COMP 520 Winter 2017 Garbage Collection (1)

Garbage Collection

COMP 520: Compiler Design (4 credits)
Alexander Krolik
alexander.krolik@mail.mcgill.ca
MWF 13:30-14:30, MD 279

4

T

v
[e]e]]I I"I|°|°IA1TI"IAII [$][Se] |[e]e] |
y
mE?’_Iib'_ll I
T

)
|

3

)
—
Y

A

y

McCompiley

4

Y

Y
[o]e [[Te][e]e]

COMP 520 Winter 2017 Garbage Collection (2)

Announcements

Milestones:

e Milestone 1 grades returned

e Milestone 2 due Friday, March 10th 11:59PM on GitHub
Midterm:

e Friday, March 17th, either 13:00-14:30 or 13:30-15:00

e Watch for an email regarding room/time assignment later this week

COMP 520 Winter 2017 Garbage Collection (3)

Heap memory allocation:

® is very dynamic in nature:
— unknown size;

— unknown time;
e allows space to be allocated and deallocated as needed and in any order; and

e requires additional runtime support for managing the heap space.

COMP 520 Winter 2017 Garbage Collection (4)

A heap allocator (i.e. malloc):
e manages the memory in the heap space;
e takes as input an integer representing the size needed for the allocation;
e finds unallocated space in the heap large enough to accommodate the request; and
e returns a pointer to the newly allocated space.

Note: without runtime support it is now up to the program to return the memory when it is no longer
needed (i.e. free).

You will find more details in an operating systems course

COMP 520 Winter 2017 Garbage Collection (5)

Deallocations can be either:
e manual: user code making the necessary decisions on what is live;
e continuous: runtime code determining on the spot which objects are live; or
e periodic: runtime code determining at specific times which objects are live.

Note: each mechanism has its own advantages/disadvantages. What are they?

When deallocations occur, we will assume the freed heap blocks are stored ona freelist (alinked list

of heap blocks)

COMP 520 Winter 2017 Garbage Collection (6)

Manual deallocation mechanisms:

® |eave programmers to determine when an object is no longer live; and

e require calls to a deallocator (i.e. free).

Consider the following code:

int *a = malloc(sizeof (int));
[...]

free(a);

xa = 5; // what happens?

COMP 520 Winter 2017 Garbage Collection (7)

Manual deallocations:

Advantages:

e reduces runtime complexity;

e gives the programmer full control on what is live; and

e can be more efficient in some circumstances.
Disadvantages:

® gives the programmer full control on what is live;

® requires extensive effort from the programmer;

® error-prone; and

® can be less efficient in some circumstances.

COMP 520 Winter 2017 Garbage Collection (8)

A garbage collector:

® is part of the runtime system;

e it automatically reclaims heap-allocated records that are no longer used.
A garbage collector should:

e reclaim all unused records;

e spend very little time per record,;

e not cause significant delays; and

e allow all of memory to be used.

These are difficult and often conflicting requirements.

COMP 520 Winter 2017 Garbage Collection (9)

Life without garbage collection:

MB

31 =

e unused records must be explicitly deal-

located,;
e superior if done correctly;
e but it is easy to miss some records; and

e it is dangerous to handle pointers.

Memory leaks in real life (1cal v.2.1)

01 2 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24

hours

COMP 520 Winter 2017 Garbage Collection (10)

Which records are dead, i.e. no longer in use?
|deally, records that will never be accessed in the future execution of the program.

But that is of course undecidable...

Basic conservative assumption:

A record is live if it is reachable from a stack-based program variable (or global variable), otherwise dead.

Note: Dead records may still be pointed to by other dead records.

COMP 520 Winter 2017

A heap with live and dead records:

37

Garbage Collection (11)

COMP 520 Winter 2017 Garbage Collection (12)

Reference counting:
® is a type of continuous (or incremental) garbage collection;
e uses a field on each object (the reference count) to track incoming pointers; and
e determines an object is dead when its reference count reaches zero.

The reference count is updated:

e whenever a reference is changed:

— created
eg.int xa = b; // b refcount++

— destroyed

eg.a = c; // b refcount—-
e whenever a local variable goes out of scope;

e whenever an object is deallocated (all objects it points to have their reference counts decremented).

COMP 520 Winter 2017 Garbage Collection (13)

Pseudo code for reference counting:

function Increment(x) function Free(x)
a.count := x.count+1 for 2:=1 to |x| do
Decrement(x. f;)
function Decrement(x) x.f1 =freelist
ax.count := x.count—1 freelist =

if .count=0 then
Free(x)

COMP 520 Winter 2017

Reference counting has one large problem:

What about objects 7 and 97?

12

37

15

Garbage Collection (14)

20

COMP 520 Winter 2017 Garbage Collection (15)

Reference counting:

Advantages:
® is incremental, distributing the cost over a long period,;
e catches dead objects immediately;
e does not require long pauses to handle deallocations; and
® requires no effort from the user.
Disadvantages:
® is incremental, slowing down the program continuously and unnecessarily;
® requires a more complex runtime system; and

e cannot handle circular data structures.

COMP 520 Winter 2017 Garbage Collection (16)

The mark-and-sweep algorithm:
e explore pointers starting from the program variables, and mark all records encountered;
e sweep through all records in the heap and reclaim the unmarked ones; also
e unmark all marked records.
Assumptions:
e we know the size of each record;
e we know which fields are pointers; and

e reclaimed records are keptina freelist.

COMP 520 Winter 2017

Pseudo code for mark-and-sweep:

function DFS(x)
iIf is a pointer into the heap then
if record @ is not marked then
mark record x
for ¢:=1 to |x| do
DFS(x. f;)

function Mark()
for each program variable v do
DFS(v)

function Sweep()
p :=first address in heap
while p < last address in heap do
if record p is marked then
unmark record p
else
p.f1:=freelist
freelist =p
P = p+sizeof(record p)

Garbage Collection (17)

COMP 520 Winter 2017

Marking and sweeping:

37

37

59

\

Garbage Collection (18)

freelist

COMP 520 Winter 2017

Analysis of mark-and-sweep:
e assume the heap has size H words; and
e assume that R words are reachable.

The cost of garbage collection is:

ClR + CzH
Realistic values are:
10R + 3H
The cost per reclaimed word is:
ClR —+ CzH
H— R

e if Ris close to H, then this is expensive;
e the lower bound is c5;
e increase the heap when R > 0.5 H; then

e the cost per wordis ¢1 + 2¢c3 = 16.

Garbage Collection (19)

COMP 520 Winter 2017 Garbage Collection (20)

Other relevant issues:

e The DFS recursion stack could have size H (and has at least size log H'), which may be too much;
however, the recursion stack can cleverly be embedded in the fields of marked records (pointer

reversal).

e Records can be kept sorted by sizes in the free 11 st. Records may be split into smaller pieces if

necessary.

e The heap may become fragmented: containing many small free records but none that are large
enough.

COMP 520 Winter 2017 Garbage Collection (21)

To deal with fragmented heaps we use compaction:
e once mark-and-sweep has finished, collect all live objects are the beginning of the heap;
e adjust pointers pointing to all moved objects;
e the adjustment depends on the amount of space freed before the object;
® removes fragmentation and improves locality.

As we will see though, this is not possible in all programming languages due to the conservative nature of

garbage collection.

COMP 520 Winter 2017 Garbage Collection (22)

Announcements
Welcome to spring =)

Milestones:
e Milestone 2 due Sunday, March 12th 11:59PM on GitHub
e Terminating statements

Midterm:
e Friday, March 17th, either 13:00-14:30 or 13:30-15:00

e Signup https://goo.gl/forms/ONXwSnPpKg2tkLbZ2

COMP 520 Winter 2017 Garbage Collection (23)

The stop-and-copy algorithm:
e divide the heap into two parts;
e only use one part at a time;
e when it runs full, copy live records to the other part; and
e switch the roles of the two parts.
Advantages:
e allows fast allocation (no freelist);
e avoids fragmentation;
e collects in time proportional to R; and
e avoids stack and pointer reversal.
Disadvantage:

e wastes half your memory.

COMP 520 Winter 2017 Garbage Collection (24)

Before and after stop-and-copy:

oA

Y

[olelsllelg]e][]e]e
A

¢—— next

A

\
\

limit

from-space to-space to-space from-space

next
limit

e next and 11imait indicate the available heap space; and

® copied records are contiguous in memory.

COMP 520 Winter 2017
Pseudo code for stop-and-copy:

function Forward(p)
if p € from-space then
if p. f1 € to-space then
return p.
else
for ¢:=1 to |p| do

next.f; = p.fi

p.f1 = next
next = next + sizeof(record p)
return p. f

else return p

Garbage Collection (25)

function Copy()
scan = next := start of to-space
for each program variable v do
v := Forward(v)
while scan < next do
for :=1 to |scan| do
scan. f; := Forward(scan. f;)

scan = scan + sizeof(record scan)

COMP 520 Winter 2017 Garbage Collection (26)

Snapshots of stop-and-copy:

Yy
o

[12]
°

Y

w

~
=~ o o

scan

A
A

- O
¢ <
— \g
BRI
i

A

[ele[S]ofy][] I8 [e[Q] [M[3][]e]a]|
t |
[ele[S][ofe|[=feI8] el el [~[¢][]¢]e []]0]
el

Y
A
Y

<+— next

Y

Y
A

before after forwarding p and q and scanning 1 record

COMP 520 Winter 2017

Analysis of stop-and-copy:
e assume the heap has size H words; and
e assume that R words are reachable.

The cost of garbage collection is:

A realistic value is:

The cost per reclaimed word is:

e this has no lower bound as H grows;

o if H = 4R then the costis cg =~ 10.

CgR

10R

C3R

Garbage Collection (27)

COMP 520 Winter 2017 Garbage Collection (28)

Earlier assumptions:
e we know the size of each record; and
e we know which fields are pointers.

For object-oriented languages, each record already contains a pointer to a class descriptor.

For general languages, we must sacrifice a few bytes per record.

COMP 520 Winter 2017 Garbage Collection (29)

We use mark-and-sweep or stop-and-copy.

But garbage collection is still expensive: = 100 instructions for a small object!

Each algorithm can be further extended by:
® generational collection (to make it run faster); and

e incremental (or concurrent) collection (to make it run smoother).

COMP 520 Winter 2017 Garbage Collection (30)

Generational collection:
e observation: the young die quickly;
e hence the collector should focus on young records;
e divide the heap into generations: Go, G1, G2, . . .;
e all records in G&; are younger than records in G4 1;
e collect G often, G less often, and so on; and

e promote a record from G'; to G;4-1 when it survives several collections.

COMP 520 Winter 2017 Garbage Collection (31)

How to collect the G generation:
e it might be very expensive to find those pointers;
e fortunately, they are rare; so
e we can try to remember them.
Ways to remember:
e maintain a list of all updated records (use marks to make this a set); or

e mark pages of memory that contain updated records (in hardware or software).

COMP 520 Winter 2017

Incremental collection:
e garbage collection may cause long pauses;

e this is undesirable for interactive or real-time programs; so

e try to interleave the garbage collection with the program execution.

Two players access the heap:
e the mutator: creates records and moves pointers around; and
e the collector. tries to collect garbage.

Some invariants are clearly required to make this work.

The mutator will suffer some slowdown to maintain these invariants.

Garbage Collection (32)

