
0F*LOO�8QLYHUVLW\
�������%���7HFKQLFDO�3URMHFW�DQG�5HSRUW

7HFKQLFDO�3URMHFW�5HSRUW

Developing a JOOS Compiler
Using a SableCC Framework

Submitted July 2000
To Dr. Laurie Hendren, supervisor

Othman Alaoui (9734589)

Contents

1 PROJECT DESCRIPTION 4

1.1 TECHNICAL BACKGROUND 4
1.1.1 THE JOOS LANGUAGE 4
1.1.2 THE REFERENCE JOOS COMPILER 5
1.1.3 THE SABLECC COMPILER COMPILER 6
1.1.4 THE JASMIN BYTECODE ASSEMBLER 6
1.2 PROJECT REQUIREMENTS 6
1.2.1 FUNCTIONAL REQUIREMENTS 6
1.2.2 NON-FUNCTIONAL REQUIREMENTS 7

2 ARCHITECTURAL DESIGN 7

2.1 PORTING STRATEGY 7
2.2 FRAMEWORK-BASED DEVELOPMENT 7
2.3 MODULE PARTITIONING 8
2.4 MULTI-FILE COMPILATION 9
2.5 ANALYSIS DATA MANAGEMENT 9

3 MODULE DESIGN AND IMPLEMENTATION 10

3.1 GRAMMAR SPECIFICATION 10
3.1.1 LEXER SPECIFICATION 10
3.1.2 PARSER SPECIFICATION 11
3.2 AST TRANSFORMATIONS 13
3.2.1 OVERVIEW 13
3.2.2 GRAMMAR MODIFICATIONS 13
3.2.3 ALGORITHM 13
3.2.4 NATURE OF TRANSFORMATIONS 14
3.3 ABSTRACTER MODULE 16
3.3.1 OVERVIEW 16
3.3.2 ALGORITHM 17
3.3.3 SUMMARY OF AST ANNOTATIONS 17
3.4 WEEDING MODULE 17
3.4.1 OVERVIEW 17
3.4.2 ALGORITHM 17
3.5 SYMBOL TABLE MODULE 18
3.5.1 OVERVIEW 18
3.5.2 THE SYMBOL ENTITY 18
3.5.3 DESIGN OF SYMBOL TABLES 19
3.5.4 CLASS HIERARCHY DESIGN 19
3.5.5 ALGORITHM 19
3.5.6 SUMMARY OF AST ANNOTATIONS 20
3.6 TYPE CHECKING 20
3.6.1 OVERVIEW 20
3.6.2 TYPE NODE REPRESENTATION 21

3

3.6.3 TYPE SYSTEM REPRESENTATION 22
3.6.4 ALGORITHM 22
3.6.5 SUMMARY OF AST ANNOTATIONS 23
3.7 RESOURCE GENERATION 23
3.7.1 OVERVIEW 23
3.7.2 ALGORITHM 23
3.7.3 RESOURCE AST ANNOTATIONS 24
3.8 CODE GENERATION 25
3.8.1 OVERVIEW 25
3.8.2 INTERMEDIATE REPRESENTATION 25
3.8.3 ALGORITHM 27
3.8.4 SUMMARY OF AST ANNOTATIONS 27
3.9 CODE EMISSION 27

4

INTRODUCTION

This document describes the outcome of a semester-long compiler development project, undertaken
for the "Technical Project and Report" course offered at the School of Computer Science of McGill
University. It was completed under the supervision of Dr. Laurie Hendren, head of the Sable Research
Group on optimizing compilers, and instructor at the School of Computer Science.

The project consisted of developing an object-oriented compiler for the Java Object-Oriented
Subset (JOOS) programming language; the compiler had to be written in Java and take full advantage
of the SableCC compiler compiler. The primary objective of this development effort is to fill a void in
the practical part of a Compiler Design course, taught by Dr. Hendren, which consists, in part, of
developing a small compiler in one of two environments: C and the Flex/Bison combination, or Java
and SableCC. An important point of the course is learning by example; up to now, this was achieved
"by providing the students with the source code for an almost complete implementation of the JOOS
compiler, ... studied, extended, and used as a template..."1 Unfortunately, this implementation was only
available for the first environment, and thus gave an unfair advantage to the teams who chose it over
the second one. By providing an implementation that exploits the second environment to the fullest,
we aim at putting the two alternatives, and the teams choosing each of them, on an equal footing.

The compiler we developed is also, to our knowledge, the largest and most comprehensive example
yet of a compiler that uses the SableCC environment, as up to now, SableCC has been mostly used for
prototyping and front-end (interpreters) development.

1 Project Description

1.1 Technical Background

1.1.1 The JOOS Language

JOOS was developed by Dr. Laurie Hendren and Dr. Michael I. Schwartzbach from Aarhus
University in Denmark. It is a large and strict subset of the Java programming language. Thus every
JOOS program is a Java program but not every Java program is a JOOS program. Like Java, JOOS is
fully object-oriented, as stated by one of the design goals of its authors: "extract the essence of the
object-oriented subset of Java"2 It is the main hands-on teaching tool for the Compiler Design course
taught at both Aarhus and McGill.

The main restrictions relative to Java are3:
� it does not support packages, interfaces, exceptions, mixed statements and declarations, and

some control structures (e.g. switch statement);
� fields can only be protected, methods and constructors can only be public;
� methods cannot be overloaded, only constructors can;
� arrays are not supported (this can be made up for by using Vector objects);
� the main method is the only allowable static member in a class;
� primitive types for real numbers are not supported.
An important design goal for JOOS was to be able to leverage existing Java code (e.g. Java

libraries). For this purpose, a notion similar to external declarations in C was introduced: external
classes. Basically, when a JOOS program needs to link to a class for which the code is not available or

1 See Philosophy of the course, at http://www.sable.mcgill.ca/~hendren/520/philosophy.html
2 Compiler Design Course Notes, The JOOS Language, p. 7, Fall 1999.
3 See Compiler Design Course Notes, The JOOS Language, Fall 1999.

5

consists of Java code rather than JOOS code, an external declaration of the class needs to be provided
to the JOOS compiler. These external classes are declared in a JOOS-specific syntax and for this
reason, it is strongly advised that they be contained in files with filename extension ’.joos’ rather than
’.java’. Thus when compiling a JOOS program, one must feed the compiler not only the Java/JOOS
source files constituting the program (’.java’ files) but also files containing external declarations of all
the external classes used in the program (’.joos’ files). If these requirements are not met, compilation
will fail.

JOOS also provides its own library of precompiled class files for interfacing to functionality
supported only in Java (e.g. constants, static methods and static fields). To use these from a JOOS
program, one only needs to compile the ’.joos’ file containing external declarations for the JOOS
library along with the program.

1.1.2 The Reference JOOS Compiler

A compiler for JOOS was developed along with the language to serve as teaching tool for the
compiler design course taught by its creators. As such, the compiler also serves as a reference for the
language, as it is in and by itself the only definitive specification of the JOOS language.

This compiler, referred to hereinafter as "the reference compiler," is written in C. The scanner code
and the parser code are automatically generated by the well-known flex and bison compiler compiler
tools respectively. The first takes a lexical language specification (tokens and corresponding semantic
actions), and the second a syntactical specification (grammar productions, each with its set of
alternatives and corresponding semantic actions). A semantic action is the C code that is executed
when a given token or production alternative has been respectively scanned or parsed. The abstract
syntax tree corresponding to a given input JOOS program is indirectly built by the parser, using the
semantic actions specified in the grammar file. Through semantic actions, the compiler writer has
direct control over what goes into the syntax tree. This power is exploited in the reference compiler to
build a truly abstract syntax tree, by getting rid of any artifacts that were only necessary to enforce the
syntax of the language (e.g. punctuation) and remove parsing ambiguities (e.g. multi-level expression
trees)4. Scanner semantic actions are used to extract semantic values of tokens (e.g. int from integer
constants) and store them as such rather than as tokens in the corresponding AST leaves. The compiler
then performs the usual passes on the AST, and each pass is explicitly and manually implemented as a
recursive descent of the syntax tree.

The implementation is written in a very terse, elegant, self-documenting (and undocumented
indeed...) style. Recursion is used extensively, especially for list structures: a list traversal function will
typically invoke itself recursively on the remainder of the list (known as the cdr of the list in Lisp-like
functional languages), and then only visit the head of the list (car of the list). The backward nature of
the traversal is necessary to restore the original list order, as lists in the AST are all originally built
backward.

The compiler also makes heavy use of an often-maligned C feature: union types. These are simply
the C version of variant record types. Union types enable type polymorphism, at low space cost, since
only as much space as required by the largest "subtype" involved will be occupied by a variable of that
union type. This is useful for storing heterogeneous objects in a common structure: e.g. expression and
statement nodes in an AST, field and formal symbols in a symbol table, instructions for arithmetic and
relational operations in a code stream, etc. The main drawback of union types is that they are error-
prone and hard to debug, because their polymorphic use is completely unchecked by the C compiler.

4 See the JOOS grammar specification file for Bison, joos.y.

6

1.1.3 The SableCC Compiler Compiler

SableCC is a compiler compiler developed by Etienne Gagnon, member of the Sable Research
Group. It is written in Java and produces frameworks for writing compilers, or interpreters, in Java. In
the tradition of the flex/bison compiler compiler toolset, it takes a grammatical description of the
source language as input, and generates a lexer and a parser for it. In addition, it also generates an AST
constructor as part of the parser, and an object-oriented program analysis framework upon which you
can build anything from a basic interpreter to a highly optimizing compiler.

In summary, a SableCC-based compiler gets the following functionality free:
� lexical and syntactical analysis;
� automatic AST construction during parsing;
� AST traversal adapters, or walkers, to perform custom analyses on the program tree

representation;
� internal hashtables inheritable from the adapter classes to store information specific to the

inheriting analysis.
The fact that the AST is built for you at parsing time goes a long way toward removing the need for

semantic actions in the grammar specification, since, in a compiler context, these tend to be used
exactly for that purpose: building the AST. Indeed there are no semantic actions in SableCC. This has
the advantage of increasing grammar readability and simplifying the front-end development and
debugging process. Automation and ease of use come at the expense of flexibility however, since you
cannot customize the tree building process, for the purpose of creating a leaner, more abstract, syntax
tree for example.

An important aspect of syntax trees built by SableCC-based compilers is that they are strongly
typed. SableCC generates a class hierarchy for each production of the grammar: an abstract class for
the production itself, and a child class for each alternative of the production. Each alternative class in
turn provides write and read accessors for its elements. Likewise, a Token class descendant is
generated for each token in the grammar. Thus each node of the AST is either an instance of a Token
class child or an instance of an alternative class. While making manipulations on the AST much safer,
this, combined with the fact that the AST built invariably matches its corresponding concrete syntax
tree (CST), introduces some interesting flexibility problems not present in - and thus not addressed by
- the reference JOOS compiler.

Finally, SableCC provides a utility package that implements the Collections framework found in
the Java 2 platform and later versions, but not in JDK 1.1.x, used here. In particular, our compiler
makes extensive use of the LinkedList and Iterator classes.

1.1.4 The Jasmin Bytecode Assembler

For each non-external class compiled, the JOOS compiler emits a textual description of the
corresponding class file. This textual description is the equivalent of assembly for the Java Virtual
Machine. The Jasmin assembler program is then used to "compile" each such file into a binary class
file containing Java bytecode that can be executed with any Java interpreter.

1.2 Project Requirements
Within the overall objective of delivering a running SableCC-based JOOS compiler

implementation, we can identify three broad categories of requirements: functional requirements,
design requirements, and finally implementation requirements.

1.2.1 Functional Requirements

The functional requirements for our compiler are identical to those of the reference compiler: take
as input a set of JOOS source files representing a JOOS program and, assuming no errors are found,

7

and compile each non-external class in the program into a Jasmin file. The new compiler must be
equivalent to the reference compiler: given the (correct) source code for a certain JOOS program, both
compilers must emit identical Jasmin files and, by transitivity, identical bytecode; all errors found by
the reference compiler in the input program should also be signaled by our compiler.

There are two versions of the reference compiler: A- and A+. A+ has a few more features than the
A- version: at the front-end, it supports long C-style comments, it adds increment statement
expressions (e.g. "i++;"), and for-loops as syntactic sugar (i.e. implemented in terms of existing A-
constructs); at the back-end, it uses a more robust algorithm for stack limit computation used in
bytecode generation, and it also implements a much wider range of peephole optimizations. Students
of Compiler Design are handed the source code for the A- compiler and are asked to bring it up to the
level of the A+ compiler. From this point onwards, "reference compiler" will be used to refer to the A+
version. Our own compiler must at least be able to compile the same programs as the reference
compiler, which implies supporting at least the added front-end features of the A+ compiler.

1.2.2 Non-Functional Requirements

The crux of this project resided not as much in porting the JOOS compiler from a language to
another, as in exploring and solving the issues involved in building a large, object-oriented compiler
for a realistically complex language on top of a SableCC-generated framework.

2 Architectural Design

2.1 Porting Strategy
As mentioned above, the purpose of the reference JOOS compiler is primarily pedagogical. In other

words, it is intended as a canonical example of good compiler design and implementation. Our
compiler is an attempt to preserve that fundamental substrate while innovating in every other aspect. It
is only logical then that understanding the reference source code represented an important activity in
our development process.

An important element of that substrate is the architecture of the reference compiler as a multi-pass
compiler. This modular approach relies on a shared intermediate representation: the abstract syntax
tree. Compiling a JOOS program thus consists of parsing the program source and building a
corresponding AST, on which a sequence of phases is then performed. Each of these phases consists
of one or more passes, or walks, on the AST. Each phase, along with associated data holders (e.g. the
symbol table for the symbol table construction analysis), defines a module of the compiler. At the
back-end of the compiler, the AST is complemented by a low-level intermediate representation to
facilitate code optimization. Our approach is very much the same, with a few modules added or
removed to better accommodate our design.

We also made no attempt at redesigning the various "micro-algorithms" that constitute the crux of
the compiler analyses, because those are in fact the fundamental operations that implement -- and, in
the case of JOOS, define -- the semantics of the compiled language.

2.2 Framework-based Development
As aforementioned, a SableCC-based compiler sits atop an object-oriented framework generated by

the SableCC tool from the grammar specification of our source language. This framework is an
embodiment of the extended visitor design pattern, which is "an object-oriented way of implementing
a switch on the type of an element,"5 improved upon to allow easily extendable switches across class
hierarchies. The generated framework consists of the following Java packages:

5 SableCC, an Object-Oriented Compiler Framework, Etienne Gagnon, McGill University, 1998.

8

� lexer: provides an easy-to-use scanner that returns the last token scanned
� parser: provides a parser that drives the lexer and builds an AST
� node: contains all the Node subclasses whose instances are used as nodes of the AST. Each

node class is a switchable entity, i.e. provides an apply(Switch) used to switch on this
particular node type.

� analysis: this is where the framework, in the usual object-oriented sense, really lies. It
provides an implementation of the "object-oriented switch" pattern discussed above for the
AST structure implied by the input grammar. At the top of this framework is the Analysis
interface, which specializes the abstract notion of a switch (Switch interface) to one on the
AST node type. Analysis is further specialized by the AnalysisAdapter abstract class to the
notion of a complete traversal of the syntax tree. Finally, and of most immediate interest to us,
are adapter classes, subclasses of the AnalysisAdapter class. Each adapter implements a tree
traversal in a certain predefined order, that can be directly reused through inheritance to write
your own tree-walkers. The nice thing about adapters is that they already do most of the work
for you, and all that remains to be done is to override the appropriate node visitors (the
equivalent of case clauses of a procedural switch statement) and do your custom analysis work
for the visited entity there. You can completely relinquish responsibility for controlling the
order of the AST traversal, by merely overriding "pre-visitors" (invoked by the adapter before
traversing the children of the corresponding node) and "post-visitors" (invoked after visiting the
children of the node). Of course, you can also mix and match visitors, pre-visitors, and post-
visitors as required by your analysis. Likewise, if your traversal order needs are particularly
unusual, you can also write your own adapter by subclassing the AnalysisAdapter class.

In our compiler, every pass subsequent to parsing is a subclass of the DepthFirstAdapter adapter
class, which performs a depth-first traversal of the AST.

2.3 Module Partitioning
Our compiler is partitioned according to the phases the compilation process goes through. These

phases are:
1. given an input program, build a syntax tree representing the entire program: this requires

scanning and parsing each source file involved (.joos and .java files), and assembling all the
resulting syntax trees into "program syntax tree."

2. fix the syntax tree: this performs various "fix-ups," or transformations, on the AST to minimize
the amount of work involved in its analysis, which benefits all subsequent phases.

3. abstract the syntax tree: this is used to represent some nodes in a more abstract way, so that
they can be used generically, that is to say without knowledge of their type.

4. weed out bad trees: this rejects programs that do not respect structural language rules that
cannot be absorbed into the grammar.

5. symbol table construction: this phase builds the class library, collects information about all the
symbols used in the program (types and variables) and checks their uses, and builds the class
hierarchy; all this information is later used by the type-checking and code generation phases.

6. type checking: this performs static type-checking on the program, i.e. checks that all the type
rules of the language are respected, in statements and expressions in particular. Intermingled
with type checking, type inference is used to assign a type to each expression. Also part of this
phase is checking the class hierarchy for inheritance and other anomalies. This phase
constitutes the end boundary of the front-end of our compiler.

7. resource generation: as the start boundary of the compiler’s back-end, this phase is a
preparatory phase to code generation, i.e. it generates all the resources needed for code
generation to proceed.

9

8. code IR generation: this phase uses the analysis data collected by earlier phases and code
templates to generate a list-like intermediate representation of the target bytecode matching the
body of each execution unit (method or constructor).

9. code emission: this phase emits for each non-external class in the program a jasmin file (.j)
containing a textual description of the corresponding class file, including a transcription of the
intermediate representation of the bytecode associated with each execution unit.

Every phase after the first one is itself made up of one or more passes on the AST. Ensuring the
serial execution and the above order of execution of the various passes involved is of utmost
importance. This is because each compiler pass makes assumptions about the state of the AST and the
availability of certain pieces of information about the program (pre-conditions).

Each module is implemented inside a Java package, which are to a program’s implementation what
modules are to its design: a higher level of abstraction that gives at least the illusion of manageability,
and forces you to think in terms of interfaces and boundaries at the module level as well.

2.4 Multi-File Compilation
All the source files forming a JOOS program must be compiled simultaneously. This is mostly

required by the symbol table construction and type checking phases, which need to resolve class
references across source files. In the reference compiler a unique AST is constructed for the whole
JOOS program, possible because of the full control the compiler has over the construction process. In
our compiler on the other hand, an AST is automatically constructed by the SableCC-generated parser
module for each input file.

Our solution was to simulate the "super-AST" by first building a list of ClassFile before any pass
on any AST is performed. Each ClassFile encapsulates the name of the parsed file and the root of the
AST built for the file. This list can thus be seen as a conceptual representation of a program-wide AST,
or program AST for short. Each subsequent phase takes this program AST as input, and can iterate on
it (since it is just a list) to recover each of the individual AST.

2.5 Analysis Data Management

Usually, one of the responsibilities of a compiler pass is to collect information about specific nodes
in the program AST. These AST annotations may then used by subsequent passes for their own
analysis. For example, type checking assigns a type to a variable use by fetching the symbol
annotation of the AST node corresponding to that use (a symbol entity), and retrieving its type.

In the reference compiler, these annotations were made directly in the corresponding AST nodes,
which were designed ahead to accommodate the annotations that would need to be made by each pass.
SableCC, on the other hand, advocates a strict separation of AST nodes and analysis data storage, the
rationale being that a compiler is really an evolving body of loosely coupled analyses (more analyses
may be added over time: for example, new optimizations). In the annotations-on-AST scheme, every
time an analysis is added, the structure of each affected AST node must be modified as well, thus
creating a strong coupling throughout the compiler. Another major advantage of the SableCC approach
is the ability to dispose of the annotations made by a particular analysis once it’s no longer needed.

This separation is not only advocated but also required by SableCC, as all AST node classes
generated are declared final (i.e. they cannot be subclassed for customization). As a partial solution,
methods are made available to any walker (i.e. descendant of an AnalysisAdapter) for uniquely
mapping annotations to AST nodes and retrieving them; these are getIn, setIn, getOut, and setOut.
These rely on the fact that every node in the AST (in fact in the program AST) is unique. These
methods however are mostly useful for storing transient analysis data, i.e. data that does not need to
survive beyond the lifespan of the associated analysis. For non-transient analysis data, we simply use
our own Hashtable object -- or a wrapper thereof (in fact any map object could do).

10

Communication of analysis data is delegated to an AnalysisDataManager object, which is just a
universal proxy to the various mappings of analysis data to AST nodes. Having such an object
tremendously simplifies the interface between modules by centralizing access to analysis data.
Whenever a new analysis is added to the compiler, only this object needs to be updated to add the
(non-transient) annotations made by this analysis to the common pool of analysis data.

An important consideration is the degree of granularity of the data stored in a given map. Since
these maps are how passes communicate each other analysis data, it is important that the nature of the
data stored by each map be, if not explicit, at least coherent. By that we mean that each map should be
as homogeneous as possible: in particular, there is no requirement that all the data resulting from a
given analysis be stored in one and only one map; an effective rule of thumb is to keep breaking down
a map into multiple ones until you can assign each one a meaningful name that gives at least a clue as
to the nature of each unit of data stored in the map6.

Finally, when a unit of analysis data consists of a primitive type, we use the corresponding Java
wrapper to store the object in the map. When it consists of more than one object or primitive type, we
package this information into a custom class.

3 Module Design and Implementation
What follows is a detailed run-down of all the modules comprising our compiler, in order of

execution of the corresponding phases.

3.1 Grammar Specification
In SableCC-based compilers, much care must be taken in devising a lexical and syntactic

specification for the source language, even more than in those based on the Flex/Bison pair like the
reference compiler. This is because the entire framework generated by SableCC is derived from this
specification; in particular, SableCC uses names of grammar entities to derive names of public classes
and class members in the framework. Since these name are our primary interface to the framework,
and since this framework forms the backbone of a SableCC-based compiler, it is not advisable to
change grammar entity names in the middle of development.

It is also important to know the mapping between each SableCC grammar construct and the
structure of the corresponding AST subtree built as a result of parsing such a construct. Often there is
more than one way to represent a given syntax in the grammar: being able to predict the long-term
effect of each way allows one to make a more educated choice.

A SableCC grammar specification consists of three parts: helpers, tokens and productions. The
token definition part is used to generate a lexer, and the productions part a parser. Helpers are useful
for trimming the tokens part.

3.1.1 Lexer Specification

The token specification of our grammar is mostly a direct port of the corresponding Flex
specification from the reference compiler. Tokens in SableCC must be named, so that the appropriate
Token subclasses can be generated. Token names are often self-evident so that isn’t an issue.

Helpers are used to great effect to simplify and organize the token specification.
A remarkable difference between token specification in SableCC and in Flex is that there are no

semantic actions in SableCC. This is by design. Semantic actions in Flex are usually used to customize
the semantic value assigned to each token. Most often the appropriate semantic value is just the text of
the token itself, automatically extracted by the SableCC-generated lexer in our compiler. In those rare

6 The reader may notice that this is not always respected in our implementation: indeed this is a conclusion we
have progressively come to, as it was conflicting with the goal of minimizing the interface to each module and
pass, no longer an issue with the addition of the AnalysisDataManager class.

11

cases where the semantic value of the token must be customized, we delay that customization until it is
really needed. This is how we handle tokens for literals (constants) in our compiler: the code of the
semantic actions for charconst, intconst, and others is only performed at the code generation phase,
where those values are actually needed.

3.1.2 Parser Specification

As for tokens, all productions and their alternatives must be named, with the exception that one and
only one alternative in each production may be anonymous. Also, each instance of an element that
appears more than once in an alternative must have a different name.

As we will see there are two major differences between productions in SableCC grammars and
productions in Bison grammars: SableCC grammars are written in an extended version of the Backus
Naur Form (BNF) used in Bison grammars, and, unlike Bison, SableCC does not permit the execution
of semantic actions associated with each production alternative.

3.1.2.1 Taking Advantage of EBNF

In SableCC, context-free grammar rules (productions) are written using a variant of the Extended
Backus-Naur Form (EBNF) notation. EBNF provides special notations for writing repetitive and
optional constructs, which are very common in programming languages. Such constructs are implicitly
expressed through recursion in the BNF notation used in Bison, and often require dedicated
productions or individual alternatives. Thus, by taking advantage of the EBNF notation supported by
SableCC, one can considerably reduce the number of productions and alternatives in the grammar.

The special EBNF notation is used to represent zero or more repetitions (Kleene star *), one or
more repetitions (Kleene plus +), and optionality (?). Another good reason to take advantage of the
special notation for repetition is that such repetitive constructs are automatically parsed by the
SableCC-generated framework into straight LinkedList7 objects. In contrast to the recursively-
defined backward lists generated by the reference compiler at parse time, these lists offer a faithful,
direct representation of repetitive program constructs. Also, the use of a class that is part of the
standard Java Collections framework reduces the learning curve and enforces a style of list traversal
and manipulation that is much more natural to Java programmers than the functional recursive style
that forms the backbone of list processing in the reference compiler.

We can summarize the uses of the three special EBNF notations discussed above as follows:

EBNF Notation Original (BNF) Grammar EBNF Grammar Savings

* (0 or more
repetitions)

<<entity_user>> :
 ... <entities> ...;
<entities> :
 /* empty */ |
 <ne_entities>;
<ne_entities> :
 <entity> |
 <ne_entities> <entity>;

<entity_user> :
 ... <entity>* ...;

(for each <<entity_user>>)

<entities> and
<ne_entities>
productions

+ (1 or more
repetitions)

<entity_user> :
 ... <entities> ...;
<entities> :
 <entity> |
 <entities> <entity>;

<entity_user> :
 ... <entity>+ ...;

(for each <<entity_user>>)

<entities>
production

? (optionality)

<entity_user> :
 ... <entity> ...;
<entity> :
 /* empty */ |
 ...;

<entity_user> :
 ... <entity>? ...;
<entity> :
 ...;

(for each <<entity_user>>)

Empty alternative
of <entity>
production

7 As defined by the Java Collections framework.

12

3.1.2.2 Alternatives to Semantic Actions

We have seen that no semantic actions can be associated with production alternatives in SableCC
grammars, unlike in Bison grammars. Bison semantic actions are used in the reference compiler to
accomplish the following:

(a) build a syntax tree representation of the input program, in a bottom-up fashion;
(b) make the syntax tree as abstract as possible by sharing polymorphic node constructors among

different but similar types of program constructs (e.g. class and extern class), among other
things;

(c) check constraints that could seemingly have been enforced at the grammar level but were not
for a variety of reasons (to avoid grammar ambiguity, or to differentiate the error message from
regular syntax error messages);

(d) build a more general syntax tree representation of program constructs whose grammar
representation was overly specialized solely for syntax enforcement purposes;

(e) add syntactic sugar, i.e. language constructs that do not add any expressive power to the
language itself but add convenience to the language user (e.g. i++; relative to i = i + 1;);
syntactic sugar is simply recast into existing AST node kinds.

(a) is automatically performed for us by the SableCC-generated framework, but the AST built is
really a concrete syntax tree (CST), since no program syntax information is discarded at all (even
blank space can be recovered!). Most nodes in a CST can be treated the same way as in the
corresponding AST, by ignoring irrelevant concrete syntax (e.g. punctuation). On the other hand, a
syntax tree is just an intermediate representation of the input program whose purpose is to facilitate
further program analysis, not hinder it. In particular, some of the abstraction brought by (b) needs to be
preserved in our compiler as well. Even though SableCC allows a limited degree of control over the
parsing and AST construction procedures (through an overridable filter method in the Parser class),
the preferred approach is to perform any manipulation or analysis on the AST within one or more post-
parsing passes over the AST, using the facilities offered by the SableCC-generated framework. In our
compiler, this abstracting responsibility is taken on by the AST fixer module and the abstracter
module. In keeping with this approach, (c), which is really a basic form of weeding, is integrated into
the weeder module, and (d) is implemented as AST transformations in the AST fixer module.

The syntactic sugar referred to in (e) is only present in the A+ version of the reference compiler,
and is implemented on top of A- constructs. In the reference compiler, only the grammar (flex and
bison files) needs to be changed to accomodate these extensions to the JOOS language, thus the
"syntactic sugar" name. In our compiler, the approach discussed above dictates that these extensions be
implemented in a post-parsing pass over the AST. We manage however to shield most of the post-
parsing compiler modules from the new constructs by recasting them into existing (A-) constructs at
the AST fixer phase, the first post-parsing phase of the compiler.

3.1.2.3 Hidden Alternatives

Beside the regular production alternatives used for parsing, one can also define hidden alternatives
in a SableCC grammar. These alternatives are hidden in the sense that they are not part of the
SableCC-generated parser, and thus have no say on the syntax of the language defined by the
grammar. This is the only element that distinguishes them from regular alternatives. In particular, upon
encountering a hidden alternative, the SableCC tool will generate the corresponding framework
classes, as for any other alternative.

Hidden alternatives are mostly used for AST transformations. One would, for example, define a
more abstract version of a given alternative in a hidden alternative (of the same production), and at
compile time, replace all AST nodes of the first type (created at parse time) by new nodes of the
second type, using the replaceBy method of the Node class. Of course AST transformations can also
use regular alternatives for the replacing nodes.

13

Other uses include generating new framework classes for purposes other than AST transformations.
We use this technique to generate type nodes in the type checking module.

3.2 AST Transformations

3.2.1 Overview

The goal of this phase is to "fix" the syntax tree automatically constructed by the SableCC-
generated parser, i.e. perform whatever abstracting transformations are required to simplify program
analysis. Another possible objective of transformations - not pursued here - is to reduce the memory
footprint of syntax trees.

An important part of the design of AST transformations is the definition of corresponding hidden
alternatives in the grammar, since most transformations replace nodes of an existing alternative type
by nodes of a more abstract alternative type.

3.2.2 Grammar Modifications

Often, as new transformations are devised, new hidden alternatives will need to be added to the
grammar. Sometimes the need for such a transformation will not become apparent until a later stage in
development, despite one’s best effort to avoid all such unforeseen needs. In that case, one should
carefully evaluate the effect of such a transformation on existing modules, and update them as
necessary. A good way to ensure that all updates are indeed performed is to obfuscate the name of
"replaced" alternatives, and give "replacing" (hidden) alternatives the (non obfuscated) name of the
former, rather than assigning them new names.

The first motivation for this is that phases subsequent to the AST fixer phase should not have to
deal with complicated alternative names because of the new transformations that were introduced. On
the contrary, since the life span of replaced alternatives is much shorter than that of replacing
alternatives, the former can afford to have intermediate short-lived names.

Second, it reduces the possibility of inadvertently omitting to update modules that used the replaced
alternatives. Following our obfuscation scheme ensures that such code will most probably break at
compilation time if it is not updated, instead of silently compiling and potentially resulting in strange
runtime behavior.

Our obfuscating scheme consists in appending tmp_ to the name of replaced alternatives and giving
corresponding replacing alternatives the name of the former.

3.2.3 Algorithm

The transformations on the AST are performed in two passes: AstFixer and AstFixerSimplestm.
This separation is dictated by the fact that the simplestm transformation performed in the second pass
would have potentially clashed with the stm_no_short_if transformation performed in the first pass,
if both were done during the same pass over the AST. Note that AstFixerSimplestm must be performed
after AstFixer.

There are two main approaches to AST transformations, corresponding to the order in which
affected AST nodes are visited: bottom-up and top-down. The two approaches can be mixed, even
within the same pass.

A bottom-up transformation starts at the "bottom" layer and uses a Hashtable for temporarily
holding the replacement nodes for the nodes currently being visited (to be replaced) and, once in the
"parent layer", fetches these from the hashtable and uses them as the new children nodes in the
replacement of the node at the "top" layer.

14

This is in contrast to a top-down transformation, which starts at the "parent" node, queries it for its
children, create the new nodes to replace its children, based on its current children’s data, and finally
performs the replacement on the parent node by feeding it with the new children nodes.

The first approach is quite natural and is most useful for collapsing deep structures, like cascading
expression trees. The second approach is best for transformations that involve few layers of the AST,
like list flattening, and is also less costly than the former, being less systematic.

3.2.4 Nature of Transformations

3.2.4.1 Disambiguation Reversal

The structure of the AST directly mirrors that of the grammar, and, as a result, inherits some of its
unwieldy features. While these are required in the grammar to resolve ambiguities, they become
redundant in the AST and so can be discarded from it, resulting in a considerably streamlined AST.

3.2.4.1.1 Collapsing The Expression Precedence Cascades

Without loss of generality, we consider the case of a not-expression for the sake of demonstration.
Before AST transformation, such an expression is represented by a long chain of intermediate nodes,
starting at the exp production (entry point of all non statement expressions): ADefaultExp,
ADefaultOrExp, ADefaultAndExp, ADefaultEqExp, ADefaultRelExp, ADefaultAddExp,
ADefaultMultExp, ADefaultUnaryExp, finally leading to the desired ANotUnaryExpNotMinus not-
expression node. This cascade-like deeply nested structure is required in the grammar to enforce
operator precedence. In the AST however, precedence is inherently represented in the tree structure,
and thus all expression types can just be alternatives of the exp production. By collapsing this chain to
just one node, we considerably reduce the work required for bottom-up propagation of analysis data
along expression trees (e.g. type inference).

This transformation first requires adding a hidden alternative for each expression type to the exp
production. The transformation itself is a bottom-up traversal of exp subtrees. Once the transformation
is complete, all non statement expressions are instances of PExp. Note however that some productions
which could also have been integrated into the exp are instead left separate. This is because they are
shared with the stm_exp production, whose set of alternatives is mostly a subset of exp’s (in other
words, not all expressions are allowed as statement expressions). For our purposes, we will generally
refer to all of these - exp, stm_exp and assignment, methodinvocation and classinstancecreation
productions, plus the receiver production - as expressions, using the term 'exp' to refer to the exp
production exclusively.

3.2.4.1.2 Reversing The Dangling Else Disambiguation

Consider the following grammar production for if and if-else statements in JOOS:
<stm> : ... |

 if (<exp>) <stm> else <stm> |

 if (<exp>) <stm> |

 ...;

This grammar suffers from the dangling else problem illustrated in the following code snippet:
if (<exp>)

 if (<exp>)

 <stm>;

 else

 <stm>;

15

Indentation masks an inherent ambiguity in this statement: does the else belong to the first or
second if? Since both interpretations are possible based on the grammar above, the latter is
ambiguous.

JOOS uses the most closely nested rule to resolve this ambiguity, and thus the indentation in the
example above corresponds to the correct interpretation in JOOS. This rule is enforced in the grammar
by blocking "short if" statements from the then clause of if-else statements:

<stm> : ... |

 if (<exp>) <no_short_if_stm> else <stm> |

 if (<exp>) <stm> |

 ...;

<no_short_if_stm> : ... |

 if (<exp>) <no_short_if_stm> else <no_short_if_stm> |

 ...;

Note that the <no_short_if_stm> production not only does not have an alternative for short if
statements, but it also does not contain references to the <stm> production within its alternatives.

It is clear however that this distinction between <stm> and <no_short_if_stm> is for the sole
purpose of avoiding ambiguity during parsing, and that it is entirely unnecessary in the AST itself. By
transforming PStmNoShortIf nodes back into PStm nodes of the corresponding alternative types, we
remove the need for dedicated analysis code for PStmNoShortIf nodes on the one hand and for PStm
nodes on the other hand.

The transformations required here are not trivial and the order in which they are performed is of
utmost importance. The objective is to purge the AST from all PStmNoShortIf nodes, replacing them
by equivalent PStm nodes. Fortunately there is a unique non recursive entry point for
stm_no_short_if in the grammar: the if_else alternative of the stm production, as one would
expect. Because stm_no_short_if alternatives have elements of type stm_no_short_if rather than
stm however, we need a two-step bottom-up process:

1. transform each PStmNoShortIf node into a PStmNoShortIf node whose statement children are
all PStm nodes. This requires adding a hidden alternative to stm_no_short_if for each
alternative that has stm_no_short_if elements, with each stm_no_short_if element replaced
by a stm element. This is a recursive procedure, with base case ASimpleStmNoShortIf whose
grammar alternative contains no stm_no_short_if element. When this transformation has
been performed on all applicable nodes, there are no more nested PStmNoShortIf nodes.

2. transform each PStm node into a PStm whose statement children are all PStm nodes. As
aforementioned, only the if-else alternative of stm contains a no_short_if_stm element.
Hence all that is required is to add a hidden if-else alternative containing a stm element in the
then-clause, instead of the stm_no_short_if element in the original (obfuscated) alternative.
This transformation is feasible because step 1 has ensured that all remaining PStmNoShortIf
nodes in the AST are readily convertible to equivalent PStm nodes.

3.2.4.2 List Flattening

While the SableCC-generated parser automatically builds LinkedList representations of explicitly
sequential program structures (indicated by the EBNF * and + notations), other structures cannot be
directly parsed into LinkedList objects even though, from an abstract point of view, they are
sequential entities and are ideal candidates for typical LinkedList operations like iterative traversal.

A prime example of such structures are punctuation separated lists. Indeed, unlike terminators (e.g.
semicolon), separators (e.g. comma) do not follow a strictly repeating pattern. The solution to allow
LinkedList representation is simply to discard the separators. In other words, if the structure is a list
of punctuation separated <entity> elements, we obfuscate the original alternative representing it and
add a hidden alternative of the form <entity>+, and replace nodes of the first type by equivalent nodes

16

of the second type in the AST. This transformation is performed on PIdentifierList, PFormalList,
and PArgumentList nodes.

The second type of list flattening transformations deals with declarations. It transforms each
possibly multivariable declaration into a LinkedList of univariable declarations, thus realizing a tight
coupling between the declaration specifier and each declared name. This transformation not only
provides for sequential traversal of the names declared in a given declaration but also makes it easier
to uniquely map a symbol to its declaring entity in the AST in the symbol table phase.

This transformation is performed on PField nodes (field declarations) and ADeclStm nodes (local
variable declarations). It requires adding the onefield and onelocal productions respectively, plus
hidden alternatives onefield+ and onelocal+ in the field and stm productions respectively, as for
the first type of list flattening transformations.

3.2.4.3 A+ Syntactic Sugar Implementation

The A+ syntax extensions to JOOS consist of the addition of the for-statement and the
(post)increment statement expression.

All for statements are removed from the AST through transformation into while-statement based
structures. Likewise for increment statement expressions, which are transformed into assignment based
structures.

3.2.4.4 Other Transformations

Beside the transformations above, we also perform the following:

• transformation of PSimplestm nodes into PStm nodes. This requires adding a hidden alternative
to the stm production for each simplestm alternative. Thanks to this transformation, simple
statement handling becomes no different from other statement handling. This transformation is
performed in the second pass.

• transform PConstructor nodes to integrate the parent constructor invocation statement into the
list of statements forming the body of the constructor. The only reason this statement is
explicitly specified in the original constructor production alternative is to enforce the
appearance of such a statement as the first one in a constructor body. This transformation
requires not only the addition of a hidden alternative to the constructor production to be used
for constructor replacement nodes, but also the addition of a hidden supercons alternative to
the stm production, to be used for parent constructor invocation statement nodes.

• make inheritance from the Object class explicit. In the absence of the explicit specification of a
parent class, classes in JOOS are assumed to extend the Object class, thus resulting in a single-
rooted inheritance hierarchy. The purpose of this transformation is to make this implicit
assumption explicit in the AST, by adding an Object extension clause to AClass and
AExternClass nodes that are different from Object and have no extension clause. In this case
there is no need for hidden alternatives since existing alternatives already include an optional
extension element. This transformation simplifies checking the class hierarchy.

3.3 Abstracter Module

3.3.1 Overview

This module is an extension of the syntax tree abstraction effort initiated by the AST fixer module.
It solves a problem associated with program entities that can have one of multiple forms, i.e. whose
grammar definition consists of a production with multiple alternatives or even of multiple productions,
and that we sometime need to handle generically, i.e. without knowledge of their specific form. The
scheme by which SableCC maps grammar productions and alternatives to Java classes enforces strong

17

typing on AST nodes. While this adds safety to tree operations, it is an impediment to generic handling
of polymorphic program entities.

Our solution is to define, for each such entity, a unique generic class that abstracts the various AST
node types defining the different forms of the entity. The AstAbstracter pass annotates each instance
(AST node) of these entities with an instance of the corresponding generic class. These annotations are
then available for use by any analysis that needs generic access to these entities.

The program entities of concern here are classes, constructors and methods. The corresponding
generic classes are GenericClass, GenericConstructor, and GenericMethod. Each of these entities
is defined grammatically in a production corresponding to an external form and in a production
corresponding to a regular form. On the other hand most analyses, and particular those that have to
deal with the class hierarchy, do not need to make this distinction. The objective of the abstracter
phase is thus to close the gap created by this dichotomy.

3.3.2 Algorithm

This phase consists of one pass, AstAbstracter, which visits each class, constructor and method
AST node, and maps it to an instance of the corresponding generic class through the astToGenericMap
Hashtable. The instance is constructed from relevant elements of the corresponding AST node.

3.3.3 Summary of AST Annotations

Here is a summary of the astToGenericMap annotations:

AST Node Annotation

Class (AClass, AExternClass) GenericClass

Constructor (AConstructor, AExternConstructor) GenericConstructor

Method (PMethod and PExternMethod) GenericMethod

3.4 Weeding Module

3.4.1 Overview

The purpose of this phase is to enforce all the structural JOOS constraints that were left out of the
grammar because of their context-dependent nature.

3.4.2 Algorithm

This phase consists of a single pass: Weeder. It performs the following tasks:
� check that the unique formal of each main method is of type String. In the reference compiler,

this was performed at parse time.
� check that the "caster" element of a cast expression is an identifier expression, and, if so,

transform the cast expression so that the caster element becomes simply an identifier. This
requires a hidden cast expression alternative. This transformation is not performed as part of
the AST fixer phase because it is conditional on a weeding condition being met.

� reject abstract methods inside non abstract classes.
� reject this expressions and super receivers inside (static) main methods.

18

� reject any local declaration statement (ADeclStm) that is not at the top of a method, constructor
or block statement body, and follows neither another local declaration statement nor a parent
constructor invocation statement (which is always the first statement when present).

� check that non-void non-abstract methods belonging to non-extern classes have a return
statement at the end of each execution path.

Each of the last two checks uses a method that recursively examines relevant nested scopes. In
these cases, one cannot entirely rely on the automated traversal facility provided by the SableCC
framework, because of the need to propagate status information up and down during the traversal.

3.5 Symbol Table Module

3.5.1 Overview

The symbol table phase is responsible for checking symbol definitions, checking symbol uses and
mapping them to their definitions. The object-orientation of JOOS assigns it other responsibilities as
well: building a library of classes and establishing their hierarchy.

As in most modern languages, symbols in a JOOS program have spatially bound availability in the
program’s source code, and this availability is governed by static nested scope rules. These rules are
checked by the JOOS compiler using a stack of symbol tables, to represent the nested nature of symbol
scopes.

The legacy of this phase consists of: a class library, a class hierarchy, and a set of AST
annotations.

3.5.2 The Symbol Entity

A symbol is the atomic unit upon which this module operates. In JOOS the different kinds of
symbols are: class, field, method, formal, and local. A symbol maps a name in the program to its
"meaning." In the design of our symbol entity, we chose to be conservative and leave the interpretation
of that meaning open.

Two alternatives were available for the design of the symbol entity:
1. use inheritance: have an abstract Symbol class, and a "concrete" subclass for each kind of

symbol
2. one class for all: have a generic Symbol class with a kind field that can be used for any symbol

kind
From an object-oriented point of view, the first alternative sounds the most appropriate. In our case

however, taking into consideration our conservative stance that the meaning of a symbol should be left
up to its users, the second alternative makes more sense. Indeed, except for the kind field, all symbol
kinds encapsulate the same basic information: their name, and their meaning (or value).

As in the reference compiler, the value of a Symbol object is just a reference to the AST node
defining the symbol, from which all relevant information (e.g. type for a local) can be easily extracted.

Segregating symbols by kind implies defining a constant for each symbol kind. These constants are
used by external entities that need to adapt their action according to the symbol kind. Our design uses
the prototype constant design pattern to accomplish the following:

� proper containment and uncluttered namespace: by using a Constants interface, nested
inside the Symbol class

� easy access constants: the Symbol user only needs to implement the Constants interface, to
avoid using the fully qualified constant names.

19

� type-safety: since to the inner class SymbolKind, defined inside the Constants interface, has
no public constructor, the kind of a symbol (of type Constants.SymbolKind) is restricted to
only one of the predefined constant kinds.

Here is a summary of the content of each symbol kind:

Kind of Symbol Value of Symbol
Class Class AST node
Method Method AST node
Field AOnefield AST node
Formal AFormal AST node
Local AOnelocal AST node

3.5.3 Design of Symbol Tables

As in the reference compiler, we use the same structure both as an explicit symbol table and as an
implicit stack of symbol tables. The SymbolTable class uses a Hashtable internally to implement
individual symbol table behavior. Our hash function is just the default String.hashCode() function.
Stack behavior is implemented internally through a next pointer that points to the SymbolTable object
below the top of the stack represented by the SymbolTable object under discussion.

SymbolTable offers standard methods for pushing and popping a symbol. The scope method buries
the top-most symbol table below a new symbol table: this corresponds to a new nested scope. The
unscope method returns the table just below the one pointed to by the reference upon which the
method is invoked.

3.5.4 Class Hierarchy Design

Looking-up the class hierarchy for a given symbol is a vital operation in the compilation of the
statically typed object-oriented language that is JOOS. A prime example is checking that a certain
method is indeed defined in the class hierarchy of a certain receiver: if the check fails, the compiler
must signal it as an error to the programmer.

Each program has its own class hierarchy. This hierarchy can be seen as a reversed tree of classes
on which lookup operations must be performed. Thus it is ideally suited for encapsulation into its own
class: ClassHierarchy. This class is implemented as a map from AST class nodes to HClass objects,
each HClass object encapsulating a pointer to the associated class’ parent and interface symbol table.
Thus the parent or interface of a given class can be easily retrieved by querying the ClassHierarchy
object for the corresponding HClass object.

ClassHierarchy also encapsulates class hierarchy exploration methods that were also present in
the reference compiler: subClass, lookupHierarchy and lookupHierarchyClass. These methods
hide the details of dealing with the underlying HClass objects directly.

The class hierarchy is built in two phases: a first pass sets the link to the interface of a class, and the
second pass sets the parent link, thus completing the implicit tree structure.

3.5.5 Algorithm

The symbol table phase consists of 3 successive passes on the AST: SymInterfaceWalker,
SymInterfaceTypesWalker, and SymImplementationWalker. This pass separation not only creates a
better division of labor but is also partially required to be able to handle use before declaration and
mutual recursion. The ordering represents more or less a progression from outer program scopes
(classes) to inner scopes (execution unit bodies and blocks).

AST annotations in this phase are performed on a Hashtable: symAnnotations.

20

3.5.5.1 SymInterfaceWalker

The responsibilities of this pass are:
� build a library of class symbols: check class symbols and create a class symbol table

(classlib);
� build a symbol table for each class interface: check each class’s interface (field and method

symbols) and, for each class, create a symbol table from its interface symbols;
� initialize the class hierarchy: for each class, create a HClass object and assign it the symbol

table corresponding to that class’ interface.

3.5.5.2 SymInterfaceTypesWalker

The responsibilities of this pass are:
� complete the class hierarchy by checking and setting a parent link for each class, in HClass;
� check reference types in the declaration of formals and method returns (if applicable), mapping

each such type to the corresponding class through symAnnotations.

3.5.5.3 SymImplementationWalker

The responsibilities of this pass are:
� check and create variable symbols (fields, locals and formals);
� analyze variable symbol uses in "inner" scopes (methods, constructors and block statements),

using a stack of symbol tables (starting at classlib), and mapping each variable use to the
corresponding variable symbol through symAnnotations;

� analyze class symbol uses in "inner" scopes (methods, constructors and block statements),
using the same stack of symbol tables as above, and mapping each class use to the
corresponding class node through symAnnotations;

� check reference types in the declaration of fields and locals (if applicable), mapping each such
type to the corresponding class node through symAnnotations.

3.5.6 Summary of AST Annotations

All AST annotations in this module are found in the symAnnotations Hashtable:

AST Node Annotation Annotator

Variable uses (AIdExp, AAssignment) Variable Symbol SymImplementationWalker

Class uses (AInstanceofExp,
AClassinstancecreation, ACastExp)

Class AST node SymImplementationWalker

AReferenceType (in formal declaration) Class AST node SymInterfaceTypesWalker

AReferenceType (in field or local declaration) Class AST node SymImplementationWalker

3.6 Type Checking

3.6.1 Overview

JOOS inherits its main type system characteristics from Java. It is a strongly typed language, which
means that type compatibility is mostly checked at compile time. This static type checking is the main
responsibility of this module. For cases where type compatibility can only be determined at run time,

21

JOOS provides a well-defined, statically checked protocol: casting. The effect of casting is to locally
waive the static type correctness requirement, leaving the type checking responsibility to the runtime
environment.

The responsibilities of the type-checking phase are:
� check the class hierarchy for inheritance-related issues: to prevent things like cyclic

inheritance, invalid method overriding, and so on.
� statically type check the input program, i.e. conservatively verify that all the type rules of JOOS

are respected,
� perform type inference on the program, i.e. percolate types up the expression subtrees of the

AST, assigning a type to each expression node. This goes hand-in-hand with static type
checking, and requires a type node representation. Type coercion (implicit type conversion)
may also be used as necessary.

As in other object-oriented languages, class hierarchy is integrated into the type system (set of types
available for use in a certain program), through the addition of the concept of subtype: each class adds
a type to the type system; if the class has a parent, its type is then the subtype of the type defined by its
superclass. This addition affects assignment-compatibility rules among other things.

The legacy of this phase consists of: a type tree mapping expression AST nodes to type nodes
(typeAnnotations), a map binding each invocation site to the corresponding method or constructor
(invokeBindingsMap), and a map flagging the expressions to be coerced into a String

(coerceToStringMap).

3.6.2 Type Node Representation

3.6.2.1 JOOS Types

In a strongly-typed language, every value, variable or constant, is of a certain type, i.e. belongs to a
certain domain. Possible types in JOOS are:

� primitive types: these are the types that are built into the language (int, char, boolean);
� reference types: these are the only user-definable types in JOOS, and are defined through class

declarations;
� String type: the String type, defined by the class String, is a reference type used as a primitive

type. It special status originates from its use as the type of string constants, and from its special
handling by the overloaded plus operator.

� polynull type: this type represents a domain with only one value: null; it is assignment
compatible to all reference types.

� void type: it is used to represent the empty set, for methods that do not return any value for
example.

It is important to note that these types are more than just the types that can be used in variable
declarations.

3.6.2.2 Representation

Our type node representation reuse the classes derived by SableCC from the type production of the
JOOS grammar. A type node is therefore an instance of one of those classes. The only caveat to this
approach was that only declared types were represented in the production; our solution was to add a
hidden alternative for each of the JOOS types not represented (void and polynull), prompting SableCC
to generate the corresponding class (after grammar recompilation of course). This scheme thus
automatically provided us with a class hierarchy consisting of a base class (PType) and inheriting
subclasses (AIntType, ACharType, ABooleanType, AReferenceType, AVoidType and APolynullType).
Note that extracting type information from variable declarations becomes trivial with this solution: one

22

just needs to retrieve a reference to the type node embedded in the declaration. If we had defined our
own type nodes, we would have needed a mechanism to map AST type nodes to equivalent custom-
made type nodes.

3.6.3 Type System Representation

Type inference requires the support of a type system which provides it with a "database" of types.
Although, conceptually, the type system can be seen as a separate entity, type inference is its only user.
As a result we have opted to embed into the pass that performs type inference. In an attempt to
minimize the object creation overload, each non user-defined type is represented by a static singleton
of the corresponding type class, that can be reused as often as desired without any added cost of
memory space.

For new user-defined types, a class (or reference) type constructor is used to create a new reference
type node. Again object creation is minimized by propagating existing reference type nodes whenever
possible. This constructor also adds a mapping from the newly created type node to the corresponding
class AST node in the symAnnotations map, where it belongs.

The String type is represented by a static singleton, like a non user-defined type, but is set up like a
user-defined reference type, except that it is set up at the start of the type checking phase.

3.6.4 Algorithm

This phase consists of two independent passes: TypeHierarchyWalker and
TypeImplementationWalker. The first checks the class hierarchy for inheritance anomalies, and the
second performs the actual type checking and inference.

3.6.4.1 Checking the Class Hierarchy

This pass uses the class hierarchy built by the symbol table phase to perform the following checks:
� inheritance validity: check that no cyclic inheritance happens, and that the parent class is not

final;
� field hiding validity: check that no inherited field is hidden;
� method overriding validity: check that the overridden symbol is indeed a method name, that the

overridden method is not final, and that the overriding and overridden methods have the same
signature.

3.6.4.2 Type Checking and Inference

Type checking is performed as type inference is proceeding, and serves in a sense to validate the
inference. However, while type inference stops at the root of each expression tree, type checking
continues the bottom-up traversal of the AST up to the statement level, where the rules governing the
types of expressions used in statements are checked (e.g. check that the test expression of an if
statement is of type boolean). The bottom-up nature of the traversal is enforced in the code through the
exclusive use of post-visitors for statements and expressions.

3.6.4.2.1 Constructor and Method Invocation Binding

TypeImplementationWalker also takes on a few responsibilities that would usually belong to the
symbol table phase, if it wasn’t for their strong coupling to the type system. These are:

� select the constructor to be invoked at a given class instance creation site, using a "most-
specific signature" algorithm;

� check the validity of a method invocation site vis-a-vis the type of the receiver.

23

� bind invocation sites to the corresponding method or constructor, for the purposes of code
generation, through the invokeBindingsMap map.

3.6.4.2.2 Type Coercion

In JOOS, as in Java, the plus operator is overloaded to behave as an arithmetic addition operator in
the presence of integer types and as a concatenation operator if one of the operands is of type String. In
such a case, if the other operand is not of type String, it must first be coerced into a String. The
coercion itself is performed at code generation, but it can only happen if the type checking phase has
flagged the expressions that need to be coerced. All expressions are flagged as not needing coercion
(with Boolean.FALSE), except when used as operands of the plus operator (Boolean.TRUE). The
Boolean value is stored in the coerceToString map. "Expressions" is used here in its restricted sense
of PExp AST nodes.

3.6.5 Summary of AST Annotations

AST Node Map Annotation Annotator

Expressions (PExp,
PAssignment,
PClassinstancecreation,
PMethodinvocation,
PReceiver)

typeAnnotations PType node TypeImplementationWalker

AReferenceType type nodes
(not in AST!)

symAnnotations Class AST node TypeImplementationWalker

PExp nodes coerceToStringMap Boolean flag object TypeImplementationWalker

Constructor Invocations
(ASuperconsStm,
AClassinstancecreation)

invokeBindingsMap Constructor AST node TypeImplementationWalker

AMethodinvocation invokeBindingsMap Method AST node TypeImplementationWalker

3.7 Resource Generation

3.7.1 Overview

Resource generation is the first module of what is usually known as the back-end of the compiler.
Its responsibility is to lay the ground for code generation by collecting the resources necessary for the
latter to proceed. The nature of the resources collected will of course vary with the target language. In
our case, we are concerned with the resources required to generate the Jasmin representation of class
files containing Java bytecode.

The resources generated consist in: offsets for locals and formals, label indices for control
structures, locals limits indicating the size of constructor’s and method’s stack frames, and finally label
indices for expressions to be string-coerced.

The legacy of this phase consists of two sets of AST annotations: resourcesMap and
toStringResourcesMap.

3.7.2 Algorithm

All resources are generated in one pass (ResourceGenerator):

24

� offsets: each local and formal variable is assigned an offset within the scope of the containing
method or constructor. This offset is used in the bytecode for (local and formal) variable
access.

� locals limits: each method and constructor is required by the Java Virtual Machine (JVM) to
specify a locals limit, i.e. the projected size of its stack frame during execution. This value is
just the maximum offset reached during offset computation for the corresponding method or
constructor (+1 for the receiver object reference, also stored in the stack frame).

� labels for control structures: control structures, i.e. structures involving branches, translate
into bytecode involving branch instructions. Labels are needed to map these instructions to
their corresponding target in the bytecode stream. Thus each control structure in the AST is
assigned the set of (integer) labels needed for its code generation. These control structures
consist in any statement or expression that involves testing a condition.

� labels for expressions to be string-coerced: coercion of a given expression to a String object
also requires testing for a condition, which implies a need for associated labels.

3.7.3 Resource AST Annotations

3.7.3.1 Resource Bundle Representation

We represent resource data associated with a particular program entity (which translates into an
AST node) through the following class hierarchy:

� Resources: an abstract base class representing a resource bundle for an arbitrary AST node;
this class has 3 subclasses: LocalResources, ExecUnitResources, and Labels;

� LocalResources: a concrete class representing a resource bundle associated to a local or
formal;

� ExecUnitResources: a concrete class representing a resource bundle associated to a method or
constructor;

� Labels: an abstract class representing a set of named labels associated to an arbitrary AST
node; this class has a concrete subclass for each control structure type, plus one for string-
coercion (ToStringLabels).

3.7.3.2 Summary of AST Annotations

We associate resource bundles to AST nodes through 2 maps: resourcesMap and
toStringResourcesMap.

Here is a summary of the annotations made by ResourceGenerator:

25

AST Node Map Annotation Resources

Method and Constructor resourcesMap ExecUnitResources localslimit

Local and Formal resourcesMap LocalResources offset

If statement resourcesMap IfStmLabels stoplabel

Ifelse statement resourcesMap IfelseStmLabels elselabel, stoplabel

While statement resourcesMap WhileStmLabels startlabel, stoplabel

|| expression resourcesMap OrExpLabels truelabel

&& expression resourcesMap AndExpLabels falselabel

Relational expressions resourcesMap RelExpLabels truelabel, stoplabel

! expression resourcesMap NotExpLabels truelabel, stoplabel

toString-coerced expressions toStringResourcesMap ToStringLabels nulllabel, stoplabel

3.8 Code Generation

3.8.1 Overview

This phase generates an intermediate representation (IR) of the bytecode to be generated for the
input program. The purpose of this low-level IR is to provide an opportunity for peephole pattern code
optimization, before the final emission stage. Even though there was no optimization phase in our
compiler as of writing, it should be easy to add one since an important part of the effort involved in the
design of the IR went into making it optimization-friendly.

The code generation algorithm, which consists of one pass over the AST, uses code templates to
map AST structures to corresponding bytecode instruction sequences. This pass uses all the analysis
information accumulated over the preceding phases to execute its task.

The legacy of this phase consists of a Hashtable mapping class, method and constructor AST nodes
to their signatures (signaturesMap) and another one mapping method and constructor nodes to the IR
code stream generated for their body (astToCodeMap).

3.8.2 Intermediate Representation

The intermediate representation consists of a representation for code streams, a representation for
individual bytecode instructions, and a representation for the control flow graph.

3.8.2.1 Design Goals

The design goals for our intermediate representation can be summarized as follows:
1. allow easy replacement of parts of a code stream, required for by a peephole optimizer;
2. allow sequential and random access (relative to a certain instruction) within a code stream;
3. encapsulate instruction-specific information within instructions themselves (e.g. effect on the

stack, textual representation, etc.) in order to minimize the work required by code chain visitors
(e.g. bytecode optimizers and code emitter).

4. capture the commonality between instruction kinds

26

3.8.2.2 Code Chain Representation

Code generation consists of building a sequence of abstract bytecode instructions for each
execution unit in the input program. The structure for representing such a sequence must be highly
versatile, to realize all the goals outlined above. The structure chosen is implemented by the
CodeChain class, which encapsulates a HashChain object, borrowed from the open source Soot
framework. A chain data structure merges the sequential behavior of a linked list with the constant-
time random access of a hashtable. The only requirement for using a chain is that each of its elements
be uniquely identifiable, since random access is always relative to an existing instruction’s position.

Unique characteristics of CodeChain are that, unlike HashChain, it only accepts forward operations
(e.g. no predecessor-of method), to enforce peephole semantics. It is also alterable through
subsequence replacement methods that are ideally suite for peephole pattern optimizations. These
methods take an InstrBox object that indicates the start of the sequence to be replaced. InstrBox
represents double indirection in Java: it is equivalent to Instr** in C. These methods are then
responsible for updating the content of the box if the instruction pointed to is replaced or eliminated.
An important restriction on the usage of these replacement methods is that a label instruction should
never be replaced unless it is dead (indegree 0).

3.8.2.3 Bytecode Instruction Representation

A large number of different bytecode instructions is used to generate code for JOOS programs. Yet,
many attributes are shared between instruction kinds: since they are all Java bytecode instructions,
their effect on the execution stack can be evaluated in the same manner; likewise all branching
instructions have a target. These are only a few of the commonality that can be taken advantage of in
the design of an instruction representation. As usual, a class hierarchy is the best candidate for
representing this commonality.

The hierarchy designed thus has the interface Instr as root. Every instruction is represented by a
class that implements Instr by providing implementations for methods that indicate the effect of the
instruction on the stack, and for the toString method invoked during code emission. Instructions are
then clustered according to semantic proximity into sub-hierarchies rooted at intermediate abstract
classes (e.g. BranchInstr, ArithmInstr, BinaryArithmInstr, etc.). These intermediate classes are
also useful for capturing common stack behavior which usually goes hand in hand with semantic
proximity, saving us from having to implement the stack effect methods for each instruction kind
separately.

3.8.2.4 Control Flow Graph Representation

The control flow graph indicates the flow of execution in the code stream, which usually follows
the sequence of instructions in the code stream, except in the presence of branching instructions. The
target of a branching instruction is always a label (assimilated to a non-executable instruction in our
IR).

In the reference compiler, the flow graph for the code sequence corresponding to a given execution
unit is captured in an array of LABEL structures, where the array index is the label’s number (generated
as a resource in the preceding phase). Each LABEL structure contains the textual name of the label, its
indegree, and its position in the code sequence (pointer to the corresponding label instruction). This
label table is thus an indirection from branch instructions to label instructions.

In our view, this added level of indirection is unnecessary and cumbersome because it decreases the
cohesion of the intermediate representation. The control flow graph is as important to opimizability as
the rest of the IR and thus should be tightly coupled to the latter. Our design simply removes the
indirection, by having branching instructions point directly to their targets, and encapsulating
information about labels (index, name, indegree) in the corresponding label instructions themselves.
By the same token, the label instruction class can now take responsibility for controlling its indegree

27

attribute, by providing well-defined accessors and modifiers to the outside world. Another advantage
of this approach is that the IR for a given execution unit is now entirely contained in one entity: the
corresponding CodeChain.

3.8.3 Algorithm

This phase consists of one pass over the AST: CodeGenerator. This pass uses code templates that
translate specific subtrees of the AST into bytecode instruction sequences. Each sequence is appended
to the CodeChain of the current execution unit as it is built.

The traversal is implemented by overriding the case<node> visitors in order to control the order of
the traversal, dictated by the code templates.

Noteworthy is the scheme used to associate a BranchInstr to its target LabelInstr. Label
instructions are most often inserted in the code stream after the branch instructions that target them.
Thus initialization of a BranchInstr is not completed until after its instantiation, when the label
instruction has been inserted and the target of the branch is finally set. Thanks to the principle of
locality however, this period of invalidity never lasts long: branches are always established within the
boundaries of a certain code template.

3.8.4 Summary of AST Annotations

Here is a summary of all AST annotations (made by the CodeGenerator pass):

AST Node Map Annotation

Class signaturesMap String

Method and Constructor signaturesMap String

Method and Constructor astToCodeMap CodeChain

3.9 Code Emission

In this phase, we recover code chains and signatures from the signaturesMap and astToCodeMap
Hashtables respectively, and use them to emit a Jasmin bytecode description file for each non
external class in the input program.

Code emission is made extremely simple by our IR design. It is enough to add a printTo method to
the CodeChain class, that queries each of its embedded instructions in sequence for its String
representation (by invoking their toString method), and prints the entire sequence to the output
stream provided by the call to printTo.

Of course, Jasmin files are not just code stream printouts. Headers and footers need to be printed
for each class, constructor and method. In particular locals limits are recovered from the
resourcesMap Hashtable.

CONCLUSION

In this document we have covered the design and implementation details of a JOOS compiler
written in Java on top of a SableCC framework. We have learnt how to take advantage of the new
paradigms introduced by SableCC to develop a real-world compiler in an object-oriented fashion. We
have also encountered some of the difficulties introduced by the use of SableCC and discussed our
implementation of some possible workarounds.

28

For the writer of this document too, the journey has certainly been an instructive one, as further
understanding of one’s own design decisions comes from having to explain them to others. While
inevitably some decisions are put into question, the process also brings appreciation for the validity of
many others.

The hope is that, by reading this document and peeking as necessary at the accompanying source
code, future and prospective users of SableCC will be more aware of the power - and constraints - that
come with SableCC and harness this awareness during their own SableCC-based compiler writing
endeavors.

