COMP 520 Winter 2015

Optimization
COMP 520: Compiler Design (4 credits)
Professor Laurie Hendren

hendren@cs.mcgill.ca

—> SCAN > PARSE > WEED

Y
SYMBOL

RESOURCE (= TYPE

A

Y

CODE >| OPTIMIZE > EMIT >

Maggie the Devourer (of Code)

Optimization (1)

COMP 520 Winter 2015 Optimization (2)

The optimizer focuses on:
e reducing the execution time; or
e reducing the code size; or
e reducing the power consumption (new).

These goals often conflict, since a larger program may in fact be faster.

The best optimizations achieve all goals.

COMP 520 Winter 2015 Optimization (3)

Optimizations for space:
e were historically very important, because memory was small and expensive;
e when memory became large and cheap, optimizing compilers traded space for speed; but
e then Internet bandwidth was small and expensive, so Java compilers optimized for space,
e today Internet bandwidth is larger and cheaper, so we optimize for speed again.

=> Optimizations driven by economy!

COMP 520 Winter 2015 Optimization (4)

Optimizations for speed:
e were historically very important to gain acceptance for high-level languages;
e are still important, since the software always strains the limits of the hardware;
e are challenged by ever higher abstractions in programming languages; and

e must constantly adapt to changing microprocessor architectures.

COMP 520 Winter 2015 Optimization (5)

Optimizations may take place:
e at the source code level;
® in an intermediate representation;
e at the binary machine code level; or
e at run-time (e.g. JIT compilers).

An aggressive optimization requires many small contributions from all levels.

COMP 520 Winter 2015 Optimization (6)

Should you program in “Optimized C”?

If you want a fast C program, should you use LOOP #1 or LOOP #2?

/* LOOP #1 x/

for (1 = 0; 1 < N; 1i++) {
ali] = a[i] = 2000;
ali] = a[i] / 10000;

}

/* LOOP #2 x/

b = a;

for (1 = 0; 1 < N; 1i++) {
*b = xb x 2000;
xb = xb / 10000;
b++;

}

What would the expert programmer do?

COMP 520 Winter 2015

If you said LOOP #2 ... you were wrong!

LOOP opt. level | SPARC | MIPS | Alpha
#1 (array) no opt 20.5 21.6 7.85
#1 (array) opt 8.8 12.3 3.26
#1 (array) super 7.9 11.2 2.96
#2 (ptr) no opt 19.5 17.6 7.55
#2 (ptr) opt 12.4 154 | 4.09
#2 (ptr) super 10.7 12.9 3.94

e Pointers confuse most C compilers; don’t use pointers instead of array references.

Optimization (7)

e Compilers do a good job of register allocation; don'’t try to allocate registers in your C program.

e In general, write clear C code; it is easier for both the programmer and the compiler to understand.

1load_1

COMP 520 Winter 2015 iload 2 Optimization (8)
imul
iload_3
iadd
dup
istore_3
pop
iload_3 iload 1
iload 1 iload_ 2
if _icmplt true_1 imul
iconst_0 iload_3
goto stop_2 iadd
true 1: istore_3
iconst_1 iload_3
stop_2: ;%oad_l)
ifeqg stop_0 1f _1cmpge stop_
C = axbtc; ilogd 1 P iload_1
1f (c<a) iload_2 iéoa?fg
_ . C
a=atbx113; %%81113 imol
while (b>0) {—m7m iadd ——— iadd
a=ax*c; dup istore_1
b:b_l . istore_1 StOp—O:
’ pop start_3:
} stop_0: iload_2
start_3: iconst_0
iload_2 if_icmple stop_4
iconst_0 iload_1
if_icmpgt true_5 iload_3
iconst_0 imul
goto Stop_6 istore_1
true 5: iinc 2 -1
iconst 1 goto start_3
stop_6: stop_4:
ifeqg stop_4
iload_1
iload_3
imul
dup
istore_1

pop

COMP 520 Winter 2015 Optimization (9)

Smaller and faster code:
® remove unnecessary operations;
e simplify control structures; and
e replace complex operations by simpler ones (strength reduction).

This is what the JOOS optimizer does.
Later, we shall look at:

e JIT compilers; and

e more powerful optimizations based on static analysis.

COMP 520 Winter 2015 Optimization (10)

Larger, but faster code: tabulation.
The sine function may be computed as:

73 5 27
sin (x) —w—a-l—a—ﬁ—l—......
or looked up in a table:
sin (0.0) 0.000000
sin (0.1) 0.099833
sin (0.2) 0.198669
sin (0.3) 0.295520
sin (0.4) 0.389418
sin (0.5) 0.479426
sin (0.6) 0.564642
sin (0.7) 0.644218

COMP 520 Winter 2015 Optimization (11)

Larger, but faster code: loop unrolling.

The loop:
for (i=0; i<2%N; i++) {
alil] = ali] + b[i];

}

is changed into:

for (1=0; 1i<2«N; 1=1i+2) {
J o= i+1;
ali] = ali]
aljl = aljl

}

which reduces the overhead and may give a 10-20% speedup.

COMP 520 Winter 2015 Optimization (12)

The optimizer must undo fancy language abstractions:
e variables abstract away from registers, so the optimizer must find an efficient mapping;
e control structures abstract away from gotos, so the optimizer must construct and simplify a goto graph;

e data structures abstract away from memory, so the optimizer must find an efficient layout;

e method lookups abstract away from procedure calls, so the optimizer must efficiently determine the
intended implementations.

COMP 520 Winter 2015 Optimization (13)

Continuing: the OO language BETA unifies as patterns the concepts:
e abstract class;
® concrete class;
e method; and
e function.

A (hypothetical) optimizing BETA compiler must attempt to classify the patterns to recover that information.

Example: all patterns are allocated on the heap, but 50% of the patterns are methods that could be
allocated on the stack.

COMP 520 Winter 2015 Optimization (14)

Difficult compromises:

e a high abstraction level makes the development time cheaper, but the run-time more expensive;
however

e high-level abstractions are also easier to analyze, which gives optimization potential.
Also:

e an optimizing compiler makes run-time more efficient, but compile-time less efficient;

® optimizations for speed and size may conflict; and

e different applications may require different optimizations.

COMP 520 Winter 2015 Optimization (15)

The JOOS peephole optimizer:
e works at the bytecode level;
® |ooks only at peepholes, which are sliding windows on the code sequence;
® uses patterns to identify and replace inefficient constructions;
e continues until a global fixed point is reached; and

e optimizes both speed and space.

COMP 520 Winter 2015 Optimization (16)

——»start _0:
iload_1
iconst O
if_icmpgt true_?2
iconst_0O
goto stop_3
true_2:
iconst_1
stop_3:

—— 1feq stop_1

P : iload 2

The optimizer considers the goto iload 3

graph: 1f_icmpeq true_6

, iconst_ O

while (a>0) { goto stop_7

: — true_6:
1t (b c) iconst_ 1
a=a-1; stop_7
— ifeq else_4:
else iload_1
c=c+1; iconst 1
} isub
dup

istore 1

pop

goto stop_5

—»-c]lse 4

iload_3
iconst 1
iadd

dup
istore_3
pop

L p»stop_5:

goto start_0

—»-stop_1:

COMP 520 Winter 2015 Optimization (17)

To capture the goto graph, the labels for a given code sequence are represented as an array of:

typedef struct LABEL {
char +*name;
int sources;
struct CODE x*position;
} LABEL;

where:
e the array index is the label's number;
e the field name is the textual part of the label;
e the field sources indicates the in-degree of the label; and

e the field pos it ion points to the location of the label in the code sequence.

COMP 520 Winter 2015

Operations on the goto graph:

inspect a given bytecode;

find the next bytecode in the sequence;
find the destination of a label;

create a new reference to a label;

drop a reference to a label;

ask if a label is dead (in-degree 0);

ask if a label is unique (in-degree 1); and

replace a sequence of bytecodes by another.

Optimization (18)

COMP 520 Winter 2015

Inspect a given bytecode:

int i1s_istore (CODE *c, 1int =xarqg)
{ 1f (c==NULL) return O;

1f (c—>kind == istoreCK) {
(rarg) = c—>val.istoreC;
return 1;

} else {

return 0;
}
}

Find the next bytecode in the sequence:
CODE xnext (CODE =xcC)

{ 1f (c==NULL) return NULL;
return c—>next;

}

Optimization (19)

COMP 520 Winter 2015 Optimization (20)

Find the destination of a label:

CODE =*destination(int label)
{ return currentlabels[label].position;

}

Create a new reference to a label:

int copylabel (int label)

{ currentlabels[label].sources++;
return label;

}

COMP 520 Winter 2015

Optimization (21)
Drop a reference to a label:

vold droplabel (int label)
{ currentlabels[label].sources——;

}

Ask if a label is dead (in-degree 0):
int deadlabel (int label)

{ return currentlabels|[label].sources==0;

}

Ask if a label is unique (in-degree 1):
int uniquelabel (int label)
{ return currentlabels[label].sources==

}

COMP 520 Winter 2015 Optimization (22)

Replace a sequence of bytecodes by another:
int replace (CODE x%c, 1int k, CODE x*r)
{ CODE x*p;

int 1;

p = *cj;

for (i=0; i<k; i++) p=p—->next;

1f (r==NULL) {

*C = Py
} else {
*xC = Ir;
while (r—->next!=NULL) r=r->next;
r->next = p;

}

return 1;

COMP 520 Winter 2015 Optimization (23)

The expression:
X = x t+ k

may be simplified to an increment operation, if 0 < k < 127.

Corresponding JOOS peephole pattern:
int positive_increment (CODE xx*cC)
{ int x,y,k;
1if (is_iload(*c, &xX) &&
is _1ldc_int (next (xc), &k) &&
i1s_ladd(next (next (xc))) &&
is_1istore (next (next (next (*c))), &y) &&
==y && 0<=k && k<=127) {
return replace(c, 4,makeCODEiinc (x,k,NULL));
}

return 0;

}

We may attempt to apply this pattern anywhere in the code sequence.

COMP 520 Winter 2015

The algebraic rules:

x = 0 =0
X * 1 = x
X * 2 = X 4+ x

may be used to simplify some operations.

Corresponding JOOS peephole pattern:

int simplify _multiplication_right (CODE *x*cC)
{ int x,k;
1f (is_iload(*c, &xX) &&
is_ldc_int (next (xc), &k) &&
1s _imul (next (next (*xc)))) |
if (k==0)
return replace(c, 3,makeCODEldc_int (0, NULL)) ;
else 1f (k==1)
return replace(c, 3,makeCODEiload (x,NULL)) ;
else 1f (k==2)
return replace(c, 3,makeCODEiload (x,
makeCODEdup (
makeCODEiadd (NULL)))) ;
return 0;
}
return 0;

}

Optimization (24)

COMP 520 Winter 2015 Optimization (25)
A part of the goto graph may be simplified by short-circuiting the jump to I._ 1:.

— goto L_1

-1, 1:
—goto L_2

-1, 2:
Corresponding JOOS peephole pattern:

int simplify_goto_goto (CODE x=*xcC)
{ int 11,12;
1f (is_goto(xc, &ll) &&
i1s_goto (next (destination(1l1l)),&12) && 11>12) {
droplabel (11);
copylabel (12);
return replace(c,1l,makeCODEgoto (12,NULL));
}

return 0;

}

COMP 520 Winter 2015 Optimization (26)

The JOOS peephole pattern:

int simplify_astore (CODE x*%C)
{ int x;
1f (is_dup(*xc) &é&
1s_astore (next (*c), &x) &&
is_pop (next (next (xc)))) {
return replace(c, 3,makeCODEastore (x,NULL)) ;
}

return 0;

}

is clearly sound, but will it ever be useful?

COMP 520 Winter 2015 Optimization (27)

Yes, the assighment statement:
a = b;

generates the code:

aload_2
dup
astore_1
pop
return

because of our simple-minded code generation strategy.

COMP 520 Winter 2015 Optimization (28)

Coding assignments:

vold codeEXP (EXP xe) {
case assignK:
codeEXP (e->val.assignE.right) ;
code_dup () ;
case formalSym:
1f (e—>val.assignE.leftsym—>
val.formalS->type->kind==refK) {
code_astore (e—->val.assignE.leftsym—>
val.formalS—>offset);
} else {
code_istore(e—->val.assignE.leftsym—>
val.formalS—>offset);

}

break;

COMP 520 Winter 2015 Optimization (29)

To avoid the dup, we must know if the assigned value is needed later; this information must then
flow back to the code:

vold codeSTATEMENT (STATEMENT =xs) {
case expK:
codeEXP (s—>val.expS) ;
1f (s—>val.expS—>type—>kind!=voidK) {
code_pop () ;
}

break;

to decide whether to pop or not. A peephole pattern is simpler and more modular.

COMP 520 Winter 2015 Optimization (30)

Any collection of peephole patterns:
typedef int (xOPTI) (CODE x*x);

ftdefine MAX_PATTERNS 100

int init_patterns () {
ADD_PATTERN (simplify multiplication_right);
ADD_PATTERN (simplify_astore);
ADD_PATTERN (positive_increment) ;
ADD_PATTERN (simplify_goto_goto);
return 1;

COMP 520 Winter 2015

an be applied to a goto graph in a fixed point process:

repeat
for each bytecode in succession do
for each peephole pattern in succession do
repeat
apply the peephole pattern
to the bytecode
unt il the goto graph didn’t change
end
end
unt il the goto graph didn’t change

Optimization (31)

COMP 520 Winter 2015 Optimization (32)

JOOS code for the fixed point driver:
int optiCHANGE;

voilid optiCODEtraverse (CODE x=xcC)
{ 1nt 1, change;
change = 1;
i1f (xc!=NULL) {
while (change) {

change = 0;
for (i=0; 1i<OPTS; i++) {
change = change optimization[1i] (c);

}
Opt iCHANGE = optiCHANGE

}
1f (xc!=NULL) optiCODEtraverse (& ((*xc)-—->next));

change;

}
}

vold optiCODE (CODE x=*cC)
{ optiCHANGE = 1;
while (optiCHANGE) {
OptiCHANGE = O0;
opti1CODEtraverse (c);
}
}

COMP 520 Winter 2015 Optimization (33)

Why does this process terminate?
Each peephole pattern does not necessarily make the code smaller.

To demonstrate termination for our examples, we use the lexicographically ordered measure:

< #bytecodes, #imul, » |gotochain(L)| >
L

which can be seen to become strictly smaller after each application of a peephole pattern.

COMP 520 Winter 2015 Optimization (34)

The goto graph obtained as a fixed point is not unique.
It depends on the sequence in which the peephole patterns are applied.
That does not happen for the four examples given, but consider the two peephole patterns:

A P A c P, D
B ~ B D " E
C
They clearly do not commute:
A P2* A

Py »E ~B
/D D
N

O Qw >

MO w >
e
Y

MO W >

COMP 520 Winter 2015

The effect of the JOOS A+ optimizer
(using 40 peephole patterns):

Program | joosat+ | joosa+ -0
AllComponents 907 861
AllEvents 1056 683
Animator 184 180
Animator?2 568 456
Consumelnteger 164 107
DemoFont 97 89
DemoFont?2 213 147
DrawArcs 60 60
DrawPoly 94 90
Imagemap 470 361
MultiLineLabel 526 406
Producelnteger 149 96
Rectangle? 58 58
ScrollableScribble 566 481
ShowColors 88 68
TicTacToe 1471 1211
YesNoDialog 315 248

Optimization (35)

COMP 520 Winter 2015 Optimization (36)
The word “optimizer” is somewhat misleading, since the code is not optimal but merely better.
Suppose OPM(G) is the shortest goto graph equivalent to G.

Clearly, the shortest diverging goto graph is:
L:

Drin goto L

We can then decide the Halting problem on an arbitrary goto graph GG as:

Hence, the program OPM cannot exist.

COMP 520 Winter 2015 Optimization (37)

The testing strategy for the optimizer has three phases.

First a careful argumentation that each peephole pattern is sound.

Second a demonstration that each peephole pattern is realized correctly.

Third a statistical analysis showing that the optimizer improves the generated programs.

