
COMP 520 Winter 2018 Optimization (1)

Optimization
COMP 520: Compiler Design (4 credits)

Alexander Krolik

alexander.krolik@mail.mcgill.ca

MWF 9:30-10:30, TR 1080

http://www.cs.mcgill.ca/~cs520/2018/

Bob, from Accounting

COMP 520 Winter 2018 Optimization (2)

Announcements (Friday, February 23rd)
Milestones

• Office hours tomorrow from 1:00-3:00 PM

Milestone 1

• Any questions?

• Due: Tuesday, February 27th 11:59 PM

COMP 520 Winter 2018 Optimization (3)

Optimization
The optimizer focuses on

• Reducing the execution time (what you typically think of); or

• Reducing the code size; or

• Reducing the power consumption (new).

These goals often conflict, since a larger program may in fact be faster.

The best optimizations achieve all goals – but this is difficult to accomplish in general.

COMP 520 Winter 2018 Optimization (4)

Optimizations for Space
Optimizations for space reduce the code size by replacing sequences of instructions with a smaller set

• Historically very important, because memory was small and expensive;

• When memory became large and cheap, optimizing compilers traded space for speed; but

• Then Internet bandwidth was small and expensive, so Java compilers optimized for space; but

• Today Internet bandwidth is larger and cheaper, so we optimize for speed again.

⇒ Optimizations are driven by economy!

COMP 520 Winter 2018 Optimization (5)

Optimizations for Speed
Optimizations for speed improve the execution performance of the program. These types of optimizations

form the bulk of modern optimizing compilers

• Historically very important to gain acceptance for high-level languages;

• Are still important, since the software always strains the limits of the hardware;

• Are challenged by ever higher abstractions in programming languages; and

• Must constantly adapt to changing microprocessor architectures.

Common optimization areas

• Cache performance;

• Parallel/vectorization;

• Loop invariants;

• Common-expressions removal (CSE)/dead code removal; and

• . . .

COMP 520 Winter 2018 Optimization (6)

Optimization Passes
Optimizations may take place at various levels of program transformation/execution

• At the source code level;

• In an intermediate representation;

• At the binary machine code level; or

• At run-time (e.g. JIT compilers).

An aggressive optimization requires many small contributions from all levels.

Considerations

Choosing an optimization strategy is a balance between

• Compilation time;

• Execution time;

• Available information/representations (low-level/high-level);

• Runtime vs offline; and more

COMP 520 Winter 2018 Optimization (7)

Optimization from a Programmer’s Perspective
Should you program in “Optimized C”?

If you want a fast C program, should you use LOOP #1 or LOOP #2?

/* LOOP #1 */
for (i = 0; i < N; i++) {

a[i] = a[i] * 2000;
a[i] = a[i] / 10000;

}

/* LOOP #2 */
b = a;
for (i = 0; i < N; i++) {

*b = *b * 2000;
*b = *b / 10000;
b++;

}

What would the expert programmer do?

COMP 520 Winter 2018 Optimization (8)

Optimization from a Programmer’s Perspective
If you said LOOP #2 . . . you were wrong!

LOOP opt. level SPARC MIPS Alpha

#1 (array) no opt 20.5 21.6 7.85

#1 (array) opt 8.8 12.3 3.26

#1 (array) super 7.9 11.2 2.96

#2 (ptr) no opt 19.5 17.6 7.55

#2 (ptr) opt 12.4 15.4 4.09

#2 (ptr) super 10.7 12.9 3.94

• Pointers confuse most C compilers; don’t use pointers instead of array references.

• Compilers do a good job of register allocation; don’t try to allocate registers in your C program.

• In general, write clear C code; it is easier for both the programmer and the compiler to understand.

COMP 520 Winter 2018 Optimization (9)

Optimization: Smaller and Faster
Intuitively, reducing the number of instructions needed to run a program can improve program performance

• Remove unnecessary operations;

• Simplify control structures; and

• Replace complex operations by simpler ones (strength reduction).

This is what the JOOS peephole optimizer does.

Later, we shall look at

• Parallelism through GPUs;

• JIT compilers (high level); and

• More powerful optimizations based on static analysis (COMP 621).

COMP 520 Winter 2018 Optimization (10)

Optimization: Larger and Faster (Tabulation)
In some instances, expanding the code size can improve performance. Tabulation is one such approach

which replaces function calls with an approximation

Sine function

sin(x) = x−
x3

3!
+

x5

5!
−

x7

7!
+

Optimization using a lookup table

sin(0.0) 0.000000

sin(0.1) 0.099833

sin(0.2) 0.198669

sin(0.3) 0.295520

sin(0.4) 0.389418

sin(0.5) 0.479426

sin(0.6) 0.564642

COMP 520 Winter 2018 Optimization (11)

Optimization: Larger and Faster (Loop Unrolling)
Loop unrolling reduces the overhead of jumping and condition testing by merging adjacent iterations.

Given a loop bound multiple of two

for (i = 0; i < 2 * N; i++) {
a[i] = a[i] + b[i];

}

We can rewrite the code by merging pairs of iterations (unroll factor 2)

for (i = 0; i < 2 * N; i = i+2) {
j = i + 1;
a[i] = a[i] + b[i];
a[j] = a[j] + b[j];

}

Loop unrolling can give a 10–20% speedup. What is a potential disadvantage? How does this work for

loop bounds that may not be a multiple of the unroll factor?

For those interested, look into Duff’s device

COMP 520 Winter 2018 Optimization (12)

Optimizing High-Level Languages
The optimizer must undo fancy language abstractions

• Variables abstract away from registers, so the optimizer must find an efficient mapping;

• Control structures abstract away from gotos, so the optimizer must construct and simplify a goto graph;

• Data structures abstract away from memory, so the optimizer must find an efficient layout;

...

• Method lookups abstract away from procedure calls, so the optimizer must efficiently determine the

intended implementations.

COMP 520 Winter 2018 Optimization (13)

Optimizing High-Level Languages
The OO language BETA unifies as patterns the concepts

• Abstract class;

• Concrete class;

• Method; and

• Function.

A (hypothetical) optimizing BETA compiler must attempt to classify the patterns to recover that information.

COMP 520 Winter 2018 Optimization (14)

Optimizing High-Level Languages
Difficult compromises

• A high abstraction level makes the development time cheaper, but the run-time more expensive;

however

• High-level abstractions are also easier to analyze, which gives optimization potential.

Optimization considerations

• An optimizing compiler makes run-time more efficient, but compile-time less efficient;

• Optimizations for speed and size may conflict; and

• Different applications may require different optimizations.

COMP 520 Winter 2018 Optimization (15)

JOOS Peephole Optimizer

• Works at the bytecode level;

• Looks only at peepholes, which are sliding windows on the code sequence;

• Uses patterns to identify and replace inefficient constructions;

• Continues until a global fixed point is reached; and

• Optimizes both speed and space.

COMP 520 Winter 2018 Optimization (16)

JOOS Optimization

c = a * b + c;
if (c < a)

a = a + b * 113;
while (b > 0) {

a = a * c;
b = b - 1;

}

-

iload_1
iload_2
imul
iload_3
iadd
dup
istore_3
pop
iload_3
iload_1
if_icmplt true_1
iconst_0
goto stop_2

true_1:
iconst_1

stop_2:
ifeq stop_0
iload_1
iload_2
ldc 113
imul
iadd
dup
istore_1
pop

stop_0:
start_3:
iload_2
iconst_0
if_icmpgt true_5
iconst_0
goto stop_6

true_5:
iconst_1

stop_6:
ifeq stop_4
iload_1
iload_3
imul
dup
istore_1
pop...

-

iload_1
iload_2
imul
iload_3
iadd
istore_3
iload_3
iload_1
if_icmpge stop_0
iload_1
iload_2
ldc 113
imul
iadd
istore_1

stop_0:
start_3:
iload_2
iconst_0
if_icmple stop_4
iload_1
iload_3
imul
istore_1
iinc 2 -1
goto start_3

stop_4:

COMP 520 Winter 2018 Optimization (17)

Optimizer Goto Graph

The optimizer works on a structure called a goto
graph that represents the jumps in a program

while (a > 0) {
if (b == c)

a = a - 1;
else

c = c + 1;
}

-

-

-

-

-

-

-

-start_0:
iload_1
iconst_0
if_icmpgt true_2
iconst_0
goto stop_3
true_2:
iconst_1
stop_3:
ifeq stop_1
iload_2
iload_3
if_icmpeq true_6
iconst_0
goto stop_7
true_6:
iconst_1
stop_7
ifeq else_4:
iload_1
iconst_1
isub
dup
istore_1
pop
goto stop_5
else_4
iload_3
iconst_1
iadd
dup
istore_3
pop
stop_5:
goto start_0
stop_1:

COMP 520 Winter 2018 Optimization (18)

Optimizer Goto Graph
To capture the goto graph, the labels for a given code sequence are represented as an array of structures

typedef struct LABEL {
char *name;
int sources;
struct CODE *position;

} LABEL;

Where

• The array index is the label’s number;

• Field name is the textual part of the label;

• Field sources indicates the in-degree of the label; and

• Field position points to the location of the label in the code sequence.

COMP 520 Winter 2018 Optimization (19)

Operations on the Goto Graph
The optimizer acts on the goto graph and may

• Inspect a given bytecode;

• Find the next bytecode in the sequence;

• Find the destination of a label;

• Create a new reference to a label;

• Drop a reference to a label;

• Ask if a label is dead (in-degree 0);

• Ask if a label is unique (in-degree 1); and

• Replace a sequence of bytecodes by another.

COMP 520 Winter 2018 Optimization (20)

Optimizer - Instructions
A peephole optimizer can replace one sequence of instructions by another

• Traverse the bytecode sequence (next); and

• Check each instruction is in the pattern (is_<inst>).

Find the next bytecode in the sequence

CODE *next(CODE *c) {
if (c == NULL) return NULL;
return c->next;

}

Inspect a given bytecode

int is_istore(CODE *c, int *arg) {
if (c == NULL) return 0;
if (c->kind == istoreCK) {

(*arg) = c->val.istoreC;
return 1;

} else {
return 0;

}
}

COMP 520 Winter 2018 Optimization (21)

Optimizer - Labels
Optimizations may also traverse the goto graph and evaluate jump targets

Find the destination of a label

CODE *destination(int label) {
return currentlabels[label].position;

}

Create a new reference to a label

int copylabel(int label) {
currentlabels[label].sources++;
return label;

}

Drop a reference to a label

void droplabel(int label) {
currentlabels[label].sources--;

}

COMP 520 Winter 2018 Optimization (22)

Optimizer - Labels
Optimizations may check properties of labels (for instance to remove dead labels)

Ask if a label is dead (in-degree 0)

int deadlabel(int label) {
return currentlabels[label].sources == 0;

}

Ask if a label is unique (in-degree 1)

int uniquelabel(int label) {
return currentlabels[label].sources == 1;

}

COMP 520 Winter 2018 Optimization (23)

Optimization - Replace
When a peephole pattern identifies a sequence of bytecode to optimize, it can replace them by another

int replace(CODE **c, int k, CODE *r) {
CODE *p = *c;
for (int i = 0; i < k; i++) p = p->next;
if (r == NULL) {

*c = p;
} else {

*c = r;
while (r->next != NULL) r = r->next;
r->next = p;

}
return 1;

}

1. Find the first instruction that is not replaced (i);

2. Insert the new sequence (if there is one); and

3. Attach the end of the new sequence to instruction i.

COMP 520 Winter 2018 Optimization (24)

Peephole Pattern - Positive Increment
An increment to a local variable

x = x + k

may be simplified to an increment operation, if 0≤ k≤ 127

Corresponding JOOS peephole pattern

int positive_increment(CODE **c) {
int x, y, k;
if (is_iload(*c, &x) &&

is_ldc_int(next(*c), &k) &&
is_iadd(next(next(*c))) &&
is_istore(next(next(next(*c))), &y) &&
x == y && 0 <= k && k <= 127) {

return replace(c, 4, makeCODEiinc(x, k, NULL));
}
return 0;

}

We may attempt to apply this pattern anywhere in the code sequence.

COMP 520 Winter 2018 Optimization (25)

Peephole Pattern - Algebraic Rules
x * 0 = 0
x * 1 = x
x * 2 = x + x

Corresponding JOOS peephole pattern

int simplify_multiplication_right(CODE **c) {
int x, k;
if (is_iload(*c, &x) &&

is_ldc_int(next(*c), &k) &&
is_imul(next(next(*c)))) {

if (k == 0)
return replace(c, 3, makeCODEldc_int(0, NULL));

else if (k == 1)
return replace(c, 3, makeCODEiload(x, NULL));

else if (k == 2)
return replace(c, 3,

makeCODEiload(x, makeCODEdup(makeCODEiadd(NULL)))
);

return 0;
}
return 0;

}

COMP 520 Winter 2018 Optimization (26)

Peephole Pattern - Goto Goto
A part of the goto graph may be simplified by short-circuiting the jump to L_1

-

-

goto L_1

L_1:
goto L_2

L_2:

Corresponding JOOS peephole pattern
int simplify_goto_goto(CODE **c) {

int l1, l2;
if (is_goto(*c, &l1) &&

is_goto(next(destination(l1)), &l2) && l1 > l2) {
droplabel(l1);
copylabel(l2);
return replace(c, 1, makeCODEgoto(l2, NULL));

}
return 0;

}

COMP 520 Winter 2018 Optimization (27)

Peephole Pattern - Goto Goto
Why the condition l1 > l2?

int simplify_goto_goto(CODE **c) {
int l1, l2;
if (is_goto(*c, &l1) &&

is_goto(next(destination(l1)), &l2) && l1 > l2) {
droplabel(l1);
copylabel(l2);
return replace(c, 1, makeCODEgoto(l2, NULL));

}
return 0;

}

Consider the following bytecode

l1: goto l2
l2: goto l1

What will happen without this condition?

COMP 520 Winter 2018 Optimization (28)

Announcements (Monday, February 26th)
Milestones

• Peephole out today! Due: Sunday, April 8th 11:59 PM

• Milestone 2 out today! Due: Sunday, March 11th 11:59 PM

Milestone 1

• Any last minute questions?

• Due: Tuesday, February 27th 11:59 PM

COMP 520 Winter 2018 Optimization (29)

Peephole Pattern - Simplfy astore
The following JOOS peephole pattern removes an unnecessary dup/pop pair of instructions

int simplify_astore(CODE **c) {
int x;
if (is_dup(*c) &&

is_astore(next(*c), &x) &&
is_pop(next(next(*c)))) {

return replace(c, 3, makeCODEastore(x, NULL));
}
return 0;

}

It is clearly sound, but will it ever be useful?

COMP 520 Winter 2018 Optimization (30)

Peephole Pattern - Simplfy astore
Yes, the assignment expression statement

a = b;

We generate the assignment expression without the surrounding statement context - and therefore leave
the value on the top of the stack

aload_2
dup
astore_1
pop
return

The final pop instruction is generated at the statement level

COMP 520 Winter 2018 Optimization (31)

Peephole Pattern - Simplfy astore
The context agnostic generation for assignment expressions inserts the dup instruction by default

Corresponding JOOS source code

void codeEXP(EXP *e) {
case assignK:

codeEXP(e->val.assignE.right);
code_dup();
switch (e->val.assignE.leftsym->kind) {

[...]
case formalSym:

if (e->val.assignE.leftsym->val.formalS->type->kind == refK) {
code_astore(e->val.assignE.leftsym->val.formalS->offset);

} else {
code_istore(e->val.assignE.leftsym->val.formalS->offset);

}
break;

This handles chains of assignments a = b = c where the value is later needed

COMP 520 Winter 2018 Optimization (32)

Peephole Pattern - Simplfy astore
To avoid the dup in the assign template

• We must know if the assigned value is needed later (contextual information); and

• It must also flow the decision back to the enclosing code below.

void codeSTATEMENT(STATEMENT *s) {
case expK:

codeEXP(s->val.expS);
if (s->val.expS->type->kind != voidK) {

code_pop();
}
break;

A peephole pattern is simpler and more modular.

COMP 520 Winter 2018 Optimization (33)

Peephole Optimization
The peephole optimizer applies the collection of patterns in a fixed point process

repeat
for each bytecode in succession do
for each peephole pattern in succession do
repeat

apply the peephole pattern to the bytecode
until the goto graph didn’t change

end
end

until the goto graph didn’t change

COMP 520 Winter 2018 Optimization (34)

Peephole Optimization Termination
Why does this process terminate?

• Each peephole pattern does not necessarily make the code smaller; so

• To demonstrate termination for our examples, we use the lexicographically ordered measure

< #bytecodes, #imul,
∑
L
|gotochain(L)| >

which can be seen to become strictly smaller after each application of a peephole pattern.

COMP 520 Winter 2018 Optimization (35)

Peephole Optimization Fixed Point
• The goto graph obtained as a fixed point is not unique; since

• It depends on the sequence in which the peephole patterns are applied.

That does not happen for the four examples given, but consider the two peephole patterns

A
B

- -
A
B
C

P1 C
D

D
E

P2

These patterns do not commute

A
B
D
E

A
B
D
E

�
�
�
��3

-

Q
Q
Q
QQs -

A
B
C
D

A
B
D

A
B
D

P ∗
1

P ∗
2

P ∗
2

P ∗
1

COMP 520 Winter 2018 Optimization (36)

JOOS Peephole Optimizer (patterns.h)
/* patterns here */

int simplify_astore(CODE **c)
{ int x;
if (is_dup(*c) &&

is_astore(next(*c), &x) &&
is_pop(next(next(*c)))) {
return replace(c, 3, makeCODEastore(x, NULL));

}
return 0;

}

[...]

int init_patterns() {
ADD_PATTERN(simplify_multiplication_right);
ADD_PATTERN(simplify_astore);
ADD_PATTERN(positive_increment);
ADD_PATTERN(simplify_goto_goto);
return 1;

}

COMP 520 Winter 2018 Optimization (37)

JOOS Peephole Optimizer (Fixed Point Driver)
int optiCHANGE;

void optiCODEtraverse(CODE **c) {
int change = 1;
if (*c != NULL) {

while (change) {
change = 0;
for (int i = 0; i < OPTS; i++) {

change = change | optimization[i](c);
}
optiCHANGE = optiCHANGE || change;

}
if (*c != NULL) optiCODEtraverse(&((*c)->next));

}
}

void optiCODE(CODE **c) {
optiCHANGE = 1;
while (optiCHANGE) {

optiCHANGE = 0;
optiCODEtraverse(c);

}
}

COMP 520 Winter 2018 Optimization (38)

JOOS A+ Peephole Optimizer (40 peephole patterns)

Program joosa+ joosa+ -O

AllComponents 907 861

AllEvents 1056 683

Animator 184 180

Animator2 568 456

ConsumeInteger 164 107

DemoFont 97 89

DemoFont2 213 147

DrawArcs 60 60

DrawPoly 94 90

Imagemap 470 361

MultiLineLabel 526 406

ProduceInteger 149 96

Rectangle2 58 58

ScrollableScribble 566 481

ShowColors 88 68

TicTacToe 1471 1211

YesNoDialog 315 248

COMP 520 Winter 2018 Optimization (39)

“Optimizer”
The word “optimizer” is somewhat misleading, since the code is not optimal but merely “better”

Can we find the optimal?

Suppose OPM(G) is the shortest goto graph equivalent to G. The shortest diverging goto graph is

Dmin =
L:
goto L

We can then decide the Halting problem on an arbitrary goto graph G as

OPM(G) = Dmin

Hence, the program OPM cannot exist.

COMP 520 Winter 2018 Optimization (40)

Testing
The testing strategy for the optimizer has three phases

1. A careful argumentation that each peephole pattern is sound;

2. A demonstration that each peephole pattern is realized correctly; and

3. A statistical analysis showing that the optimizer improves the generated programs.

COMP 520 Winter 2018 Optimization (41)

There is a fine line between “optimization” and “not being stupid”
- R. Kent Dybvig

