
COMP 520 Fall 2010 Native code generation (1)

Native code

generation



COMP 520 Fall 2010 Native code generation (2)

JOOS programs are compiled into bytecode.

This bytecode can be executed thanks to either:

• an interpreter;

• an Ahead-Of-Time (AOT) compiler; or

• a Just-In-Time (JIT) compiler.

Regardless, bytecode must be implicitly or

explicitly translated into native code suitable for

the host architecture before execution.



COMP 520 Fall 2010 Native code generation (3)

Interpreters:

• are easier to implement;

• can be very portable; but

• suffer an inherent inefficiency:

pc = code.start;

while(true)

{ npc = pc + instruction_length(code[pc]);

switch (opcode(code[pc]))

{ case ILOAD_1: push(local[1]);

break;

case ILOAD: push(local[code[pc+1]]);

break;

case ISTORE: t = pop();

local[code[pc+1]] = t;

break;

case IADD: t1 = pop(); t2 = pop();

push(t1 + t2);

break;

case IFEQ: t = pop();

if (t == 0) npc = code[pc+1];

break;

...

}

pc = npc;

}



COMP 520 Fall 2010 Native code generation (4)

Ahead-of-Time compilers:

• translate the low-level intermediate form into

native code;

• create all object files, which are then linked,

and finally executed.

This is not so useful for Java and JOOS:

• method code is fetched as it is needed;

• from across the internet; and

• from multiple hosts with different native code

sets.



COMP 520 Fall 2010 Native code generation (5)

Just-in-Time compilers:

• merge interpreting with traditional

compilation;

• have the overall structure of an interpreter;

but

• method code is handled differently.

When a method is invoked for the first time:

• the bytecode is fetched;

• it is translated into native code; and

• control is given to the newly generated native

code.

When a method is invoked subsequently:

• control is simply given to the previously

generated native code.



COMP 520 Fall 2010 Native code generation (6)

Features of a JIT compiler:

• it must be fast, because the compilation

occurs at run-time (Just-In-Time is really

Just-Too-Late);

• it does not generate optimized code;

• it does not compile every instruction into

native code, but relies on the runtime library

for complex instructions;

• it need not compile every method; and

• it may concurrently interpret and compile a

method (Better-Late-Than-Never).



COMP 520 Fall 2010 Native code generation (7)

Problems in generating native code:

• instruction selection:

choose the correct instructions based on the

native code instruction set;

• memory modelling:

decide where to store variables and how to

allocate registers;

• method calling:

determine calling conventions; and

• branch handling:

allocate branch targets.



COMP 520 Fall 2010 Native code generation (8)

Compiling JVM bytecode into VirtualRISC:

• map the Java local stack into registers and

memory;

• do instruction selection on the fly;

• allocate registers on the fly; and

• allocate branch targets on the fly.

This is successfully done in the Kaffe system.



COMP 520 Fall 2010 Native code generation (9)

The general algorithm:

• determine number of slots in frame:

locals limit + stack limit + #temps;

• find starts of basic blocks;

• find local stack height for each bytecode;

• emit prologue;

• emit native code for each bytecode; and

• fix up branches.



COMP 520 Fall 2010 Native code generation (10)

NaÏve approach:

• each local and stack location is mapped to an

offset in the native frame;

• each bytecode is translated into a series of

native instructions, which

• constantly move locations between memory

and registers.

This is similar to the native code generated by a

non-optimizing compiler.



COMP 520 Fall 2010 Native code generation (11)

Example:

public void foo() {

int a,b,c;

a = 1;

b = 13;

c = a + b;

}

Generated bytecode:

.method public foo()V

.limit locals 4

.limit stack 2

iconst_1 ; 1

istore_1 ; 0

ldc 13 ; 1

istore_2 ; 0

iload_1 ; 1

iload_2 ; 2

iadd ; 1

istore_3 ; 0

return ; 0

• compute frame size = 4 + 2 + 0 = 6;

• find stack height for each bytecode;

• emit prologue; and

• emit native code for each bytecode.



COMP 520 Fall 2010 Native code generation (12)

Assignment of frame slots:

name offset location

a 1 [fp-32]

b 2 [fp-36]

c 3 [fp-40]

stack 0 [fp-44]

stack 1 [fp-48]

Native code generation:

save sp,-136,sp

a = 1; iconst 1 mov 1,R1

st R1,[fp-44]

istore 1 ld [fp-44],R1

st R1,[fp-32]

b = 13; ldc 13 mov 13, R1

st R1,[fp-44]

istore 2 ld [fp-44], R1

st R1,[fp-36]

c = a + b; iload 1 ld [fp-32],R1

st R1,[fp-44]

iload 2 ld [fp-36],R1

st R1,[fp-48]

iadd ld [fp-48],R1

ld [fp-44],R2

add R2,R1,R1

st R1,[fp-44]

istore 3 ld [fp-44],R1

st R1,[fp-40]

return restore

ret



COMP 520 Fall 2010 Native code generation (13)

The näıve code is very slow:

• many unnecessary loads and stores, which

• are the most expensive operations.

We wish to replace loads and stores:

c = a + b; iload 1 ld [fp-32],R1

st R1,[fp-44]

iload 2 ld [fp-36],R1

st R1,[fp-48]

iadd ld [fp-48],R1

ld [fp-44],R2

add R2,R1,R1

st R1,[fp-44]

istore 3 ld [fp-44],R1

st R1,[fp-40]

by registers operations:

c = a + b; iload 1 ld [fp-32],R1

iload 2 ld [fp-36],R2

iadd add R1,R2,R1

istore 3 st R1,[fp-40]

where R1 and R2 represent the stack.



COMP 520 Fall 2010 Native code generation (14)

The fixed register allocation scheme:

• assign m registers to the first m locals;

• assign n registers to the first n stack

locations;

• assign k scratch registers; and

• spill remaining locals and locations into

memory.

Example for 6 registers (m = n = k = 2):

name offset location register

a 1 R1

b 2 R2

c 3 [fp-40]

stack 0 R3

stack 1 R4

scratch 0 R5

scratch 1 R6



COMP 520 Fall 2010 Native code generation (15)

Improved native code generation:

save sp,-136,sp

a = 1; iconst 1 mov 1,R3

istore 1 mov R3,R1

b = 13; ldc 13 mov 13,R3

istore 2 mov R3,R2

c = a + b; iload 1 mov R1,R3

iload 2 mov R2,R4

iadd add R3,R4,R3

istore 3 st R3,[fp-40]

return restore

ret

This works quite well if:

• the architecture has a large register set;

• the stack is small most of the time; and

• the first locals are used most frequently.



COMP 520 Fall 2010 Native code generation (16)

Summary of fixed register allocation scheme:

• registers are allocated once; and

• the allocation does not change within a

method.

Advantages:

• it’s simple to do the allocation; and

• no problems with different control flow paths.

Disadvantages:

• assumes the first locals and stack locations

are most important; and

• may waste registers within a region of a

method.



COMP 520 Fall 2010 Native code generation (17)

The basic block register allocation scheme:

• assign frame slots to registers on demand

within a basic block; and

• update descriptors at each bytecode.

The descriptor maps a slot to an element of the
set {⊥, mem, Ri, mem&Ri}:

a R2

b mem

c mem&R4

s 0 R1

s 1 ⊥

We also maintain the inverse register map:

R1 s 0

R2 a

R3 ⊥

R4 c

R5 ⊥



COMP 520 Fall 2010 Native code generation (18)

At the beginning of a basic block, all slots are in

memory.

Basic blocks are merged by control paths:

J
J
J 







a R1

b R2

a R3

b R4

a ?

b ?

Registers must be spilled after basic blocks:

J
J
J 







a R1

b R2

st R1,[fp-32]
st R2,[fp-36]

a R3

b R4

st R3,[fp-32]
st R4,[fp-36]

a mem

b mem



COMP 520 Fall 2010 Native code generation (19)

save sp,-136,sp

R1 ⊥

R2 ⊥

R3 ⊥

R4 ⊥

R5 ⊥

a mem

b mem

c mem

s 0 ⊥

s 1 ⊥

iconst 1 mov 1,R1

R1 s 0

R2 ⊥

R3 ⊥

R4 ⊥

R5 ⊥

a mem

b mem

c mem

s 0 R1

s 1 ⊥

istore 1 mov R1,R2

R1 ⊥

R2 a

R3 ⊥

R4 ⊥

R5 ⊥

a R2

b mem

c mem

s 0 ⊥

s 1 ⊥

ldc 13 mov 13,R1

R1 s 0

R2 a

R3 ⊥

R4 ⊥

R5 ⊥

a R2

b mem

c mem

s 0 R1

s 1 ⊥

istore 2 mov R1,R3

R1 ⊥

R2 a

R3 b

R4 ⊥

R5 ⊥

a R2

b R3

c mem

s 0 ⊥

s 1 ⊥



COMP 520 Fall 2010 Native code generation (20)

iload 1 mov R2,R1

R1 s 0

R2 a

R3 b

R4 ⊥

R5 ⊥

a R2

b R3

c mem

s 0 R1

s 1 ⊥

iload 2 mov R3,R4

R1 s 0

R2 a

R3 b

R4 s 1

R5 ⊥

a R2

b R3

c mem

s 0 R1

s 1 R4

iadd add R1,R4,R1

R1 s 0

R2 a

R3 b

R4 ⊥

R5 ⊥

a R2

b R3

c mem

s 0 R1

s 1 ⊥

istore 3 st R1,R4

R1 ⊥

R2 a

R3 b

R4 c

R5 ⊥

a R2

b R3

c R4

s 0 ⊥

s 1 ⊥

st R2,[fp-32]

st R3,[fp-36]

st R4,[fp-40]

R1 ⊥

R2 ⊥

R3 ⊥

R4 ⊥

R5 ⊥

a mem

b mem

c mem

s 0 ⊥

s 1 ⊥

return restore

ret



COMP 520 Fall 2010 Native code generation (21)

So far, this is actually no better than the fixed

scheme.

But if we add the statement:

c = c * c + c;

then the fixed scheme and basic block scheme

generate:

Fixed Basic block

iload_3 ld [fp-40],R3 mv R4, R1

dup ld [fp-40],R4 mv R4, R5

imul mul R3,R4,R3 mul R1, R5, R1

iload_3 ld [fp-40],R4 mv R4, R5

iadd add R3,R4,R3 add R1, R5, R1

istore_3 st R3,[fp-40] mv R1, R4



COMP 520 Fall 2010 Native code generation (22)

Summary of basic block register allocation

scheme:

• registers are allocated on demand; and

• slots are kept in registers within a basic block.

Advantages:

• registers are not wasted on unused slots; and

• less spill code within a basic block.

Disadvantages:

• much more complex than the fixed register

allocation scheme;

• registers must be spilled at the end of a basic

block; and

• we may spill locals that are never needed.



COMP 520 Fall 2010 Native code generation (23)

We can optimize further:

save sp,-136,sp save sp,-136,sp

mov 1,R1 mov 1,R2

mov R1,R2

mov 13,R1 mov 13,R3

mov R1,R3

mov R2,R1

mov R3,R4

add R1,R4,R1 add R2,R3,R1

st R1,[fp-40] st R1,[fp-40]

restore restore

ret ret

by not explicitly modelling the stack.



COMP 520 Fall 2010 Native code generation (24)

Unfortunately, this cannot be done safely on the

fly by a peephole optimizer.

The optimization:

mov 1,R3 =⇒ mov 1,R1

mov R3,R1

is unsound if R3 is used in a later instruction:

mov 1,R3 =⇒ mov 1,R1

mov R3,R1
...

...

mov R3,R4 mov R3,R4

Such optimizations require dataflow analysis.



COMP 520 Fall 2010 Native code generation (25)

Invoking methods in bytecode:

• evaluate each argument leaving results on the

stack; and

• emit invokevirtual instruction.

Invoking methods in native code:

• call library routine soft get method code to

perform the method lookup;

• generate code to load arguments into

registers; and

• branch to the resolved address.



COMP 520 Fall 2010 Native code generation (26)

Consider a method invocation:

c = t.foo(a,b);

where the memory map is:

name offset location register

a 1 [fp-60] R3

b 2 [fp-56] R4

c 3 [fp-52]

t 4 [fp-48] R2

stack 0 [fp-36] R1

stack 1 [fp-40] R5

stack 2 [fp-44] R6

scratch 0 [fp-32] R7

scratch 1 [fp-28] R8



COMP 520 Fall 2010 Native code generation (27)

Generating native code:

aload 4 mov R2,R1

iload 1 mov R3,R5

iload 2 mov R4,R6

invokevirtual foo // soft call to get address

ld R7,[R2+4]

ld R8,[R7+52]

// spill all registers

st R3,[fp-60]

st R4,[fp-56]

st R2,[fp-48]

st R6,[fp-44]

st R5,[fp-40]

st R1,[fp-36]

st R7,[fp-32]

st R8,[fp-28]

// make call

mov R8,R0

call soft get method code

// result is in R0

// put args in R2, R1, and R0

ld R2,[fp-44] // R2 := stack 2

ld R1,[fp-40] // R1 := stack 1

st R0,[fp-32] // spill result

ld R0,[fp-36] // R0 := stack 0

ld R4,[fp-32] // reload result

jmp [R4] // call method

• this is long and costly; and

• the lack of dataflow analysis causes massive

spills within basic blocks.



COMP 520 Fall 2010 Native code generation (28)

Handling branches:

• the only problem is that the target address is

not known;

• assemblers normally handle this; but

• the JIT compiler produces binary code

directly in memory.

Generating native code:

if (a < b) iload 1 ld R1,[fp-44]

iload 2 ld R2,[fp-48]

if icmpge 17 sub R1,R2,R3

bge ??

How to compute the branch targets:

• previously encountered branch targets are

already known;

• keep unresolved branches in a table; and

• patch targets when the bytecode is eventually

reached.


