
COMP 520 Compiler Design
Group Milestone #2

Symbol Table and Type Checking for GoLite

Due: Monday, March 13 at 12:00 PM (lunch time)

Overview:

The purpose of this milestone is to finish the front-end of your project. After this milestone
you should have all the infrastructure ready to generate code.

Question 1: Invalid Programs (10 points)

Develop 20 small example programs that illustrate each of your type/semantic errors. In
Question 3 you will explain the type check that goes with each of these programs. We will
make a library of these programs for further testing.

You should test your compiler on many more programs, both valid and invalid, but we will
not grade these. Having a well tested compiler at this point will greatly simplify generating
good code in the next milestones.

Question 2: Symbol Table and Typechecker (30 points)

Implement the symbol table and type checker for GoLite. The scopes and type system for
GoLite is the same as for Go, except on our restricted language subset.

Your compiler should support two new flags:

-dumpsymtab This flag should cause the top-most frame of the symbol table to be dumped
each time a scope is exited. It would make sense to also print the line number associated
with the scope exit. You may optionally implement -dumpsymtaball which dumps the
entire stack of frames on each scope exit. Given an input file of the form foo.go, your
compiler should write these results to foo.symtab.

-pptype This flag should pretty print the program, with the type of each expression printed
in some legible format. It was suggested that you might print the types in comments
so that the resulting pretty-printed output could be recompiled. Given an input file of
the form foo.go, your compiler should write the results to foo.pptype.go.

Your front-end should handle semantic/type errors in a user-friendly way. You need to only
catch the first error and then quit, but you should try to give a reasonable error message
that would help the user correct his/her program. Error messages should be sent to stderr.
As in the minilang assignments, we will be using test scripts to evaluate your submissions.

1



Question 3: Design Decisions and Contributions (10

points)

Briefly discuss the design decisions you took in the design and implementation of your symbol
table and type checker. Briefly explain the scoping rules you used. Also, enumerate the type
checks that you made, and give the correspondence of this type check with the test program
used to demonstrate the type error given in Question 1.

Briefly list the major contributions made by each team member to this milestone.

Note: You should also keep notes on each phase, as this will help you generate the final
project report.

What to hand in

You will be developing your project in your team’s github repository. At each milestone you
will create a tag before the due date, and the TAs will review the code associated with that
tag. For this second milestone you should create a tag called milestone2. Information about
creating git tags can be found at: http://git-scm.com/book/en/v2/Git-Basics-Tagging.

Your project should be kept in the following format:

/

README (Your group names, student IDs, relevant info and

instructions for each milestone (just add information

as you finish each milestone. Make it easy for the TAs to

grade your milestone! Your README file should also

include references to any code that you have read to get

ideas, or code that you have used in your compiler.

For code that you have used, you must ensure that:

(1) you have permission to use it, and

(2) you have clearly indicated in your compiler

the source of the code.)

programs/

valid/ (your valid programs)

invalid/ (your invalid programs)

types/ (your invalid types programs corresponding to Q1)

src/ (the source code and build files. You must use some sort of

automatic build system like Makefile or ant)

doc/ (design documents, the answer for question 3 should be in a

file called milestone2.pdf)

build.sh (a build script to compiler your compiler)

2



run.sh (a run script that when invoked as "run derp.go" will run

your compiler)

3


