yes

I Then why do we prefer ASTs? Simpler and shorter

69 / 95

AST vs CST
I Can you use a CST for type checking? Yes

I Can you use a CST for code gen? Yes

I Then why do we prefer ASTs? Simpler and shorter

69 / 95

AST vs CST
I Can you use a CST for type checking? Yes

I Can you use a CST for code gen? Yes

I Then why do we prefer ASTs?

Simpler and shorter

69 / 95

AST vs CST
I Can you use a CST for type checking? Yes

I Can you use a CST for code gen? Yes

I Then why do we prefer ASTs? Simpler and shorter

69 / 95

260 Chapter 7. Syntax-Directed Translation

T

E

T

E

T

E

T

E

T

E

T

E

Stmt

T

E

Stmt

x +if (y) { while (z) z = z + 1 od ; x = 8 } else z = 7 fi
id plus num rparenbegin while lparenif lparen id rparen id assign id plus num od semi id assign num end else id assign num fi

Stmt

Stmt

Stmts

Stmts

Stmt

$

$

Stmt

Start

Figure 7.18: Concrete syntax tree.

if

id
x

plus

id
y

assign

7
intconstid

z

block

while

id
z

id
z

id
z

plus

1
intconst

assign

8
intconst

assign

id
x

Figure 7.19: AST for the parse tree in Figure 7.18.

Weeder

71 / 95

Weeder
What is the role of the weeder?

Reject invalid programs that the parser cannot.

72 / 95

Weeder
What is the role of the weeder?

Reject invalid programs that the parser cannot.

72 / 95

Weeder
What are some examples that a parser cannot easily reject and
must be done in a weeder?

I Reject break and continue outside of loops

I Reject switch statements with multiple default branches

I Reject non-void functions without return statements

73 / 95

Weeder
What are some examples that a parser cannot easily reject and
must be done in a weeder?

I Reject break and continue outside of loops

I Reject switch statements with multiple default branches

I Reject non-void functions without return statements

73 / 95

Weeder
Can we write a parser to reject break outside loops?

Probably, but the parser would be larger, more complicated
and uglier.

74 / 95

Weeder
Can we write a parser to reject break outside loops?

Probably, but the parser would be larger, more complicated
and uglier.

74 / 95

Weeder
If a check can be done in the parser and in the weeder, where
should we do it?

I Where it makes our job easier

I Where it gives the better error message

75 / 95

Weeder
If a check can be done in the parser and in the weeder, where
should we do it?

I Where it makes our job easier

I Where it gives the better error message

75 / 95

Symbol tables

Symbol tables
What is stored in a symbol table?

Identifiers and their related information.

77 / 95

Symbol tables
What is stored in a symbol table?

Identifiers and their related information.

77 / 95

Symbol tables
What information can be associated with a symbol?

I Type

I Offset in stack frame

I Resources for methods (e.g. number of locals, stack limit)

I Original name

I Etc.

78 / 95

Symbol tables
What information can be associated with a symbol?

I Type

I Offset in stack frame

I Resources for methods (e.g. number of locals, stack limit)

I Original name

I Etc.

78 / 95

Symbol tables
What data structure is typically used for symbol tables?

Hash tables

79 / 95

Symbol tables
What data structure is typically used for symbol tables?

Hash tables

79 / 95

Symbol tables
How do we handle multiple scopes where variables can be
redeclared?

Stack of hash tables

When do we modify this stack?

Push when opening a new scope, pop when closing a scope

80 / 95

Symbol tables
How do we handle multiple scopes where variables can be
redeclared?

Stack of hash tables

When do we modify this stack?

Push when opening a new scope, pop when closing a scope

80 / 95

Symbol tables
How do we handle multiple scopes where variables can be
redeclared?

Stack of hash tables

When do we modify this stack?

Push when opening a new scope, pop when closing a scope

80 / 95

Symbol tables
How do we lookup a symbol?

Search hash tables in the stack from top to bottom

81 / 95

Symbol tables
How do we lookup a symbol?

Search hash tables in the stack from top to bottom

81 / 95

Type checking

Type checking
What is the role of type checking?

Reject programs that are syntactically correct, but semantically
wrong.

83 / 95

Type checking
What is the role of type checking?

Reject programs that are syntactically correct, but semantically
wrong.

83 / 95

Type checking
I What is the input of the type checker?

AST

I What is the output of the type checker? Annotated AST
(AST+types)

84 / 95

Type checking
I What is the input of the type checker? AST

I What is the output of the type checker? Annotated AST
(AST+types)

84 / 95

Type checking
I What is the input of the type checker? AST

I What is the output of the type checker?

Annotated AST
(AST+types)

84 / 95

Type checking
I What is the input of the type checker? AST

I What is the output of the type checker? Annotated AST
(AST+types)

84 / 95

Type checking
I Do declarations have a type?

No

I Do statements have a type? No

I Do expressions have a type? Yes

85 / 95

Type checking
I Do declarations have a type? No

I Do statements have a type? No

I Do expressions have a type? Yes

85 / 95

Type checking
I Do declarations have a type? No

I Do statements have a type?

No

I Do expressions have a type? Yes

85 / 95

Type checking
I Do declarations have a type? No

I Do statements have a type? No

I Do expressions have a type? Yes

85 / 95

Type checking
I Do declarations have a type? No

I Do statements have a type? No

I Do expressions have a type?

Yes

85 / 95

Type checking
I Do declarations have a type? No

I Do statements have a type? No

I Do expressions have a type? Yes

85 / 95

Type checking
Where do we store the type of expressions?

I In the AST

I In an auxiliary table (SableCC)

86 / 95

Type checking
Where do we store the type of expressions?

I In the AST

I In an auxiliary table (SableCC)

86 / 95

Type checking
Exercise

var x int = expr

I Type check expr

I Make sure int = typeof(expr)

I Report an error if the types don’t match

I Try to add x -> int to the symbol table

I Report an error if x is already defined in the current scope

87 / 95

Type checking
Exercise

var x int = expr

I Type check expr

I Make sure int = typeof(expr)

I Report an error if the types don’t match

I Try to add x -> int to the symbol table

I Report an error if x is already defined in the current scope

87 / 95

Type checking
Exercise

var x int = expr

I Type check expr

I Make sure int = typeof(expr)

I Report an error if the types don’t match

I Try to add x -> int to the symbol table

I Report an error if x is already defined in the current scope

87 / 95

Type checking
Exercise

var x int = expr

I Type check expr

I Make sure int = typeof(expr)

I Report an error if the types don’t match

I Try to add x -> int to the symbol table

I Report an error if x is already defined in the current scope

87 / 95

Type checking
Exercise

var x int = expr

I Type check expr

I Make sure int = typeof(expr)

I Report an error if the types don’t match

I Try to add x -> int to the symbol table

I Report an error if x is already defined in the current scope

87 / 95

Type checking
Exercise

var x int = expr

I Type check expr

I Make sure int = typeof(expr)

I Report an error if the types don’t match

I Try to add x -> int to the symbol table

I Report an error if x is already defined in the current scope

87 / 95

Type checking
Exercise

if expr {
then_stmts

} else {
else_stmts

}

I Type check expr, then_stmts, and else_stmts

I Make sure typeof(expr) = bool

I Report an error if the types don’t match

88 / 95

Type checking
Exercise

if expr {
then_stmts

} else {
else_stmts

}

I Type check expr, then_stmts, and else_stmts

I Make sure typeof(expr) = bool

I Report an error if the types don’t match

88 / 95

Type checking
Exercise

if expr {
then_stmts

} else {
else_stmts

}

I Type check expr, then_stmts, and else_stmts

I Make sure typeof(expr) = bool

I Report an error if the types don’t match

88 / 95

Type checking
Exercise

if expr {
then_stmts

} else {
else_stmts

}

I Type check expr, then_stmts, and else_stmts

I Make sure typeof(expr) = bool

I Report an error if the types don’t match

88 / 95

Type checking
Exercise

// x is declared as an int
max(2+3, x)

I Type check 2+3

I Type check x

I Type check max

I Make sure max accepts two parameters and that 2+3 has
the type of the first formal parameter and x has the type
of the second formal parameter

I The whole expression has the return type declared for max

89 / 95

Type checking
Exercise

// x is declared as an int
max(2+3, x)

I Type check 2+3

I Type check x

I Type check max

I Make sure max accepts two parameters and that 2+3 has
the type of the first formal parameter and x has the type
of the second formal parameter

I The whole expression has the return type declared for max

89 / 95

Type checking
Exercise

// x is declared as an int
max(2+3, x)

I Type check 2+3

I Type check x

I Type check max

I Make sure max accepts two parameters and that 2+3 has
the type of the first formal parameter and x has the type
of the second formal parameter

I The whole expression has the return type declared for max

89 / 95

Type checking
Exercise

// x is declared as an int
max(2+3, x)

I Type check 2+3

I Type check x

I Type check max

I Make sure max accepts two parameters and that 2+3 has
the type of the first formal parameter and x has the type
of the second formal parameter

I The whole expression has the return type declared for max

89 / 95

Type checking
Exercise

// x is declared as an int
max(2+3, x)

I Type check 2+3

I Type check x

I Type check max

I Make sure max accepts two parameters and that 2+3 has
the type of the first formal parameter and x has the type
of the second formal parameter

I The whole expression has the return type declared for max

89 / 95

Type checking
Exercise

// x is declared as an int
max(2+3, x)

I Type check 2+3

I Type check x

I Type check max

I Make sure max accepts two parameters and that 2+3 has
the type of the first formal parameter and x has the type
of the second formal parameter

I The whole expression has the return type declared for max

89 / 95

Inference rules
What does this mean in English?

P
C

“If P then C”

90 / 95

Inference rules
What does this mean in English?

P
C

“If P then C”

90 / 95

Inference rules
What about this?

P1 P2
C

“If P1 and P2 then C”

Short version for:

P1 ∧ P2
C

91 / 95

Inference rules
What about this?

P1 P2
C

“If P1 and P2 then C”

Short version for:

P1 ∧ P2
C

91 / 95

Inference rules
What about this?

P1 P2
C

“If P1 and P2 then C”

Short version for:

P1 ∧ P2
C

91 / 95

Inference rules
What does this mean in English?

Γ ` e : T

“Under the set of assumptions Γ, it is provable (`) that e has
type (:) T”

(Assumptions = symbol table)

92 / 95

Inference rules
What does this mean in English?

Γ ` e : T

“Under the set of assumptions Γ, it is provable (`) that e has
type (:) T”

(Assumptions = symbol table)

92 / 95

Inference rules
What does this action do?

Γ[x→ T]

Γ ` T x

Adds the mapping from x to T in the symbol table

93 / 95

Inference rules
What does this action do?

Γ[x→ T]

Γ ` T x

Adds the mapping from x to T in the symbol table

93 / 95

Inference rules
What does this mean in English?

Γ(x) = T
Γ ` x : T

“If under the set of assumptions Γ x is mapped to type T, then under
the set of assumptions Γ it is provable that e has type T.”

94 / 95

Inference rules
What does this mean in English?

Γ(x) = T
Γ ` x : T

“If under the set of assumptions Γ x is mapped to type T, then under
the set of assumptions Γ it is provable that e has type T.”

94 / 95

Inference rules
Γ ` e1 : int Γ ` e2 : int

Γ ` e1 + e2 : int

“If under the set of assumptions Γ it is provable that e1 has type int
and under the set of assumptions Γ it is provable that e2 has type int,
then under the set of assumptions Γ it is provable that e1 + e2 has
type int.”

95 / 95

Inference rules
Γ ` e1 : int Γ ` e2 : int

Γ ` e1 + e2 : int

“If under the set of assumptions Γ it is provable that e1 has type int
and under the set of assumptions Γ it is provable that e2 has type int,
then under the set of assumptions Γ it is provable that e1 + e2 has
type int.”

95 / 95

Inference rules
This is not going to be on the exam (probably)

L,C,M,V ` Ei : σi

∃~τ : constructor(L, C, ~τ) ∧
~τ := ~σ ∧
(∀~γ : constructor(L, C, ~γ) ∧ ~γ := ~σ

⇓
~γ := ~τ

)

L,C,M,V ` new C(E1, . . . ,En) : C

96 / 95

Code generation

Code generation
Code generation has many sub-phases:

I Computing resources

I Generating an IR of the code

I Optimizing the code

I Emitting the code

98 / 95

Computing resources
In JOOS, what resources did we need to compute?

I L

I S

I L

I O

99 / 95

Computing resources
In JOOS, what resources did we need to compute?

I Locals (how many?)

I S

I L

I O

100 / 95

Computing resources
In JOOS, what resources did we need to compute?

I Locals (how many?)

I Stack height (maximum)

I L

I O

101 / 95

Computing resources
In JOOS, what resources did we need to compute?

I Locals (how many?)

I Stack height (maximum)

I Labels (for control structures and some operators)

I O

102 / 95

Computing resources
In JOOS, what resources did we need to compute?

I Locals (how many?)

I Stack height (maximum)

I Labels (for control structures and some operators)

I Offsets (locals and formals)

103 / 95

JVM bytecodes
What does the body of this method look like in Jasmin?

public static void f(int x) {
x = x + 3;

}

// [TOP , BOT]
// [,]

iload_0 // [x ,]
ldc_int 3 // [3 , x]
iadd // [x+3 ,]
istore_0 // [,]

I How many locals? 1

I Stack height? 2

104 / 95

JVM bytecodes
What does the body of this method look like in Jasmin?

public static void f(int x) {
x = x + 3;

}

// [TOP , BOT]
// [,]

iload_0 // [x ,]
ldc_int 3 // [3 , x]
iadd // [x+3 ,]
istore_0 // [,]

I How many locals? 1

I Stack height? 2

104 / 95

JVM bytecodes
What does the body of this method look like in Jasmin?

public static void f(int x) {
x = x + 3;

}

// [TOP , BOT]
// [,]

iload_0 // [x ,]
ldc_int 3 // [3 , x]
iadd // [x+3 ,]
istore_0 // [,]

I How many locals?

1

I Stack height? 2

104 / 95

JVM bytecodes
What does the body of this method look like in Jasmin?

public static void f(int x) {
x = x + 3;

}

// [TOP , BOT]
// [,]

iload_0 // [x ,]
ldc_int 3 // [3 , x]
iadd // [x+3 ,]
istore_0 // [,]

I How many locals? 1

I Stack height? 2

104 / 95

JVM bytecodes
What does the body of this method look like in Jasmin?

public static void f(int x) {
x = x + 3;

}

// [TOP , BOT]
// [,]

iload_0 // [x ,]
ldc_int 3 // [3 , x]
iadd // [x+3 ,]
istore_0 // [,]

I How many locals? 1

I Stack height?

2

104 / 95

JVM bytecodes
What does the body of this method look like in Jasmin?

public static void f(int x) {
x = x + 3;

}

// [TOP , BOT]
// [,]

iload_0 // [x ,]
ldc_int 3 // [3 , x]
iadd // [x+3 ,]
istore_0 // [,]

I How many locals? 1

I Stack height? 2

104 / 95

JVM bytecodes
How do we generate code for relational/logical operators (||,
>)?

Use an implicit if-else construct to load 0/1 values as the
result

105 / 95

JVM bytecodes
What invariant must be respected by statement code templates?

Stack height is unchanged

What invariant must be respected by expression code
templates?

Stack height increased by one

106 / 95

JVM bytecodes
What invariant must be respected by statement code templates?

Stack height is unchanged

What invariant must be respected by expression code
templates?

Stack height increased by one

106 / 95

JVM bytecodes
What invariant must be respected by statement code templates?

Stack height is unchanged

What invariant must be respected by expression code
templates?

Stack height increased by one

106 / 95

JVM bytecodes
What invariant must be respected by statement code templates?

Stack height is unchanged

What invariant must be respected by expression code
templates?

Stack height increased by one

106 / 95

