
COMP 520 Fall 2010 Static analysis (1)

Static analysis

6

s

s

s

s

6

�
�

�
�
�

�
�
�3

Q
Q

Q
Q
Q

Q
Q
Qs-

PPPPPPPPq

�
�

�
�
�

�
�

��3

�
�
��

@
@@

�
�
�
�
�
�
�
�
�
�
�
�
���

J
J
J
J
J
J
J
J
JJ

J

J
J

J
J

J
J

J
JJ

⊤

⊥

COMP 520 Fall 2010 Static analysis (2)

Static analysis determines interesting properties

of programs to enable some optimizations.

All interesting properties are actually

undecidable, so the analysis computes a

conservative approximation:

• if we say yes, then the property definitely

holds;

• if we say no, then the property may or may

not hold;

• only the yes answer will help us to perform

the optimization;

• a trivial analysis will say no always; so

• the art is to say yes as often as possible.

Properties need not be simply yes or no, in which

case the notion of approximation is more subtle.

COMP 520 Fall 2010 Static analysis (3)

Static analysis may take place:

• at the source code level;

• at some intermediate level; or

• at the machine code level.

Static analysis may look at:

• basic blocks only;

• an entire function (intraprocedural); or

• the whole program (interprocedural).

In each case, we are maximally pessimistic at the

boundaries.

The precision and cost of an analysis rises as we

include more information.

COMP 520 Fall 2010 Static analysis (4)

Simple static analysis:

• is merely advanced weeding;

• uses symbol and type information; and

• is recursive in the program syntax.

An example is the definite assignment

requirement in Java and JOOS:

• local variables must be assigned before they

are read;

• this is undecidable; but

• the language specification dictates a specific

conservative approximation.

COMP 520 Fall 2010 Static analysis (5)

For each program point, compute a set of local

variables that:

• contains only variables that have definitely

been assigned;

• may be too small, since the analysis is

conservative; and

• depends on the set computed for the previous

program point.

It accepts:

{ int k;

if (flag) k = 3; else k = 4;

System.out.println(k);

}

but rejects:

{ int k;

if (flag) k = 3;

if (!flag) k = 4;

System.out.println(k);

}

COMP 520 Fall 2010 Static analysis (6)

JOOS code for statements:

ASNSET *defasnSTATEMENT(STATEMENT *s, ASNSET *before)

{ if (s!=NULL) {

switch (s->kind) {

case skipK:

return before;

case expK:

return defasnEXP(s->val.expS,before);

case returnK:

if (s->val.returnS!=NULL)

(void)defasnEXP(s->val.returnS,before);

return setUniversal();

case sequenceK:

return

defasnSTATEMENT(s->val.sequenceS.second,

defasnSTATEMENT(s->val.sequenceS.first,

before)

);

case ifelseK:

return

setIntersect(

defasnSTATEMENT(s->val.ifelseS.thenpart,

defasnEXPassume(s->val.ifelseS.condition,

before,1)

),

defasnSTATEMENT(s->val.ifelseS.elsepart,

defasnEXPassume(s->val.ifelseS.condition,

before,0)

)

);

case ...

} }

COMP 520 Fall 2010 Static analysis (7)

To make the analysis more precise, it considers

boolean expressions in more detail.

The procedure defasnEXPassume(...,b)

assumes the expression evalutes to b.

This refinement handles a case like:

{ int k;

if (a>0 && (k=b)>0) System.out.println(k);

}

which would otherwise be rejected.

In general, a static analysis becomes more precise

when it may make further assumptions about the

context.

COMP 520 Fall 2010 Static analysis (8)

The definite assignment analysis is particularly

simple:

there are no recursive dependencies between the

computed sets.

This allows a simple implementation:

a top-down traversal of the parse tree.

For more sophisticated analyses, we generate

equations and compute the solution as a fixed

point.

COMP 520 Fall 2010 Static analysis (9)

For the JIT compiler, we want to optimize the use

of registers:

mov 1,R3 =⇒ mov 1,R1

mov R3,R1

This requires knowledge about the future uses of

registers:

The optimization is only sound if the value of R3

is not used later on.

COMP 520 Fall 2010 Static analysis (10)

For basic block register allocation, which variables

need to be written back to memory?

The näıve scheme:

• must write all those variables that are only in

registers.

A better scheme:

• write all those variables that are only in

registers and whose values might be used

later on.

This could avoid many useless spills.

COMP 520 Fall 2010 Static analysis (11)

In both examples, we need to know if some Ri

might be used later on. If so, it is called live;

otherwise, it is called dead.

A static analysis can conservatively approximate

liveness at each program point.

Exact liveness is of course undecidable.

A trivial analysis will call everything live, which

precludes all optimizations.

A superior analysis will identify more dead

variables.

COMP 520 Fall 2010 Static analysis (12)

Liveness analysis for VirtualRISC:

• build a control flow graph (goto graph);

• define dataflow equations for each node;

• compute the least solution of these equations.

For basic blocks the computation is trivial.

For intraprocedural analysis we must compute a

minimal fixed point in a lattice.

COMP 520 Fall 2010 Static analysis (13)

Consider a simple basic block:

mov 3,R1

mov 4,R2

add R1,R2,R3

mov R3,R0

return

The underlined registers are written (defined), the

others are merely read (used).

The control flow graph is:

?

?

?

?

S1: mov 3,R1

S2: mov 4,R2

S3: add R1,R2,R3

S4: mov R3,R0

S5: return

COMP 520 Fall 2010 Static analysis (14)

Each instruction uses some registers and defines

some registers:

uses(Si) defines(Si)

{} {R1}

{} {R2}

{R1,R2} {R3}

{R3} {R0}

{R0} {}

?

?

?

?

S1: mov 3,R1

S2: mov 4,R2

S3: add R1,R2,R3

S4: mov R3,R0

S5: return

The register R0 is implicitly used for the return

value.

COMP 520 Fall 2010 Static analysis (15)

Let out(Si) be the variables that are live just after

Si and in(Si) those that are live just before Si:

?

?

Si: op X,Y,Z

out(Si)

in(Si)

Then we have the dataflow equation:

in(Si) = uses(Si) ∪ (out(Si) − defines(Si))

We add those registers that are used in the

current instruction and delete those that are

defined here.

COMP 520 Fall 2010 Static analysis (16)

Since out(S5) = {}, it follows that:

in(S5) = uses(S5) = {R0}

We can continue to unravel the equations:

out(S4) = in(S5) = {R0}

in(S4) = uses(S4) ∪ (out(S4) − defines(S4))

= {R3} ∪ ({R0} − {R0})

= {R3}

out(S3) = in(S4) = {R3}

in(S3) = uses(S3) ∪ (out(S3) − defines(S3))

= {R1,R2} ∪ ({R3} − {R3})

= {R1,R2}

and so on:
uses(Si) defines(Si)

{} {R1}

{} {R2}

{R1,R2} {R3}

{R3} {R0}

{R0} {}

?

?

?

?

S1: mov 3,R1

S2: mov 4,R2

S3: add R1,R2,R3

S4: mov R3,R0

S5: return

in(Si)

{}

{R1}

{R1,R2}

{R3}

{R0}

COMP 520 Fall 2010 Static analysis (17)

In basic blocks we use the equation:

out(Si) = in(Si+1)

If we have branches, then a node in the control

flow graph may have several successors.

In this case, we must use the equation:

out(Si) =
⋃

x ∈ succ(Si)

in(x)

But now the equations are cyclic and cannot

simply be unraveled.

COMP 520 Fall 2010 Static analysis (18)

Consider the small piece of C code:

{ int i, sum_even, sum_odd, sum;

i = 1;

sum_even = 0;

sum_odd = 0;

sum = 0;

while (i < 10)

{ if (i%2 == 0) sum_even = sum_even + i;

else sum_odd = sum_odd + i;

sum = sum + i;

i++;

}

}

It yields the following VirtualRISC code:

mov 1,R1 // R1 is i

mov 0,R2 // R2 is sum_even

mov 0,R3 // R3 is sum_odd

mov 0,R4 // R4 is sum

loop:

andcc R1,1,R5 // R5 = R1 & 1

cmp R5,0

bne else // if R5 != 0 goto else

add R2,R1,R2 // R2 = R2 + R1; even case

b endif

else:

add R3,R1,R3 // R3 = R3 + R1; odd case

endif:

add R4,R1,R4 // R4 = R4 + R1; update sum

add R1,1,R1 // R1 = R1 + 1; increment i

cmp R1,9

ble loop // if i <= 9 goto loop

COMP 520 Fall 2010 Static analysis (19)

The control flow graph:

?

?

?

?

S1: mov 1,R1

S2: mov 0,R2

S3: mov 0,R3

S4: mov 0,R4

S5: andcc R1,1,R5

?

?

?

?

�
��+

Q
QQs

Q
QQs

�
��+

?

�

S6: cmp R5,0

S7: bne S9

S8: add R2,R1,R2 S9: add R3,R1,R3

S10: add R4,R1,R4

S11: add R1,1,R1

S12: cmp R1,9

S13: ble S5

COMP 520 Fall 2010 Static analysis (20)

To unravel the liveness equations, we should start

with:

out(S13) = in(S5)

but we have not computed in(S5) yet, so this will

not work!

If in(S1),. . . ,in(S13) are known, then we can

unravel the code as before and obtain the sets

in(S1),. . . ,in(S13) once again.

But this means that unraveling is a function:

f : P(R)13 → P(R)13

where R = {R1, R2, . . . , R5}. A solution is a

fixed point, and we want the minimal one.

COMP 520 Fall 2010 Static analysis (21)

Two fundamental observations:

• the set D = P(R)13 is a finite lattice:

∀x, y ∈ D : x ⊓ y ∈ D ∧ x ⊔ y ∈ D

where ⊑ is point-wise set inclusion; and

• the unraveling function f is monotonic:

∀x, y ∈ D : x ⊑ y ⇒ f(x) ⊑ f(y)

since g(x) = A ∪ (x − B) is monotonic.

The fixed point theorem:

Any monotonic function f on a finite lattice D

has the unique minimal fixed point:
⊔

i

f i(⊥)

which is always obtained after finitely many

iterations.

COMP 520 Fall 2010 Static analysis (22)

For D = P(R)13 we have that:

⊥ = (∅, ∅, . . . , ∅)

so we start with the sets in(Si) = {} and keep

unraveling until they no longer change.

Note that:

⊤ = (R,R, . . . , R)

is always a safe answer, but clearly useless and

pessimistic.

Observe that the maximal fixed-point:

⊓if
i(⊤)

may in general be smaller than ⊤.

COMP 520 Fall 2010 Static analysis (23)

Computing the minimal fixed point:

uses defs succ ⊥ f(⊥) f2(⊥)

S1 R1 S2 {} {} {}

S2 R2 S3 {} {} {}

S3 R3 S4 {} {} {}

S4 R4 S5 {} {} {R1}

S5 R1 R5 S6 {} {R1} {R1}

S6 R5 S7 {} {R5} {R5}

S7 S8,S9 {} {} {R1,R2,R3}

S8 R1,R2 R2 S10 {} {R1,R2} {R1,R2,R4}

S9 R1,R3 R3 S10 {} {R1,R3} {R1,R3,R4}

S10 R1,R4 R4 S11 {} {R1,R4} {R1,R4}

S11 R1 R1 S12 {} {R1} {R1}

S12 R1 S13 {} {R1} {R1}

S13 S5 {} {} {R1}

The function is:

f(X1, X2, . . . , X13) = (Y1, Y2, . . . , Y13)

where:

Yi = uses(Si) ∪ (
⋃

Sj ∈ succ(Si)

Xj − defs(Si))

COMP 520 Fall 2010 Static analysis (24)

f3(⊥) f4(⊥) f5(⊥)

S1 {} {} {}

S2 {} {R1} {R1}

S3 {R1} {R1} {R1}

S4 {R1} {R1} {R1,R2,R3}

S5 {R1} {R1,R2,R3} {R1,R2,R3,R4}

S6 {R1,R2,R3,R5} {R1,R2,R3,R4,R5} {R1,R2,R3,R4,R5}

S7 {R1,R2,R3,R4} {R1,R2,R3,R4} {R1,R2,R3,R4}

S8 {R1,R2,R4} {R1,R2,R4} {R1,R2,R4}

S9 {R1,R3,R4} {R1,R3,R4} {R1,R3,R4}

S10 {R1,R4} {R1,R4} {R1,R4}

S11 {R1} {R1} {R1}

S12 {R1} {R1} {R1,R2,R3}

S13 {R1} {R1,R2,R3} {R1,R2,R3,R4}

f6(⊥) f7(⊥) f8(⊥)

S1 {} {} {}

S2 {R1} {R1} {R1}

S3 {R1,R2} {R1,R2} {R1,R2}

S4 {R1,R2,R3} {R1,R2,R3} {R1,R2,R3}

S5 {R1,R2,R3,R4} {R1,R2,R3,R4} {R1,R2,R3,R4}

S6 {R1,R2,R3,R4,R5} {R1,R2,R3,R4,R5} {R1,R2,R3,R4,R5}

S7 {R1,R2,R3,R4} {R1,R2,R3,R4} {R1,R2,R3,R4}

S8 {R1,R2,R4} {R1,R2,R4} {R1,R2,R3,R4}

S9 {R1,R3,R4} {R1,R3,R4} {R1,R2,R3,R4}

S10 {R1,R4} {R1,R2,R3,R4} {R1,R2,R3,R4}

S11 {R1,R2,R3} {R1,R2,R3,R4} {R1,R2,R3,R4}

S12 {R1,R2,R3,R4} {R1,R2,R3,R4} {R1,R2,R3,R4}

S13 {R1,R2,R3,R4} {R1,R2,R3,R4} {R1,R2,R3,R4}

COMP 520 Fall 2010 Static analysis (25)

A turbo fixed point technique:

� HHHY @
@

@I

��/

?

�
�
��

@
@

@I

HHHY� ���� �
�

�	

�

The improved function is:

f∆(X1, X2, . . . , X13) = (Y1, Y2, . . . , Y13)

where:

Yi = uses(Si) ∪ (
⋃

Sj ∈ succ(Si)

Zj − defs(Si))

Zj =







Yj if j > i

Xj otherwise

COMP 520 Fall 2010 Static analysis (26)

Improved fixed point computation:

⊥ f∆(⊥) f2

∆
(⊥) f3

∆
(⊥)

S1 {} {} {} {}

S2 {} {} {R1} {R1}

S3 {} {} {R1,R2} {R1,R2}

S4 {} {} {R1,R2,R3} {R1,R2,R3}

S5 {} {R1} {R1,R2,R3,R4} {R1,R2,R3,R4}

S6 {} {R5} {R1,R2,R3,R4,R5} {R1,R2,R3,R4,R5}

S7 {} {} {R1,R2,R3,R4} {R1,R2,R3,R4}

S8 {} {R1,R2} {R1,R2,R4} {R1,R2,R3,R4}

S9 {} {R1,R3} {R1,R3,R4} {R1,R2,R3,R4}

S10 {} {R1,R4} {R1,R4} {R1,R2,R3,R4}

S11 {} {R1} {R1} {R1,R2,R3,R4}

S12 {} {R1} {R1} {R1,R2,R3,R4}

S13 {} {} {R1} {R1,R2,R3,R4}

Number of iterations is down from 8 to 3.

COMP 520 Fall 2010 Static analysis (27)

Liveness analysis is used for register allocation in

optimizing compilers.

In the basic block case, reduce spills to those

variables that are only in registers and live.

In the intraprocedural case, construct a graph

whose nodes are variables:

m
m

m
m

m

m

����
S
S
S
S

#
##

@
@@

a

c

f
b

d

e

and where edges connect nodes that are live at

the same time.

Register allocation is now reduced to finding a

minimal graph coloring:

{ {a,d,f}, {b,e}, {c} }

and assigning a register to each color.

COMP 520 Fall 2010 Static analysis (28)

Liveness analysis is a backwards analysis, since we

unravel from the future towards the past.

An example of a forwards analysis is constant

propagation:

?

?

?

?

S1: mov 3,R1

S2: mov 4,R2

S3: add R1,R2,R3

S4: mov R3,R0

S5: return

{(R0,?),(R1,?),(R2,?),(R3,?)}

{(R0,?),(R1,3),(R2,?),(R3,?)}

{(R0,?),(R1,3),(R2,4),(R3,?)}

{(R0,?),(R1,3),(R2,4),(R3,7)}

{(R0,7),(R1,3),(R2,4),(R3,7)}

COMP 520 Fall 2010 Static analysis (29)

A basic static analysis of JOOS and other

object-oriented languages is type inference.

Given an expression, what are the possible classes

of the objects to which it may evaluate?

The exact answer is undecidable, so we must

conservatively approximate:

• we will accept a set that is too large;

• we want it as small as possible; and

• a trivial answer includes all classes.

This analysis is interprocedural and requires

access to the whole program.

COMP 520 Fall 2010 Static analysis (30)

Possible uses of type inference:

• inline methods when there is only one

possible receiver;

• eliminate run-time checks that can be decided

statically;

• remove code that is never executed; and

• approximate the control flow graph to enable

other static analyses.

In each case, smaller inferred sets will give better

results.

COMP 520 Fall 2010 Static analysis (31)

The constraint technique:

• assign a variable [[E]] to each occurrence of an

expression E;

• assign a variable [[m]] to each occurrence of a

method m;

• the variables range over the set of all classes

C = {C1, C2, . . . , Cn};

• each parse tree node generates a local

constraint on the variables; and

• the global minimal solution of these

constraints is finally computed.

Again, we must compute a minimal fixed point in

a finite lattice.

COMP 520 Fall 2010 Static analysis (32)

Each constraint models the flow of objects:

• the assignment “i = E” yields: [[E]] ⊆ [[i]];

• the creation “new C()” yields:

{C} ⊆ [[new C()]];

• the cast “C(E)” yields:

{C} ⊆ [[C(E)]];

• the constant “this” yields: {C} ⊆ [[this]],

where C is the surrounding class; and

• the statement “return E” yields: [[E]] ⊆ [[m]],

where m is the surrounding method.

COMP 520 Fall 2010 Static analysis (33)

The method invocation:

E.m(E1,E2,...,Ek)

yields the conditional constraints:

Ci ∈ [[E]] ⇒







































[[E1]] ⊆ [[x1]]

[[E2]] ⊆ [[x2]]
...

[[Ek]] ⊆ [[xk]]

[[m]] ⊆ [[E.m(E1,E2,...,Ek)]]

whenever the class Ci implements a method

named m which accepts k arguments named x1,

x2, . . . , xk.

COMP 520 Fall 2010 Static analysis (34)

Since the constraint:

v ⊆ w

holds if and only if the equality:

w = v ∪ w

does, we can rewrite a set of constraints into a

function:

f : P(C)k → P(C)k

such that fixed-points of f correspond to

solutions to the constraints.

COMP 520 Fall 2010 Static analysis (35)

For the example constraints:

v1 ⊆ v2

C3 ∈ v2 ⇒ v3 ⊆ v1

{C7} ⊆ v3

we get the function:

f(X1, X2, X3) =






(X1∪X3, X1∪X2, {C7}∪X3) if C3∈X2

(X1, X1∪X2, {C7}∪X3) otherwise

COMP 520 Fall 2010 Static analysis (36)

Solving the constraints:

• P(C)k is a finite lattice;

• each function f is monotonic; and

• the least fixed point of f is the unique

smallest solution of the constraints.

t

t

�
�

�
�

�
�

�
�

��
@

@
@

@
@

@
@

@
@@�

�
�

�
�

�
�

�
��
@

@
@

@
@

@
@

@
@@

6

���*

A
AAK

���
HHHY

A
AAK

�
���

@
@@I

Q
QQ

⊤

⊥

fixed point

ideal answer

COMP 520 Fall 2010 Static analysis (37)

A tiny JOOS sketch:

public class A {

public A() { super(); }

public A id(A x) { return x; }

}

public class B extends A {

public B() { super(); }

public B me() { return (B)(new A()).id(this); }

}

The generated constraints are:

[[x]]A ⊆ [[id]]A
[[x]]B ⊆ [[id]]B
[[(B)(new A()).id(this)]] ⊆ [[me]]

{B} ⊆ [[(B)(new A()).id(this)]]

{B} ⊆ [[this]]

{A} ⊆ [[new A()]]

A ∈ [[new A()]] ⇒ [[this]] ⊆ [[x]]A
A ∈ [[new A()]] ⇒ [[id]]A ⊆ [[(new A()).id(this)]]

B ∈ [[new A()]] ⇒ [[this]] ⊆ [[x]]B
B ∈ [[new A()]] ⇒ [[id]]B ⊆ [[(new A()).id(this)]]

The minimal solution is:

[[new A()]] = {A}

[[x]]A = [[id]]A = [[this]] = [[(new A()).id(this)]] = {B}

[[(B)(new A()).id(this)]] = {B}

[[x]]B = [[id]]B = {}

COMP 520 Fall 2010 Static analysis (38)

The generated code for the me method is:

.method public me()LB;

.limit locals 1

.limit stack 2

new A

dup

invokenonvirtual A/<init>()V

aload_0

invokevirtual A/id(LA;)LA;

checkcast B

areturn

.end method

The information [[new A().id(this)]] = {B}

eliminates the checkcast instruction.

That [[new A()]] = {A} is a singleton further

allows inlining of the id method:

.method public me()LB;

.limit locals 1

.limit stack 1

aload_0

areturn

.end method

With type inference, many little methods become

almost free.

COMP 520 Fall 2010 Static analysis (39)

Improving analyses by transformations:

• let P be our set of programs;

• let S : P → D be an ideal static analysis

(uncomputable); and

• let T : P → P be a program transformation

that preserves the semantics.

Since S gives the ideal information, clearly

S(T (p)) = S(p) for all p ∈ P .

However, if A : P → D is a conservative

approximation to S, then A(T (p)) may be

different from A(p), perhaps even better.

COMP 520 Fall 2010 Static analysis (40)

Transformations boost analyses:

6

s

s

s

s

6

�
�

�
�

�
�
�
�3

Q
Q

Q
Q

Q
Q
Q
Qs-

PPPPPPPPq

�
�

�
�

�
�
�

��3

�
�
��

@
@@

�
�
�
�
�
�
�
�
�
�
�
�
���

J
J
J
J
J
J
J
J
JJ

J

J
J

J
J

J
J

J
JJ

⊤

⊥

T

T A

S

S

A

S

A

The transformation T :

• may unfold the program to make it more

explicit; or

• may itself be an optimization.

