COMP 520 Fall 2010 The JOOS language (1) COMP 520 Fall 2010 The JOOS language (2)

The Java language:

The e was originally called Oak;

e was developed as a small, clean, OO language

for programming consumer devices;

e was built into the Webrunner browser;

e matured into Java and HotJava;

e is now supported by many browsers, allowing

language Java programs to be embedded in WWW

pages;

e is also used by web servers, even if the client

user is not running Java; and

e is the implementation language for several

large applications.

COMP 520 Fall 2010 The JOOS language (3) COMP 520 Fall 2010 The JOOS language (4)
Basic compilation (.java — .class): Major benefits of Java:
e Java programs are developed as source code e it’s object-oriented;

for a collection of Java classes; e it’s a “cleaner” OO language than C++;

e cach class is compiled into Java Virtual

e it’s portable (except for native code);
Machine (JVM) bytecode;

e it’s distributed and multithreaded;
e bytecode is interpreted or JIT-compiled using

some implementation of the JVM; * it’s secure;

e Java supports a GUT; and e it supports windowing and applets;

e many browsers have Java plugins for e it’s semantics is completely standardized;

executing JVM bytecode. e it has a huge class library; and

e it’s finally finally finally officially open source.

COMP 520 Fall 2010 The JOOS language (5)

Java security has many sources:

e programs are strongly type-checked at

compile-time;
e array bounds are checked at run-time;
e null pointers are checked at run-time;
e there are no explicit pointers;

e dynamic linking is checked at run-time; and

e class files are verified at load-time.

COMP 520 Fall 2010 The JOOS language (7)

Goals in the design of JOOS:
e extract the object-oriented essence of Java;

e make the language small enough for course

work, yet large enough to be interesting;

e provide a mechanism to link to existing Java

code; and

e ensure that every JOOS program is a valid
Java program, such that JOOS is a strict

subset of Java.

COMP 520 Fall 2010 The JOOS language (6)

Major drawbacks of Java:

e it misses some language features, e.g.
genericity (until 1.5), multiple inheritance,

operator overloading;

e it does not have one single standard (JDK
1.0.2vs. JDK 1.1.% vs....) and probably

never will;

e it can be slower than C++ for expensive

numeric computations due to dynamic
224
Z
array-bounds checks; Z and

e it’s not JOOS.

COMP 520 Fall 2010 The JOOS language (8)

Programming in JOOS:
e cach JOOS program is a collection of classes;

e there are ordinary classes which are used to
develop JOOS code; and

e there are external classes which are used to
interface to Java libraries.

An ordinary class consists of:
e protected fields;

e constructors; and

e public methods.

COMP 520 Fall 2010 The JOOS language (9)

$ cat Cons.java

public class Cons {
protected Object first;
protected Cons rest;

public Cons(Object f, Cons r)
{ super(); first = f; rest = r; }

public void setFirst(Object newfirst)
{ first = newfirst; }

public Object getFirst()
{ return first; }

public Cons getRest()
{ return rest; }

public boolean member(Object item)
{ if (first.equals(item))
return true;
else if (rest==null)
return false;
else
return rest.member(item);

public String toString()
{ if (rest==null)
return first.toString();
else

return first + " " + rest;

COMP 520 Fall 2010 The JOOS language (11)

Other important things to note about JOOS:

e subclassing must not change the signature of

a method;

e local declarations must come at the beginning

of the statement sequence in a block; and

e every path through a non-void method must
return a value. (In Java such methods can

also throw exceptions.)

COMP 520 Fall 2010 The JOOS language (10)

Notes on the Cons example:

e fields in JOOS must be protected: they can
only be accessed via objects of the class or its

subclasses;

e constructors in JOOS must start by invoking
a constructor of the superclass, i.e. by calling
super(...) where the argument types
determine the constructor called;

e methods in JOOS must be public: they can
be invoked by any object; and

e only constructors in JOOS can be overloaded,

other methods cannot.

COMP 520 Fall 2010 The JOOS language (12)

The class hierarchies in JOOS and Java are both
single inheritance, i.e. each class has exactly one
superclass, except for the root class:

L]

N I e
T TN
L L J 1 []
[]

The root class is called Object, and any class

without an explicit extends clause is a subclass
of Object.

COMP 520 Fall 2010 The JOOS language (13) COMP 520 Fall 2010 The JOOS language (14)

The definition of Cons is equivalent to: The class Object has two methods:

public class Coms extends Object e toString() returns a string encoding the

{...} type and object id; and

e equals() returns true if the object reference

which gives the tiny hierarchy: denotes the current object

Object These methods are often overridden in subclasses:
public String toString();
public boolean equals(Object obj); e toString() encodes the value as a string; and
I e equals() decides a more abstract equality.
Cons

public void setFirst(Object newfirst);

public Object getFirss(); When overriding a method, the argument types

public Cons getRest(); and return types must remain the same.
public boolean member(Object item);
public String toString(; When overriding equals (), hashcode () must

also be overridden: equal objects must produce

the same hashcode.

COMP 520 Fall 2010 The JOOS language (15) COMP 520 Fall 2010 The JOOS language (16)
Extending the Cons class: The extended hierarchy:
$ cat ExtComs.java Object

public class ExtCons extends Cons { public String toString();

protected int intField;

public boolean equals(Object obj);

public ExtCons(Object f, Cons r, int i) I
{ super(f,r);
intField = i;

Cons

public void setFirst(Object newfirst);

}
public Object getFirst();
public void setIntField(int i) public Cons getRest();
{ intField = i; } public boolean member(Object item);

public String toString();
public int getIntField() I

{ return(intField); }

ExtCons

public void setIntField(int i);

public int getIntField();

COMP 520 Fall 2010

The JOOS language (17)

COMP 520 Fall 2010

Using the Cons class:

$ cat UseComs.java
import joos.lib.*;

public class UseCons {
public UseCons() { super(); }

public static void main(String argv([])

{ Cons 1;
JoosIO f;
1 = new Cons("a",new Cons("b",new Cons("c",null)));
f = new JoosIO();
f.println(l.toString());
f.println("first is " + l.getFirst());
f.println("second is " + 1l.getRest().getFirst());
f.println("a member? " + 1l.member("a"));
f.println("z member? " + 1l.member("z"));

}

A Java program (not an applet) requires a
main() method.

It is necessary to import library functions such as

println().

The JOOS language (19)

Types in JOOS are either primitive types:
e boolean: true and false;
e int: —231,,.231 _ 1.

e char: the ASCII characters;
or user-defined class types;

or externally defined class types:
e (Object;

e Boolean;

e Integer;

e Character;
e String;

e BitSet;

e Vector;

e Date.

Note that boolean and Boolean are different.

COMP 520 Fall 2010

The JOOS language (18)

COMP 520 Fall 2010

Compile and run the UseCons program:

$ javac joos/lib/*.java
$ joosc UseCons.java Cons.java
$ java UseCons

The UseCons program builds these objects:

equal s() equal s() equal s()
& &) &

setFirst() setFirst() setFirst()

The output of the UseCons program is:

abc

first is a
second is b

a member? true

z member? false

The JOOS language (20)

Types in Java and JOOS:
e Java is strongly-typed;
e Java uses the name of a class as its type;

e given a type of class C, any instance of class C

or a subclass of C is a permitted value;

e there is “down-casting” which is

automatically checked at run-time:
SubObject subobj = (SubObject) obj;

e there is an explicit instanceof check:

if (subobj instanceof Object)
return true;
else

return false;

e and finally some type-checking must be done

at run-time.

COMP 520 Fall 2010 The JOOS language (21)

Statements in JOOS:

e expression statements:

X =y +z;

X =y =z
a.toString(l);

new Cons("abc",null);

e block statements:

{ int x;
x = 3;

}

e control structures:

if (1.member("z")) {
// do something

while (1 != null) {
// do something
1 = l.getRest();

e return statements:

return;

return true;

COMP 520 Fall 2010 The JOOS language (23)

Expressions in JOOS:

e class instance creation:
new Cons("abc",null)

e cast expressions:
(String) getFirst(list)
(char) 119

e method invocation:

1.getFirst()
super.getFirst();
1l.getFirst().getFirst();
this.getFirst();

COMP 520 Fall 2010 The JOOS language (22)

Expressions in JOOS:
e constant expressions:
true, 13, ’\n’, "abc", null
e variable expressions:
i, first, rest
e binary operators:
Il
&k

< > <= >= instanceof
+ -

*/h

® unary operator&

COMP 520 Fall 2010 The JOOS language (24)

Abstract methods and classes:
e a method may be abstract, where no
implementation is given;

e if a class contains one or more abstract
methods, it must be defined as an abstract

class;

e the constructor of an abstract class cannot

be invoked;

e abstract classes are used to define

“frameworks”.

COMP 520 Fall 2010 The JOOS language (25)

$ cat Benchmark.java
import joos.lib.*;

public abstract class Benchmark {

protected JoosSystem s; // JOOS interface to
// the Java System Class

public Benchmark()
{ super();
s = new JoosSystem();

// Hook for actual benchmark
public abstract void benchmark();

// driver to time repeated executions
public int myrepeat(int count)
{ int start;

int i;

start = s.currentTimeMillis();
i=0;
while (i < count) {
this.benchmark();
i = i+1;
}

return s.currentTimeMillis()-start;

COMP 520 Fall 2010 The JOOS language (27)

Final methods and classes:

e the final keyword is used when no

modifications to functionality are allowed;

e a final method cannot be overridden by
subclasses;

e a final class cannot be extended;

e final classes typically belong to libraries:

Boolean, Integer, and String (for security

purposes).

Note that JOOS does not provide final fields

like Java does.

COMP 520 Fall 2010 The JOOS language (26)

$ cat ExtBenchmark.java
public class ExtBenchmark extends Benchmark {
public ExtBenchmark() {
super () ;

}

public void benchmark() {} // timing an empty method
}

$ cat UseBenchmark.java
import joos.lib.*;

public class UseBenchmark {
public UseBenchmark() { super(); }

public static void main(String argv([])
{ ExtBenchmark b;

JoosIO f;

int reps;

int time;

b = new ExtBenchmark();
f = new JoosIDQ);

f.print ("Enter number of repetitions: ");
reps = f.readInt();
time = b.myrepeat(reps);

f.println("time is " + time + " millisecs");

COMP 520 Fall 2010 The JOOS language (28)

Synchronized methods:

e Java and JOOS programs can start multiple
threads;

e sometimes access to a shared resource must
be protected, such that only one thread is in

a critical section at a time;
e cach object has an associated lock; and

e JOOS provides synchronized methods, such
that when a thread invokes a synchronized
method on an object, the thread does not
enter the method until it has successfully
acquired the target object’s lock and it holds
on to the lock until the method execution
completes.

Note that JOOS does not provide synchronized

blocks like Java does.

COMP 520 Fall 2010 The JOOS language (29)

$ cat SyncBox.java
public class SyncBox {
protected Object boxContents;

public SyncBox() { super(); }

// return contents of the box, set contents to null
public synchronized Object get()
{

Object contents;

contents = boxContents;

boxContents = null;

return contents;

// put something in the box,

// if the box already has something in it, return false
// else fill the box, return true

public synchronized boolean put (Object contents)

{
if (boxContents !'= null) return false;
boxContents = contents;
return true;

}

COMP 520 Fall 2010 The JOOS language (31)

$ cat joos/extern/javalib.joos

// java.lang.String
extern public final class String in "java.lang" {
public String();
public String(String value);
public String(StringBuffer buffer);
public String vlaueOf (boolean b);
public char charAt(int index);
public int compareTo(String anotherString);
public boolean endsWith(String suffix);
public boolean equals(Object obj);
public boolean equalsIgnoreCase(String anotherString);
public int indexOf (String str, int fromIndex);
public int lastIndexOf (String str, int fromIndex);
public int length();
public boolean regionMatches(boolean ignoreCase,
int toffset, String other, int ooffset, int len);
public boolean startsWith(String prefix, int toffset);
public String substring(int beginIndex, int endIndex);

public String concat(String str);
public String toLowerCase();
public String toUpperCase();
public String toString();

public String trim();

COMP 520 Fall 2010 The JOOS language (30)

External classes in Java:

e Java compiles programs with respect to a set

of libraries of precompiled class files; and

e when a Java compiler encounters an unknown
method, it searches the precompiled bytecode

for an implementation.
External classes in JOOS:

e JOOS compiles programs with respect to a

set of libraries of precompiled class files; but

e external classes must be explicitly presented
to the JOOS compiler.

COMP 520 Fall 2010 The JOOS language (32)

External declarations for Java libraries:
e javalib. joos
e appletlib. joos
e awtlib. joos
e netlib. joos
e BigDecimal. joos
External declarations for JOOS libraries:

e jooslib. joos

COMP 520 Fall 2010 The JOOS language (33)

Example JOOS programs:

e AppletGraphics: simple graphics programs

to be displayed via a browser;

e AwtDemos: examples of using the Abstract
Windows Toolkit;

e ImageDemos: two techniques for displaying an

animation;

e Network: simple examples of interacting over

the network;

e Simple: a relatively large collection of simple

programs;
e Threads: simple multithreaded programs; and

e WIGapplets: examples of WIG applets.

All examples should work, please email your TA if

they do not.

COMP 520 Fall 2010 The JOOS language (35)

Converting between JOOS & Java source code
(*.java, *.joos), Jasmin assembler (. j) and

Java bytecode (*.class):

dejava

Java
bytecode

javac

joosc simply calls joos and then jasmin.

COMP 520 Fall 2010 The JOOS language (34)

When compared to Java, JOOS:

e does not support packages, interfaces,
exceptions, some control structures, mixed

statements and declarations;

e has only protected fields and public

methods;
e does not allow overloading of methods;
e does not support arrays;
e does not allow static methods;

e supports only int, boolean, and char as

primitive types; and

e uses external class declarations.

