
Journal of Automated Reasoning manuscript No.
(will be inserted by the editor)

The Next 700 Challenge Problems for Reasoning with
Higher-Order Abstract Syntax Representations

Part 1—A Foundational View

Amy P. Felty · Alberto Momigliano ·
Brigitte Pientka

February 22, 2014

Abstract A variety of logical frameworks support the use of higher-order abstract
syntax (HOAS) in representing formal systems. Although these systems seem su-
perficially the same, they differ in a variety of ways; for example, how they handle
a context of assumptions and which theorems about a given formal system can
be concisely expressed and proved. Our contributions in this paper are three-fold:
1) we develop a common theoretical framework for representing benchmarks for
systems supporting reasoning with binders, 2) we present several concrete bench-
marks, which highlight a variety of different aspects of reasoning within a context
of assumptions using HOAS, and 3) we design an open repository ORBI (Open
challenge problem Repository for systems supporting reasoning with BInders). Our
work sets the stage for providing a basis for qualitative comparison of different sys-
tems. This allows us to review and survey the state of the art as well as outline
future fundamental research questions regarding the design and implementation of
meta-reasoning systems, as we outline in the companion paper (Felty et al, 2014).

Keywords Logical Frameworks · Higher-Order Abstract Syntax · Context
Reasoning · Benchmarks

1 Introduction

In recent years the POPLMark challenge (Aydemir et al, 2005) has stimulated
considerable interest in mechanizing the meta-theory of programming languages
and it has played a substantial role in the wide-spread use of proof assistants to

A. P. Felty
School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa,
Canada, E-mail: afelty@eecs.uottawa.ca

A. Momigliano
Dipartimento di Informatica, Università degli Studi di Milano, Italy, E-mail:
momigliano@di.unimi.it

B. Pientka
School of Computer Science, McGill University, Montreal, Canada, E-mail: bpien-
tka@cs.mcgill.ca

2 Amy P. Felty et al.

prove properties of parts of a compiler or of a language design. The POPLMark
challenge concentrated on summarizing the state of the art, identifying best prac-
tices for (programming language) researchers embarking on formalizing language
definitions, and identifying a list of engineering improvements to make the use
of proof assistants common place. While these are important questions whose an-
swers will foster the adoption of proof assistants by non-experts, it neglects some of
the deeper fundamental questions: What should existing or future meta-languages
and meta-reasoning environments look like and what requirements should they
satisfy? What support should an ideal language and proof environment give to fa-
cilitate mechanizing meta-reasoning? How can the design of a language and proof
environment reflect and support these ideals?

We believe “good” meta-languages should free the user from dealing with te-
dious bureaucratic details, so s/he is able to concentrate on the essence of a proof or
algorithm. Ultimately, this means that users may mechanize proofs more quickly.
In addition, since time is not wasted on cumbersome details, proofs are more likely
to capture only the essential steps of the reasoning process, and as a result, may
be easier to trust. For instance, weakening is an example of a low-level lemma that
may be used pervasively in a proof. Freeing the user of such details ultimately may
also mean that the automation of such proofs is more feasible.

One fundamental question when mechanizing formal systems and their meta-
theory is how to represent variables and variable binding structures. There is
a wide range of answers to this question from using de Bruijn indices, locally
nameless representations, nominal encodings, etc. For a partial view of the field
see the papers collected in the Journal of Automated Reasoning ’s special issue
dedicated to POPLMark (Pierce and Weirich, 2012) and the one on “Abstraction,
Substitution and Naming” (Fernández and Urban, 2012).

Encoding languages and logics via higher-order abstract syntax (HOAS),1

where we utilize meta-level binders to model object-level binders is in our opinion
the most advanced technology. Using HOAS, users can avoid implementing com-
mon, although notoriously tricky routines dealing with variables, such as capture-
avoiding substitution, renaming, and fresh name generation. Compared to other
techniques, HOAS leads to very concise and elegant encodings and provides signif-
icant support for such an endeavor. Concentrating on encoding binders, however,
neglects another important and fundamental aspect: the support for hypothetical
and parametric reasoning, in other terms reasoning within a context of assump-
tions. Considering a derivation within a context is common place in programming
language theory and leads to several natural questions: How do we model the con-
text of assumptions? How do we know that a derivation is sensible within the scope
of a context? Can we model the relationships between different contexts? How do
we deal with structural properties of contexts such as weakening, strengthening,
and exchange? How do we know assumptions in a context occur uniquely? How
do we take advantage of the HOAS approach to substitution?

Even in systems supporting HOAS there is not a uniform answer to these
questions. On one side of the spectrum, we have systems that implement vari-
ous dependently-typed calculi. Such systems include the logical framework Twelf
(Schürmann, 2009), the dependently-typed functional language Beluga (Pientka,
2008; Pientka and Dunfield, 2010), and Delphin (Poswolsky and Schürmann, 2008).

1 Sometimes referred to as “lambda-tree syntax”, see Miller and Palamidessi (1999).

The Next 700 Challenge Problems: A Foundational View 3

All these systems also provide, in various degrees, built-in support for reasoning
with structural properties of a context of assumptions.

On the other side of the spectrum, there are systems based on a proof-theoretic
foundation that follow a two-level approach: they implement a specification logic
(SL) inside a higher-order logic or type theory. Hypothetical judgments of object
logics are modelled using implication in the SL and parametric judgments are
handled via (generic) universal quantification. Substituting for an assumption or
parameter is justified by appealing to the cut-admissibility lemma of the SL. Con-
texts are commonly represented explicitly as lists or sets in the SL, and structural
properties are established separately as lemmas. These lemmas are not directly
and intrinsically supported through the SL (but may be integrated into a system’s
automated proving procedures, usually via tactics). Systems following this philos-
ophy are for instance the two-level Hybrid system (Momigliano et al, 2008; Felty
and Momigliano, 2012) as implemented on top of Coq (Bertot and Castéran, 2004)
and Isabelle/HOL (Nipkow et al, 2002), and the Abella system (Gacek, 2008).

The contributions of this paper, which is a major extension of an earlier confer-
ence paper (Felty and Pientka, 2010), are three-fold. First, we develop a common
theoretical framework for representing benchmarks for systems supporting rea-
soning with binders; in particular, we develop notation to specify the structure
of contexts as “structured sequences” and classify contexts using schemas. More-
over, we abstractly characterize basic structural properties such as weakening,
strengthening, and exchange in a uniform way. Second, we propose several chal-
lenge problems that are crafted to highlight the differences between the designs of
various meta-languages with respect to the treatment of reasoning with and within
a context of assumptions. In Part 2 of this paper (Felty et al, 2014), we carry out
such a comparison on four systems: Twelf, Beluga, Hybrid, and Abella. Third,
we discuss the design of ORBI (Open challenge problem Repository for systems
supporting reasoning with BInders), an open repository for sharing benchmark
problems based on the notation we have developed. We use a syntax close to the
one adopted in systems such as Twelf and Beluga and discuss our approach to
translating specifications in the language to our target systems.2 The common
notation expresses syntax of object logics or OLs (the programming languages or
logics that we wish to reason about), the context schemas, the judgments and
inference rules, and the statements of the benchmark theorems.

We hope that ORBI will foster sharing of examples in the community and
provide a common set of examples. We also see our benchmark repository as a
place to collect and propose “open” challenge problems to push the development
of meta-reasoning systems.

The challenge problems also play a role in allowing us, as developers and de-
signers of logical frameworks, to highlight and explain how the design decisions for
each individual system lead to differences in using them in practice. This means
reviewing and surveying the state of the art as well as outline future fundamen-
tal research questions regarding the design and implementation of meta-reasoning
systems, as we outline in the companion paper (Felty et al, 2014).

Additionally, our benchmarks aim to provide a better understanding of what
practitioners should be looking for and help them understand what kind of prob-

2 A first step in this direction is the translator for Hybrid, whose first version is presented
in Habli and Felty (2013).

4 Amy P. Felty et al.

lems can be solved elegantly and easily in a given system, and more importantly,
why this is the case. Therefore the challenge problems provide guidance for users
and developers in better understanding the differences and limitations. Finally,
they serve as an excellent regression suite.

This paper does not, of course, present 700 challenge problems. We start with a
few and hope that others will contribute to the benchmark repository, implement
these challenge problems, and further our understanding of the trade-offs involved
in choosing one system over another for this kind of reasoning.

We begin in Section 2 by motivating our definition of contexts and their prop-
erties, and then present the benchmarks and their proofs in Section 3. In Section 4,
we introduce ORBI and discuss how it provides HOAS encodings of the bench-
marks in a uniform manner. We discuss related work in Section 5, before conclud-
ing in Section 6. Appendix A provides a quick reference guide to the benchmarks
and Appendix B gives a complete example of an ORBI file for a selection of the
benchmark problems. Full details about the challenge problems and their mecha-
nization can be found at https://github.com/pientka/ORBI. The latter can be
better appreciated by reading the companion paper (Felty et al, 2014).

2 A Theory of Contexts of Assumptions

As mentioned, proof environments supporting higher-order abstract syntax differ
in how they represent and model contexts and our comparison will to a large extent
focus on this issue. We hence introduce our notation for describing the syntax of
objects and forming contexts and discuss the structural properties contexts should
satisfy.

2.1 Example: Polymorphic Lambda-Calculus

Consider the polymorphic lambda-calculus. Commonly the grammar of this lan-
guage is defined using Backus-Naur form as follows.

Types A,B ::= α | arrAB | allα.A
Terms M ::= x | lamx.M | appM1 M2 | tlamα.M | tappM A

The grammar, however, does not capture properties such as when a given term
or type is closed. Alternatively, we can describe well-formed types and terms as
judgments using axioms and inference rules following Martin-Löf (1996). This
approach also allows us to introduce all inductive definitions in a uniform manner.
We start with an implicit-context version of the rules for well-formed types and
terms which is equivalent to the above BNF grammar, but also enforces that a
given well-formed type and term is closed.

Well-formed Types (implicit context)

is tp α
tpv

...
is tp A

is tp (allα.A)
tpα,tpval

is tp A is tp B

is tp (arrAB)
tpar

The Next 700 Challenge Problems: A Foundational View 5

For well-formed types, we have rules for polymorphic types (tpal) and function
types (tpar) where the former is annotated with the name of the bound variable
(α) and the name of the axiom (tpv) stating the well-formedness of this type
variable.

Well-formed Terms (implicit context)

is tm x
tmv

...
is tmM

is tm (lamx.M)
tmx,tmv

l

is tp α
tpv

...
is tmM

is tm (tlamα.M)
tmα,tpv

tl

is tmM1 is tmM2

is tm (appM1 M2)
tma

is tmM is tp A

is tm (tappM A)
tmta

For well-formed terms, we have rules for term abstraction (tml), type abstraction
(tmtl), term application (tma), and type application (tmta). Since types are em-
bedded inside terms, we refer to the rules for well-formed types in the rule tmta.
We note that due to the implicit-context representation of the inference rules, we
do not need a rule for variables when defining well-formed terms and types, since
whenever a variable is encountered, we will have the corresponding assumption
that it is indeed a term or a type. Bound variables can be α-renamed and we
consider two objects equal up to α-renaming.

2.2 Context Definitions

Introducing the appropriate assumption about each variable is a general method-
ology that scales to general formal systems and can also accommodate expressive
assumptions. For example, when we specify typing rules, we introduce a typing
assumption that keeps track of the fact that a given variable has a certain type.
It can also result in compact and elegant proofs. Yet, it is often convenient to
introduce hypothetical judgments in a “localized” form, making explicit some of
the ambiguity of the two-dimensional notation. We therefore introduce an explicit
context for bookkeeping, since when establishing properties about a given lan-
guage, it allows us to consider the variable case(s) separately and to state clearly
when considering closed objects, i.e., an object in the empty context. More impor-
tantly, while structural properties of contexts are implicitly present in the above
presentation of inference rules (where assumptions are managed informally), the
explicit context presentation makes them more apparent and highlights their use in
reasoning about contexts. Structural properties of contexts arise frequently when
defining formal systems and mechanizing proofs.

Typically, a context of assumptions is characterized as a sequence of formulas
A1, A2, . . . , An listing its elements, separated by commas (Pierce, 2002; Girard
et al, 1990). However, this is not expressive enough to capture the structure often
present in contexts. When mechanizing formal systems, we need to do better; there
are two limitations from that point of view.

First, simply stating that a context is a sequence of formulas does not charac-
terize adequately and precisely what assumptions can occur in a context and in

6 Amy P. Felty et al.

what order. For example, to characterize a well-formed type, we consider a type
in a context Φα of type variables. To characterize a well-formed term, we must
consider the term in a context Φαx which may contain type variables α and term
variables x.

Context Φα ::= · | Φα, is tp α
Φαx ::= · | Φαx, is tp α | Φαx, is tm x

As a consequence, we need to be able to state in our mechanization when a given
context satisfies being a well-formed context Φα or Φαx. In other words, the gram-
mar for Φα and Φαx will give rise to a schema which describes when a context is
meaningful. Simply stating that a context is a sequence of assumptions does not
allow us necessarily to distinguish between different contexts.

Second, forming new contexts by a comma does not capture enough structure.
For example, consider the typing rule for lambda-abstraction which states that
lamx.M has type (arr C B), if assuming x is a term variable and x has type C, we
can show that M has type B. Note that whenever we introduce assumptions x:C
(read as “term variable x has type C”), we also at the same time introduce the
assumption that x is a new term variable. This is in fact important, since from it we
can derive the fact that every typing assumption is unique. Simply stating that the
typing context is a list of assumptions x:C, as shown below in the first attempt,
fails to capture the fact that x is a term variable, distinct from all other term
variables. In fact, it says nothing about x. The second attempt below also fails,
because the occurrences of the comma have two different meanings. The comma
between is tm x, x:C indicates that whenever we have an assumption is tm x, we
also have an assumption x:C. These assumptions come in pairs and form one
block of assumptions. On the other hand, the comma between Φ and is tm x, x:C
indicates that the context Φ is extended by the block containing assumptions
is tm x and x:C.

Typing context (attempt 1) Φ ::= · | Φ, x:C
Typing context (attempt 2) Φ ::= · | Φ, is tm x, x:C

Taking into account such blocks leads to the definition of contexts as structured
sequences. A context is a sequence of declarations D where a declaration is a block
of individual atomic assumptions3 separated by ’;’. The ’;’ binds tighter than ’,’.
We treat contexts as ordered, i.e., later assumptions in the context may depend on
earlier ones, but not vice versa. This treatment is in contrast to viewing contexts
as multi-sets.

Atom A
Block of declarations D ::= A | D;A

Context Γ ::= · | Γ,D
Schema S ::= Ds | Ds |||| S

Just as types classify terms, we use a schema to classify meaningful structured
sequences. A schema consists of declarationsDs. We use |||| to denote the alternatives
when defining a context schema and we write Ds to describe that the declaration

3 In fact, assumptions need not be atomic; on the contrary, more complex assumptions are
not only possible, but sometimes yield very compact an elegant specifications, as we touch
upon in Section 6. However, to account for them, we should introduce a logical language that
we feel would detract from the goal at hand.

The Next 700 Challenge Problems: A Foundational View 7

occurring in a schema may be more general than the declaration occurring in a
concrete context having schema S.

We can declare the schemas corresponding to the previous contexts, seen as
structured sequences, as follows:

Sα ::= is tp α
Sαx ::= is tp α |||| is tm x
Sαt ::= is tp α |||| is tm x;x:C

We use EV(D) for the eigenvariables occurring inD and A ∈ D for a declaration
D containing an atom A. We say that a declaration D is well-formed if for every
x ∈ EV(D) there is an atom wf x , i.e., the well-formedness judgment for x, in
D and wf x precedes its use in D. A schema is well-formed iff all its declarations
are well-formed. For example, the schema Sαt is well-formed since the x in x:C
is declared in the preceding is tm x appearing in the same declaration. We will
assume in the following that all schemas are such. We also extend the notion of
well-formedness to terms, and write Γ ` wf t if t is a well-formed term in Γ .

Lower case letters denote bound variables (eigenvariables); they obey the Baren-
dregt variable convention. Upper case letters are used for “schematic” variables.
Therefore, we can rename the x in the schema is tm x;x:C and instantiate C. For
example, the context is tm x;x: nat, is tm y; y:bool fits the schema Sαt.

More generally, we say that a concrete context Γ has schema S (Γ has schema S),
if every declaration in Γ is an instance of some schema declaration Ds in S. We
often simply write Γl to describe a context that has schema Sl using the subscript
l to denote the relationship between the schema and an instance of it. By conven-
tion, when we write Sl to denote a context schema, Γl will denote a valid instance
of Sl.

Schema Satisfaction Γ has schema S

· has schema S

Γ has schema S D ∈ S EV(D) ∩ EV(Γ) = ∅
(Γ,D) has schema S

Block D of Declaration is valid D ∈ S

D instance of Ds
D ∈ Ds

D instance of Ds
D ∈ Ds |||| S

D ∈ S
D ∈ Ds |||| S

Note that if D ∈ S, then it is by definition well-formed. The premise EV(D) ∩
EV(Γ) = ∅ requires eigenvariables in different blocks in a context satisfying the
schema to be distinct from each other. This constraint will always be satisfied by
contexts that appear in proofs of judgments using our inference rules. (See, for
example, the inference rules in Section 2.4.) We remark that a given context can
in principle inhabit different schemas; for example the context is tp α1, is tp α2

has schema Sα but also inhabits the schema Sαx and Sαt.

2.3 Structural Properties of Contexts

Since contexts are structured sequences, they admit structural properties on the
level of sequences (for example by adding a new declaration) as well as inside a

8 Amy P. Felty et al.

block of declarations (for example adding an element to an existing declaration).
We distinguish between structural properties of a concrete context and structural
properties of all contexts of a given schema. For example, given the context schemas
Sα and Sαx, we know that all concrete contexts of schema Sαx can be strengthened
to obtain a concrete context of schema Sα. Dually, we can think of weakening a
context of schema Sα to a context of schema Sαx. We introduce the operations rm
and perm, where the operation rm removes an element of a declaration, and perm
permutes the elements within a declaration.

Definition 1 (Operations on Declarations)

– Let rmA : S → S′ be a total function taking a (well-formed) declaration D ∈ S
and returning a (well formed) declaration D′ ∈ S′ where D′ is D with A
removed, if A ∈ D; otherwise D′ = D.

– Let permπ : S → S′ be a total function which permutes the elements of a (well-
formed) declaration D ∈ S according to π to obtain a (well formed) declaration
D′ ∈ S′.

Using these operations on declarations we define structural properties of decla-
rations, later to be extended to contexts. These make no assumptions and give no
guarantees about the schema of the context Γ,D and the resulting context Γ, f(D)
where f ∈ {rmA, permπ}. In fact, often we want to use these properties when Γ
satisfies some schema S, but D does not yet fit S; we apply an operation to D s.t.
Γ, f(D) does satisfy the schema S.

Since our context schema may contain different possible schema elements, the
function rm is defined via case-analysis covering all the possibilities of schema
elements, where we describe dropping all assumptions of a case using a dot, e.g.,
is tm x 7→ ·. For example:

– rmx:A : Sαt → Sαx = λd.case d of is tp α 7→ is tp α | is tm y; y:A 7→ is tm y
– rmis tm x : Sαx → Sα = λd.case d of is tp α 7→ is tp α | is tm y 7→ ·

Property 2 (Structural Properties of Declarations)

1. Declaration Weakening:

Γ, rmA(D), Γ ′ ` J
Γ,D, Γ ′ ` J d-wk

2. Declaration Strengthening:

Γ,D, Γ ′ ` J
Γ, rmA(D), Γ ′ ` J

d-str†

with the proviso (†) that A is irrelevant to J .4

3. Declaration Exchange:

Γ,D, Γ ′ ` J
Γ, permπ(D), Γ ′ ` J d-exc

4 In practice, this may be done by maintaining a dependency call graph of all judgments.

The Next 700 Challenge Problems: A Foundational View 9

The special case rmA(A) drops A completely, since

rmA = λd.case d of A 7→ · | . . .

We treat Γ, ·, Γ ′ as equivalent to Γ, Γ ′. Hence, in the special case where we have
Γ, rmA(A), Γ ′, we obtain the well-known weakening and strengthening laws on
contexts which are often stated as:

Γ,A, Γ ′ ` J
Γ, Γ ′ ` J

str†
Γ, Γ ′ ` J
Γ,A, Γ ′ ` J wk

In contrast to the above, the general exchange property on blocks of declarations
cannot be obtained “for free” from the above operations and we define it explicitly:

Property 3 (Exchange)

Γ,D′, D, Γ ′ ` J
Γ,D,D′, Γ ′ ` J

exc

with the proviso that the sub-context D,D′ is well-formed.

Further, we define structural properties of contexts generically. To “strengthen”
all declarations in a given context Γ , we simply write rm∗A(Γ) using the ∗ super-
script. More generally, by f∗ with f ∈ {rmA, permπ}, we mean the iteration of
the operation f over a context.

Property 4 (Structural Properties of Contexts)

1. Context weakening
rm∗A(Γ) ` J
Γ ` J c-wk

2. Context strengthening
Γ ` J

rm∗A(Γ) ` J
c-str†

with the proviso (†) that declarations which are instances of A are irrelevant
to J .

3. Context exchange
Γ ` J

perm∗π(Γ) ` J
c-exc

Finally, by rmD (resp. rm∗D), we mean the iteration of rmA (resp. rm∗A) for every
A ∈ D, while keeping the resulting declaration well-formed, e.g. rmis tm y; y:A() =
rmis tm y(rmy:A()). All the above properties are admissible with respect to those
extended rm functions.

To illustrate, we give several examples using the previously defined operations.

– Γ, rmx:A(is tm y; y:A) = Γ, is tm y. Bound variables in the annotation of rm
can always be renamed so that they are consistent with the eigenvariables used
in the declaration.

– rm∗is tm x(is tm x1, is tp α, is tp β, is tm x2) = is tp α, is tp β. Here, the rm
operation drops one of the alternatives in the schema Sαx.

10 Amy P. Felty et al.

– rm∗y:A(is tm x1;x1:nat, is tm x2;x2:bool, is tp α) = (is tm x1, is tm x2, is tp α).
The schematic variable A occurring in the annotation of rm will be instantiated
with nat when strengthening the block is tm x1;x1:nat and similarly with bool.

– rm∗is tm y; y:A(is tp α, is tp β) = (is tp α, is tp β). A rm operation may leave a
context unchanged.

We define next the substitution properties for assumptions. The parametric
substitution property allows us to instantiate parameters, i.e., eigenvariables, in
the context. For example, given is tp α, is tp β ` J and a type bool, we can
obtain is tp bool, is tp β ` [bool/α]J by replacing α with bool. The hypothetical
substitution property allows us to eliminate an atomic formula A that is part
of a declaration D. For example, given is tp bool, is tp β ` J and evidence that
is tp bool, we can obtain is tp β ` J . In type theory the two substitution properties
collapse into one.

While parametric and hypothetical substitution do not preserve schema satis-
faction by definition, we typically use them in such a way that contexts continue
to satisfy a given schema.

Property 5 (Substitution Properties)

– Hypothetical Substitution:
If Γ,D ` J and Γ ` A for some A ∈ D, then Γ, rmA(D) ` J .

– Parametric Substitution:
If Γ ` J and wf x ∈ Γ for x ∈ EV(Γ), then [t/x]Γ ` [t/x]J for any term t for
which Γ ` wf t holds.

2.4 The Polymorphic Lambda-Calculus Revisited

In systems supporting HOAS, inference rules are usually expressed using an implicit-
context representation as illustrated in Section 2.1. The need for explicit structured
contexts and their properties, as presented in Sections 2.2 and 2.3, arises when per-
forming meta-reasoning about the judgments expressed by these inference rules.
In order to make the link, we revisit the example from Section 2.1, give a pre-
sentation with explicit contexts, and then make some preliminary remarks about
context schemas and meta-reasoning. We will adopt the explicit-context represen-
tation of inference rules in the rest of the paper with the informal understanding
of how to move between the implicit and explicit formulations.

The Next 700 Challenge Problems: A Foundational View 11

Well-formed Types

is tp α ∈ Γ
Γ ` is tp α

tpv
Γ ` is tp A Γ ` is tp B

Γ ` is tp (arrAB)
tpar

Γ, is tp α ` is tp A

Γ ` is tp (allα.A)
tpal

Well-formed Terms

is tm x ∈ Γ
Γ ` is tm x

tmv
Γ, is tm x ` is tmM

Γ ` is tm (lamx.M)
tml

Γ, is tp α ` is tmM

Γ ` is tm (tlamα.M)
tmtl

Γ ` is tmM1 Γ ` is tmM2

Γ ` is tm (appM1 M2)
tma

Γ ` is tmM Γ ` is tp A

Γ ` is tm (tappM A)
tmta

Typing for the Polymorphic λ-Calculus

x:B ∈ Γ
of v

Γ ` x : B

Γ, is tp α `M : B
of tl

Γ ` tlamα.M : allα.B

Γ `M : allα.B Γ ` is tp B
of ta

Γ ` (tappM B) : [B/α]A

Γ, is tm x;x:A `M : B
of l

Γ ` lamx.M : arrAB

Γ `M : arrBA Γ ` N : B
of a

Γ ` (appM N) : A

In this formulation, and differently from the implicit one, we have a base case
for variables. Here, to look up an assumption in a context, we simply write A ∈ Γ ,
meaning that there is some block D in context Γ such that A ∈ D. For example
x:B ∈ Γ holds if Γ contains block is tm x;x:B. We will also overload the notation
and write D ∈ Γ to indicate that Γ contains the entire block D. We remark on
the distinction between the comma used to separate blocks, and the semi-colon
used to separate atoms within blocks, as seen in the of l rule, for example. The
assumption that all variables occurring in contexts are distinct from one another
is silently preserved by the implicit proviso in rules that extend the context, where
we rename the bound variable if already present.

Note that we use Γ for the context appearing in these rules, whereas the reader
may have expected this to be Φαt having schema Sαt. In fact, we take a more liberal
approach, where we pass to the rules any context that can be seen as a weakening
of Φαt; in other words, any Γ such that there exists a D for which rm∗D(Γ) = Φαt.

Suppose now, to fix ideas, that Φαt `M : B holds. By convention, we implicitly
assume that both B and M are well-formed, which means that Φαt ` is tp B and
Φαt ` is tm M . In fact, we can define functions rm∗x:C and rm∗is tm x;x:C , use them
to define strengthened contexts Φαx and Φα, and apply the c-str rule to conclude
the following:

1. Φαx := rm∗x:C(Φαt), Φαx has schema Sαx, and Φαx ` is tmM ;
2. Φα := rm∗is tm x;x:C(Φαt), Φα has schema Sα, and Φα ` is tp B.

Alternatively, instead of using a function such as rm∗x:C , we may adopt the
more suggestive notation Φαx ∼ Φαt, using inference rules for the context rela-
tion corresponding to the graph of the function λd.case d of is tp α 7→ is tp α |
is tm x;x:C 7→ is tm x:

· ∼ ·
Φαx ∼ Φαt

(Φαx, is tp α) ∼ (Φαt, is tp α)

Φαx ∼ Φαt
(Φαx, is tm x) ∼ (Φαt, is tm x;x:B)

12 Amy P. Felty et al.

Similarly, an alternative to rm∗is tm x;x:C is the following context relation:

· ∼ ·
Φα ∼ Φαt

(Φα, is tp α) ∼ (Φαt, is tp α)

Φα ∼ Φαt
Φα ∼ (Φαt, is tm x;x:B)

The above two statements can now be restated using these relations. Given Φαt,
let Φαx and Φα be the unique contexts such that:

1. Φαx ∼ Φαt, Φαx has schema Sαx, and Φαx ` is tmM ;
2. Φα ∼ Φαt, Φα has schema Sα, and Φα ` is tp B.

When stating and proving properties, we often relate two formal systems to
each other, where each one has its own contexts. For example, we may want to
prove statements such as “if Φαx ` J1 then Φαt ` J2”. The question is how we
achieve that. In this paper, we consider two approaches:

1. We reinterpret the statement in the smallest context that collects all relevant
assumptions; we call this the generalized context approach (G). In this case,
we reinterpret the above statement about J1 in a context containing additional
assumptions about typing, which in this case is Φαt, yielding:

“if Φαt ` J1 then Φαt ` J2”.

2. We state how two (or more) contexts are related ; we call this the context
relations approach (R). Here, we define context relations such as those above
and use them explicitly in the statements of theorems. In this case, we use
Φαx ∼ Φαt yielding

“if Φαx ` J1 and Φαx ∼ Φαt then Φαt ` J2”.

Note that here too we “minimize” the relations, in the sense of relating the
smallest possible contexts where the relevant judgments make sense.

Another common idiom in meta-reasoning occurs when we have established a
property for a particular context and we would like to use this property subse-
quently in a more general context. Assume that we have proven a lemma about
types in context Φα of the form “if Φα ` J1 then Φα ` J2”. We now want to
use this lemma in a proof about terms, that is where we have a context Φαx and
Φαx ` J1. We may need to promote this lemma, and prove: “if Φαx ` J1 then
Φαx ` J2”. We will see several examples of such promotion lemmas in Section 3.

Finally, to structure our subsequent discussion, it is useful to introduce some
additional terminology regarding context relationships, where we use “relation-
ship” in contrast to the more specific notion of “context relation”.

– Linear extension of a declaration: a declaration D2 is a linear extension of
a declaration D1, if every atom in the declaration D1 is a member of the
declaration D2.

– Linear extension of a schema: a schema S2 is a linear extension of a schema
S1, if every declaration in S1 is a linear extension of a declaration in S2. For
example Sαt is a linear extension of Sαx.

Given a context Φ1 of schema S1 and a context Φ2 of schema S2 where S2 is
a linear extension of S1, we say that Φ2 is a linear extension of Φ1 (i.e., linear
context extension). Of course, sometimes declarations, schemas and contexts are
not related linearly. For example, we may have a schema S2 and a schema S3 both
of which are linear extensions of S1; however, S2 is not a linear extension of S3

(or vice versa). In this case, we say S2 and S3 are non-linear extensions of each
other and they share a most specific common fragment, namely S1.

The Next 700 Challenge Problems: A Foundational View 13

3 Benchmarks

In this section, we present several case studies establishing proofs of various prop-
erties of the lambda-calculus. We have structured this section around the different
shapes and properties of contexts, namely:

1. Basic linear context extensions: We consider here contexts containing no al-
ternatives. We refer to such contexts as basic. We discuss context membership
and revisit structural properties such as weakening and strengthening.

2. Linear context extensions with alternative declarations.
3. Non-linear context extensions: We consider more complex relationships be-

tween contexts and discuss how our proofs involving weakening and strength-
ening change.

4. Order: We consider how the ordered structure of contexts impacts proofs rely-
ing on exchange.

5. Uniqueness: We consider here a case study which highlights how the issue of
distinctness of all variable declarations in a context arises in proofs.

6. Substitution: Finally, we exhibit the fundamental properties of hypothetical
and parametric substitution.

The benchmark problems are purposefully simple; they are designed to be
easily understood so that one can quickly appreciate the capabilities and trade-
offs of the different systems. Yet we believe they are representative of the issues
and problems arising when encoding formal systems and reasoning about them. We
will subsequently discuss both the G approach and the R approach and comment
on the trade-offs and differences in proofs depending on the chosen approach.

3.1 Basic Linear Context Extension

We concentrate in this section on contexts with simple schemas consisting of a
single declaration. We aim to show the basic building blocks of reasoning over open
terms: namely what a context looks like and the structure of an inductive proof.
For the latter, we focus on the case analysis and, at the risk of being pedantic, the
precise way in which the induction hypothesis is applied.

We start with a very simple judgment: algorithmic equality for the untyped
lambda-calculus, written (aeqM N), also known as copy clauses (see Miller, 1991).
We say that two terms are algorithmically equal provided they have the same
structure with respect to the constructors.

Algorithmic Equality

aeq x x ∈ Γ
Γ ` aeq x x

aev
Γ, is tm x; aeq x x ` aeqM N

Γ ` aeq (lamx.M) (lamx.N)
ael

Γ ` aeqM1 N1 Γ ` aeqM2 N2

Γ ` aeq (appM1 M2) (app N1 N2)
aea

The context schemas needed for reasoning about this judgment are the following:

Context Schemas Sx := is tm x
Sxa := is tm x; aeq x x

14 Amy P. Felty et al.

where a context Φxa satisfying Sxa is the smallest possible context in which such
an equality judgment can hold. Thus, as discussed in the previous section, when
writing judgment Φxa ` aeq M N , we assume that Φxa ` is tm M and Φxa `
is tm N hold, and thus also Φx ` is tmM and Φx ` is tm N hold by employing an
implicit c-str (using rm∗aeq x x). We note that both contexts Φx and Φxa are simple
contexts consisting of one declaration block. Moreover, Sx is a sub-schema of Sxa
and therefore the context Φxa is a linear extension of the context Φx.

In view of the pedagogical nature of this subsection and also of the content
of Section 3.3, which will build on this example, we start with a straightforward
property: algorithmic equality is reflexive. This property should follow by induction
onM (via the well-formed term judgment, which is not shown, but uses the obvious
subset of the rules in Section 2.4). However, the question of which contexts the two
judgments should be stated in arises immediately; recall that we want to prove “if
Γ1 ` is tmM then Γ2 ` aeqM M .” Γ2 should be a context satisfying Sxa since the
definition of this schema came directly from the inference rules of this judgment.
The form that Γ1 should take is less clear. The main requirement comes from the
base case, where we must know that for every assumption is tm x in Γ1 there
exists a corresponding assumption aeq x x in Γ2. The answer differs depending on
whether we choose the R approach or the G approach. We discuss each in turn
below.

3.1.1 Context Relations, R Version

The relation needed here is Φx ∼ Φxa, defined as follows:

Context Relation

. ∼ . crele
Φx ∼ Φxa

Φx, is tm x ∼ Φxa, is tm x; aeq x x
crelxa

Note that is tm x will occur in Φx in sync with an assumption block containing
is tm x; aeq x x in Φxa. This is a property which needs to be established separately,
so at the risk of redundancy, we state it as a “member” lemma.

Lemma 6 (Context Membership) Φx ∼ Φxa implies that is tm x ∈ Φx iff
is tm x; aeq x x ∈ Φxa.

Proof By induction on Φx ∼ Φxa.

Theorem 7 (Admissibility of Reflexivity, R Version) Assume Φx ∼ Φxa.
If Φx ` is tmM then Φxa ` aeqM M .

Proof By induction on the derivation D :: Φx ` is tmM .
Case:

D =
is tm x ∈ Φx

tmv
Φx ` is tm x

is tm x ∈ Φx by rule premise
is tm x; aeq x x ∈ Φxa by Lemma 6
Φxa ` aeq x x by rule aev

The Next 700 Challenge Problems: A Foundational View 15

Case:

D =

D1

Φx ` is tmM1

D2

Φx ` is tmM2

tma
Φx ` is tm (appM1 M2)

Φx ` is tmM1 sub-derivation D1

Φxa ` aeqM1 M1 by IH
Φx ` is tmM2 sub-derivation D2

Φxa ` aeqM2 M2 by IH
Φxa ` aeq (appM1 M2) (appM1 M2) by rule aea

Case:

D =

D′
Φx, is tm x ` is tmM

tml
Φx ` is tm (lamx.M)

Φx, is tm x ` is tmM sub-derivation D′
Φx ∼ Φxa by assumption
(Φx, is tm x) ∼ (Φxa, is tm x; aeq x x) by rule crelxa
Φxa, is tm x; aeq x x ` aeqM M by IH
Φxa ` aeq (lamx.M) (lamx.M) by rule ael.

3.1.2 Generalized Contexts, G Version

In this example, since Sxa includes all assumptions in Sx, Sxa will serve as the
schema of our generalized context.

Theorem 8 (Admissibility of Reflexivity, G Version) If Φxa ` is tm M
then Φxa ` aeqM M .

Proof By induction on the derivation D :: Φxa ` is tmM .
Case:

D =
is tm x ∈ Φxa

tmv
Φxa ` is tm x

is tm x ∈ Φxa by rule premise
Φxa contains block (is tm x; aeq x x) by definition of Sxa
Φxa ` aeq x x by rule aev

Case:

D =

D1

Φxa ` is tmM1

D2

Φxa ` is tmM2

tma
Φxa ` is tm (appM1 M2)

Φxa ` aeqM1 M1 by IH on D1

Φxa ` aeqM2 M2 by IH on D2

Φxa ` aeq (appM1 M2) (appM1 M2) by rule aea

16 Amy P. Felty et al.

Case:

D =

D′
Φxa, is tm x ` is tmM

tml
Φxa ` is tm (lamx.M)

Φxa, is tm x; aeq x x ` is tmM by d-wk on D′
Φxa, is tm x; aeq x x ` aeqM M by IH
Φxa ` aeq (lamx.M) (lamx.M) by rule ael

Note that the application cases of Theorems 7 and 8 are the same except for
the context used for the well-formed term judgment. The lambda case here, on
the other hand, requires a weakening step. In particular, d-wk is used to add an
atom to form the declaration needed for schema Sxa. The context before applying
weakening does not satisfy this schema, and the induction hypothesis cannot be
applied until it does.

We end this subsection, stating the remaining properties needed to establish
that algorithmic equality is indeed a congruence, which we will prove in Section 3.3.
Since the proof involves only Φxa, the two approaches (R & G) collapse.

Lemma 9 (Context Inversion) If aeqM N ∈ Φxa then M = N .

Proof Induction on aeqM N ∈ Φxa.

Theorem 10 (Admissibility of Symmetry and Transitivity)

1. If Φxa ` aeqM N then Φxa ` aeq N M .
2. If Φxa ` aeqM L and Φxa ` aeq L N then Φxa ` aeqM N .

Proof Induction on the given derivation using Lemma 9 in the variable case.

3.2 Linear Context Extensions with Alternative Declarations

We extend our algorithmic equality case study to the polymorphic lambda-calculus,
highlighting the situation where judgments induce context schemas with alterna-
tives. We accordingly add the judgment for type equality, atp A B, noting that
the latter can be defined independently of term equality. In other words aeqM N
depends on atp A B, but not vice-versa. In addition to Sα and Sαx introduced in
Section 2, the following new context schemas are also used here.

Satp := is tp α; atp α α
Saeq := is tp α; atp α α |||| is tm x; aeq x x

The Next 700 Challenge Problems: A Foundational View 17

The rules for the two equality judgments extend those given in Section 3.1. The
additional rules are stated below.

Algorithmic Equality for the Polymorphic Lambda-calculus

. . .

Γ, is tp α; atp α α ` aeqM N

Γ ` aeq (tlamα.M) (tlamα.N)
aetl

Γ ` aeqM N Γ ` atp A B

Γ ` aeq (tappM A) (tapp N B)
aeta

atp α α ∈ Γ
Γ ` atp α α

atα

Γ, is tp α; atp α α ` atp A B

Γ ` atp (allα.A) (allα.B)
atal

Γ ` atp A1 B1 Γ ` atp A2 B2

Γ ` atp (arrA1A2) (arrB1B2)
ata

We show again the admissibility of reflexivity. We start with the G version this
time.

3.2.1 G Version

We first state and prove the admissibility of reflexivity for types, which we then use
in the proof of admissibility of reflexivity for terms. The schema for the generalized
context for the former is Satp since the statement and proof do not depend on terms.
The schema for the latter is Saeq.

Theorem 11 (Admissibility of Reflexivity for Types, G Version)
If Φatp ` is tp A then Φatp ` atp A A.

The proof is exactly the same as the proof of Theorem 8, modulo replacing app
and lam with arr and all, respectively, and using the corresponding rules.

As we have already mentioned in Section 2, it is often the case that we need
to appeal to a lemma in a context that is different from the context where it
was proved. A concrete example is the above lemma, which is stated in context
Φatp, but is needed in the proof of the next theorem in the larger context Φaeq. To
illustrate, we state and prove the necessary promotion lemma here.

Lemma 12 (G-Promotion for Type Reflexivity)
If Φaeq ` is tp A then Φaeq ` atp A A.

Proof
Φaeq ` is tp A by assumption
Φatp ` is tp A by c-str
Φatp ` atp A A by Theorem 11
Φaeq ` atp A A by c-wk

In general, proofs of promotion lemmas require applications of c-str and c-wk
which perform a uniform modification to an entire context. In contrast, the ab-
straction cases in proofs such as the lambda case of Theorem 8 require d-wk to add

18 Amy P. Felty et al.

atoms to a single declaration. The particular function used here is rm∗is tm x;aeq x x,
which drops an entire alternative from Φaeq to obtain Φatp and leaves the other
alternative unchanged. The combination of c-str and c-wk in proofs of promotion
lemmas is related to subsumption (see Harper and Licata, 2007).

Note that we could omit Theorem 11 and instead prove Lemma 12 directly,
removing the need for a promotion lemma. For modularity purposes, we adopt
the approach that we state each theorem in the smallest possible context in which
it is valid. This particular lemma, for example, will be needed in an even bigger
context than Φaeq in Section 3.3. In general, we do not want the choice of context in
the statement of a lemma to depend on later theorems whose proofs require this
lemma. Instead, we choose the smallest context and state and prove promotion
lemmas where needed.

Theorem 13 (Admissibility of Reflexivity for Terms, G Version)
If Φaeq ` is tmM then Φaeq ` aeqM M .

Proof Again, the proof is by induction on the given well-formed term derivation,
in this case D :: Φaeq ` is tmM , and is similar to the proof of Theorem 8. We show
the case for application of terms to types.

Case:

D =

D1

Φaeq ` is tmM
D2

Φaeq ` is tp A

Φaeq ` is tm (tappM A)

Φaeq ` aeqM M by IH on D1

Φaeq ` atp A A by Lemma 12 on conclusion of D2

Φaeq ` aeq (tappM A) (tappM A) by rule aeta

3.2.2 R Version

We introduce four context relations Φα ∼ Φatp, Φαx ∼ Φaeq, Φαx ∼ Φα, and
Φaeq ∼ Φatp. We define the first two as follows (where we omit the inference rules
for the base cases).

Context Relations

Φα ∼ Φatp
Φα, is tp α ∼ Φatp, is tp α; atp α α

Φαx ∼ Φaeq
Φαx, is tm x ∼ Φaeq, is tm x; aeq x x

Φαx ∼ Φaeq
Φαx, is tp α ∼ Φaeq, is tp α; atp α α

Note that Φαx ∼ Φaeq is the extension of Φx ∼ Φxa with one additional case for
equality for types.5 We also omit the (obvious) inference rules defining Φαx ∼ Φα
and Φaeq ∼ Φatp, and instead note that they correspond to the graphs of the

5 Again, we remark on our policy to use the smallest contexts possible for modularity reasons.
Otherwise, we could have omitted the Φα ∼ Φatp relation, and state the next theorem using
Φαx ∼ Φaeq .

The Next 700 Challenge Problems: A Foundational View 19

following two functions, respectively, which simply remove one of the two schema
alternatives:

rm∗is tm x = λd.case d of is tp α 7→ is tp α | is tm x 7→ ·
rm∗is tm x;aeq x x = λd.case d of is tp α; atp α α 7→ is tp α; atp α α | is tm x; aeq x x 7→ ·

We start with the theorem for types again, whose proof is similar to the R
version of the previous example (Theorem 7) and is therefore omitted.

Theorem 14 (Admissibility of Reflexivity for Types, R Version)
Let Φα ∼ Φatp. If Φα ` is tp A then Φatp ` atp A A.

Lemma 15 (Relational Strengthening) Let Φαx ∼ Φaeq. Then there exist con-
texts Φα and Φatp such that Φαx ∼ Φα, Φaeq ∼ Φatp, and Φα ∼ Φatp.

Proof By induction on the given derivation of Φαx ∼ Φaeq.

We again need a promotion lemma, this time involving the context relation.

Lemma 16 (R-Promotion for Type Reflexivity)
Let Φαx ∼ Φaeq. If Φαx ` is tp A then Φaeq ` atp A A.

Proof
Φαx ` is tp A by assumption
Φα ` is tp A by c-str
Φαx ∼ Φaeq by assumption
Φα ∼ Φatp by relational strengthening (Lemma 15)
Φatp ` atp A A by Theorem 14
Φaeq ` atp A A by c-wk

Theorem 17 (Admissibility of Reflexivity for Terms, R Version)
Let Φαx ∼ Φaeq. If Φαx ` is tmM then Φaeq ` aeqM M .

Proof Again, the proof is by induction on the given derivation. Most cases are sim-
ilar to the analogous cases in the proof of the R version for the monomorphic case
(Theorem 7) and the G version for types in the polymorphic case (Theorem 11).
We show again the case for application of terms to types to compare with the G
version.
Case:

D =

D1

Φαx ` is tmM
D2

Φαx ` is tp A

Φαx ` is tm (tappM A)

Φαx ∼ Φaeq by assumption
Φαx ` is tmM sub-derivation D1

Φaeq ` aeqM M by IH
Φαx ` is tp A sub-derivation D2

Φaeq ` is tp A by Lemma 16
Φaeq ` aeq (tappM A) (tappM A) by rule aeta

20 Amy P. Felty et al.

3.3 Non-Linear Context Extensions

We return to the untyped lambda-calculus of Section 3.1 and establish the equiva-
lence between the algorithmic definition of equality defined previously, and declara-
tive equality Φxd ` deqM N , which includes reflexivity, symmetry and transitivity
in addition to the congruence rules.6

Declarative Equality

deq x x ∈ Γ
Γ ` deq x x

dev
Γ, is tm x; deq x x ` deqM N

Γ ` deq (lamx.M) (lamx.N)
del

Γ ` deqM1 N1 Γ ` deqM2 N2

Γ ` deq (appM1 M2) (app N1 N2)
dea

Γ ` deqM M
der

Γ ` deqM L Γ ` deq L N

Γ ` deqM N
det

Γ ` deq N M

Γ ` deqM N
des

Context Schema Sxd ::= is tm x; deq x x

We now investigate the interesting part of the equivalence, namely that when
we have a proof of (deq M N) then we also have a proof of (aeq M N). We show
the G version first.

3.3.1 G Version

Here, a generalized context must combine the atoms of Φxa and Φxd into one
declaration:

Generalized Context Schema Sda := is tm x; deq x x; aeq x x

The following lemma promotes Theorems 8 and 10 to the “bigger” generalized
context.

Lemma 18 (G-Promotion for Reflexivity, Symmetry, and Transitivity)

1. If Φda ` is tmM , then Φda ` aeqM M .
2. If Φda ` aeqM N , then Φda ` aeq N M .
3. If Φda ` aeqM L and Φda ` aeq L N , then Φda ` aeqM N .

Proof Similar to the proof of Theorem 12 where the application of c-str transforms
a context Φda to Φxa by considering each block of the form (is tm x; deq x x; aeq x x)
and removing (deq x x).

Theorem 19 (Completeness, G Version)
If Φda ` deqM N then Φda ` aeqM N .

6 We acknowledge that this definition of declarative equality has a degree of redundancy: the
assumption deq x x in rule del is not needed, since rule der plays the variable role. However,
it yields an interesting generalized context schema, which exhibits issues that would otherwise
require more complex case studies.

The Next 700 Challenge Problems: A Foundational View 21

Proof By induction on the derivation D :: Φda ` deq M N . We only show some
cases.
Case:

D = der
Φda ` deqM M

Φda ` is tmM by (implicit) assumption
Φda ` aeqM M by Lemma 18 (1)

Case:

D =

D1

Φda ` deqM L
D2

Φda ` deq L N
det

Φda ` deqM N

Φda ` aeqM L and Φda ` aeq L N by IH on D1 and D2

Φda ` aeqM N by Lemma 18 (3)

Case:

D =

D′
Φda, is tm x; deq x x ` deqM N

del
Φda ` deq (lamx.M) (lamx.N)

Φda, is tm x; deq x x; aeq x x ` deqM N by d-wk on D′
Φda, is tm x; deq x x; aeq x x ` aeqM N by IH
Φda, is tm x; aeq x x ` aeqM N by d-str
Φda ` aeq (lamx.M) (lamx.N) by rule ael

The symmetry case is not shown, but also requires promotion, via Lemma 18 (2).
Note that the del case requires both d-str and d-wk. In contrast, the binder cases
for the G versions of the previous examples (Theorems 8, 11, and 13) required
only d-wk. The need for both arises from the fact that the generalized context is
a non-linear extension of two contexts, i.e., it is not the same as either one of the
two contexts it combines.

3.3.2 R Version

The context relation required here is Φxa ∼ Φxd:

Context Relation

Φxa ∼ Φxd
Φxa, is tm x; aeq x x ∼ Φxd, is tm x; deq x x

crelad

As in Section 3.2, we need the appropriate promotion lemma, which again
requires a relation strengthening lemma:

Lemma 20 (Relational Strengthening) Let Φxa ∼ Φxd. Then there exists a
context Φx such that Φx ∼ Φxa.

Lemma 21 (R-Promotion for Reflexivity) Let Φxa ∼ Φxd. If Φxd ` is tmM
then Φxa ` aeqM M .

22 Amy P. Felty et al.

The proofs are analogous to Lemmas 15 and 16, with the proof of Lemma 21
requiring Lemma 20.

Theorem 22 (Completeness, R Version) Let Φxa ∼ Φxd. If Φxd ` deq M N
then Φxa ` aeqM N .

Proof By induction on the derivation D :: Φxd ` deqM N .
Case:

D = der
Φxd ` deqM M

Φxd ` is tmM by (implicit) assumption
Φxa ` aeqM M by Theorem 21

Case:

D =

D1

Φxd ` deqM L
D2

Φxd ` deq L N
det

Φxd ` deqM N

Φxa ` aeqM L and Φxa ` aeq L N by IH on D1 and D2

Φxa ` aeqM N by Theorem 10 (2)

Case:

D =

D′
Φxd, is tm x; deq x x ` deqM N

del
Φxd ` deq (lamx.M) (lamx.N)

Φxa ∼ Φxd by assumption
Φxa, is tm x; aeq x x ∼ Φxd, is tm x; deq x x by rule crelad
Φxa, is tm x; aeq x x ` aeqM N by IH on D′
Φxa ` aeq (lamx.M) (lamx.N) by rule ael

Only one promotion lemma is required in this proof, for the reflexivity case (which
requires one occurrence each of c-str and c-wk), and no strengthening or weakening
is needed in the lambda case (thus no occurrences of d-str/wk in this proof). In
contrast, the proof of the G version of this theorem (Theorem 19) uses 3 occur-
rences of each of c-str and c-wk via promotion Lemma 18 and one occurrence each
of d-str and d-wk in the lambda case.

3.4 Order

A consequence of viewing contexts as sequences is that order comes into play, and
therefore the need to consider exchanging the elements of a context. This happens
when, for example, a judgment singles out a particular occurrence of an assumption
in head position. We exemplify this with a “parallel” substitution property for
algorithmic equality, stated below. The proof also involves some slightly more
sophisticated reasoning about names in the variable case than previously observed.
Furthermore, note that this substitution property does not “come for free” in a
HOAS encoding in the way, for example, that type substitution (Lemma 25) does.

The Next 700 Challenge Problems: A Foundational View 23

Theorem 23 (Pairwise Substitution) If Φxa, is tm x; aeq x x ` aeq M1 M2

and Φxa ` aeq N1 N2, then Φxa ` aeq ([N1/x]M1) ([N2/x]M2).

Proof By induction on the derivation D :: Φxa, is tm x; aeq x x ` aeq M1 M2 and
inversion on Φxa ` aeq N1 N2. We show two cases.
Case:

D =
aeq y y ∈ Φxa, is tm x; aeq x x

aev
Φxa, is tm x; aeq x x ` aeq y y

We need to establish Φxa ` aeq ([N1/x]y) ([N2/x]y).
Sub-case: y = x: Applying the substitution to the above judgment, we need to
show Φxa ` aeq N1 N2, which we have.
Sub-case: aeq y y ∈ Φxa, for y 6= x. Applying the substitution in this case gives us
Φxa ` aeq y y, which we have by assumption.
Case:

D =

D′
Φxa, is tm x; aeq x x, is tm y; aeq y y ` aeqM1 M2

del
Φxa, is tm x; aeq x x ` aeq (lam y.M1) (lam y.M2)

Φxa, is tm y; aeq y y, is tm x; aeq x x ` aeqM1 M2 by exc on D′
Φxa ` aeq N1 N2, by assumption
Φxa, is tm y; aeq y y ` aeq N1 N2 by d-wk
Φxa, is tm y; aeq y y ` aeq ([N1/x]M1) ([N2/x]M2) by IH
Φxa ` aeq [N1/x](lam y.M1) [N2/x](lam y.M2) by rule ael and possible renaming.

We remark that there are more general ways to formulate properties such as
Theorem 23 that do not require (on paper) exchange; for example,

If Φxa, is tm x; aeq x x, Φ′xa ` aeq M1 M2 and Φxa ` aeq N1 N2, then
Φxa, Φ

′
xa ` aeq ([N1/x]M1) ([N2/x]M2).

The proof of the latter statement has a similar structure to the previous one,
except that it uses d-wk in the first variable sub-case, while the binding case does
not employ any structural property to apply the induction hypothesis, by taking
(Φ′′xa, is tm y; aeq y y) as Φ′xa. While this works well in a paper and pencil style,
it is much harder to mechanize, since it brings in reasoning about appending and
splitting lists that are foreign to the matter at hand.

We conclude by noting that there are examples where exchange cannot be ap-
plied, since the dependency proviso is not satisfied. Cases in point are substitution
lemmas for dependent types. Here, other encoding techniques must be used, as
explored in Crary (2009).

3.5 Uniqueness

Uniqueness of context variables plays an unsurprisingly important role in prov-
ing type uniqueness, i.e. every lambda-term has a unique type. For the sake of
this discussion it is enough to consider the monomorphic case, where abstractions
include type annotations on bound variables, and types consist only of a ground
type and a function arrow.

Terms M ::= y | lamxA.M | appM1 M2

Types A ::= i | arrAB

24 Amy P. Felty et al.

The typing rules are the obvious subset of the ones presented in Section 2, yielding:

Context Schema St := is tm x;x:A

The statement of the theorem requires only a single context and thus there is no
distinction to be made between the R and G versions.

Theorem 24 (Type Uniqueness) If Φt `M : A and Φt `M : B then A = B.

Proof The proof is by induction on the first derivation and inversion on the second.
We show only the variable case where uniqueness plays a central role.
Case:

D =
x:A ∈ Φt

of v
Φt ` x : A

We know that x:A ∈ Φt by rule of v. By definition, Φt contains block (is tm x;x:A).
Moreover, we know Φt ` x : B by assumption. By inversion using rule of v, we
know that x:B ∈ Φt, which means that Φt contains block (is tm x;x:B). Since all
assumptions about x occur uniquely, these must be the same block. Thus A must
be identical to B.

3.6 Substitution

In this section we address the interaction of the substitution property with con-
text reasoning. It is well known and rightly advertised that substitution lemmas
come “for free” in HOAS encodings, since substitutivity is just a by-product of
hypothetical-parametric judgments. We refer to Pfenning (2001) for more details.
A classic example is the proof of type preservation for a functional programming
language, where a lemma stating that substitution preserves typing is required
in every case that involves a β-reduction. However, this example theorem is un-
duly restrictive since functional programs are closed expressions; in fact, the proof
proceeds by induction on (closed) evaluation and inversion on typing, hence only
addressing contexts in a marginal way. We thus discuss a similar proof for an
evaluation relation that “goes under a lambda” and we choose parallel reduction,
as it is a standard relation also used in other important case studies such as the
Church-Rosser Theorem. The context schema and relevant rules are below.

Parallel Reduction

x; x ∈ Γ
prv

Γ ` x; x

Γ, is tm x;x; x `M ; N
prl

Γ ` lamx.M ; lamx.N

Γ, is tm x;x; x `M ;M ′ Γ ` N ; N ′
prβ

Γ ` (app (lamx.M) N) ; [N ′/x]M ′

Γ `M ;M ′ Γ ` N ; N ′
pra

Γ ` (appM N) ; (appM ′ N ′)

Context Schema Sr := is tm x;x; x

The relevant substitution lemma is:

The Next 700 Challenge Problems: A Foundational View 25

Lemma 25 If Φt, is tm x;x:A `M : B and Φt ` N : A, then Φt ` [N/x]M : B.

Proof While this is usually proved by induction on the first derivation, we show
it as a corollary of the substitution principles.
Φt, is tm x;x:A `M : B by assumption
Φt, is tm N ;N :A ` [N/x]M : B by parametric substitution
Φt, is tm N ` [N/x]M : B by hypothetical substitution
Φt ` is tm N by (implicit) assumption
Φt ` [N/x]M : B by hypothetical substitution

We show only the R version of type preservation. For the G version, the context
schema is obtained by combining the schemas or Sr and St similarly to how Sda
was defined to combine Sxa and Sxd in Section 3.3.1. We leave it to the reader
to complete such a proof. For the R version, we introduce the customary context
relation, which in this case is:

Φr ∼ Φt
Φr, is tm x;x; x ∼ Φt, is tm x;x:A

crelrt

Theorem 26 (Type Preservation for Parallel Reduction) Assume Φr ∼ Φt.
If Φr `M ; N and Φt `M : A, then Φt ` N : A.

Proof The proof is by induction on the derivation D :: Φr `M ; N and inversion
on Φt `M : A. We show only two cases:

Case:

D =
x; x ∈ Φr

prv
Φr ` x; x

We know that in this case M = x = N . Then the result follows trivially.

Case:

D =

D1

Φr, is tm x;x; x `M ;M ′
D2

Φr ` N ; N ′

prβ
Φr ` (app (lamx.M) N) ; [N ′/x]M ′

Φt ` (app (lamx.M) N) : A by assumption
Φt ` (lamx.M) : arrBA and Φt ` N : B by inversion on rule of a
Φt ` N ′ : B by IH on D2 and the latter
Φt, is tm x;x:B `M : A by inversion on rule of l
Φr ∼ Φt by assumption
(Φr, is tm x;x; x) ∼ (Φt, is tm x;x:B) by rule crelrt
Φt, is tm x;x:B `M ′ : A by IH
Φt ` [N ′/x]M ′ : A by Lemma 25 (substitution)

If we were to prove a similar result for the polymorphic λ-calculus, we would
need another substitution lemma, namely:

Lemma 27 If Φαt, is tp α ` M : B and Φαt ` is tp A, then
Φαt ` [A/α]M : [A/α]B.

Again, this follows immediately from parametric and hypothetical substitution,
whereas a direct inductive proof may not be completely trivial to mechanize.

26 Amy P. Felty et al.

4 The ORBI Specification Language

ORBI (Open challenge problem Repository for systems supporting reasoning with
BInders) is an open repository for sharing benchmark problems based on the nota-
tion we have developed. ORBI is designed to be a human-readable, easily machine-
parsable, uniform, yet flexible and extensible language for writing specifications
of formal systems including grammar, inference rules, contexts and theorems. The
language directly upholds HOAS representations and is oriented to support the
mechanization of the benchmark problems in Twelf, Beluga, Abella, and Hybrid,
without hopefully precluding other existing or future HOAS systems. At the same
time, we hope it also is amenable to translations to systems using other represen-
tation techniques such as nominal systems.

The desire for ORBI to cater to both type and proof theoretic frameworks
requires an almost impossible balancing act between the two views. While all the
systems we plan to target are essentially two-level, they differ substantially, as
we will see in much more detail in the companion paper (Felty et al, 2014). For
example, contexts are first-class and part of the specification language in Beluga; in
Twelf, schemas for contexts can be specified as part of the specification language,
which is an extension of LF, but users cannot explicitly quantify over contexts
and manipulate them as first-class objects; in Abella and Hybrid, contexts are
(pre)defined using inductive definitions on the reasoning level.

We structure the language in two parts:

1. the problem description, which includes the grammar of the object language
syntax, inference rules, context schemas and context relations;

2. the logic language, which includes syntax for expressing theorems and directives
to ORBI2X7 tools.

We consider the notation that we present here as a first attempt at defining
ORBI (Version 0.1), where the goal is to cover the benchmarks considered in this
paper. As new benchmarks are added, we are well aware that we will need to
improve the syntax and increase the expressive power—we discuss limitations and
some possible extensions in Section 6.

4.1 Problem Description

ORBI’s language for defining the grammar of an object language together with in-
ference rules is based on the logical framework LF; pragmatically, we have adopted
the concrete syntax of LF specifications in Beluga which is almost identical to
Twelf’s. The advantage is that specifications can be directly type checked by Bel-
uga thereby eliminating many syntactically correct but meaningless expressions.

OLs are written according to the EBNF (Extended Backus-Naur Form) gram-
mar in Fig. 1, which uses certain conventions: {a} means repeat a production zero
or more times, and comments in the grammar are enclosed between (* and *).
The token id refers to identifiers starting with a lower or upper case letter. These

7 Following TPTP’s nomenclature (Sutcliffe, 2009), we call “ORBI2X” any tool taking an
ORBI spec as input; for example, the translator for Hybrid mentioned earlier translates syntax,
inference rules, and context definitions of ORBI into input to the Coq version of Hybrid, and
is designed so that it can be adapted fairly directly to output Abella scripts.

The Next 700 Challenge Problems: A Foundational View 27

sig ::= {decl (* declaration *)
| s_decl} (* schema declaration *)

decl ::= id ":" tp "." (* constant declaration *)
| id ":" kind "." (* type declaration *)

op_arrow ::= "->" | "<-" (* A <- B same as B -> A *)

kind ::= type
| tp op_arrow kind (* A -> K *)
| "{" id ":" tp "}" kind (* Pi x:A.K *)

tp ::= id {term} (* a M1 ... M2 *)
| tp op_arrow tp
| "{" id ":" tp "}" tp (* Pi x:A.B *)

term ::= id (* constants, variables *)
| "\" id "." term (* lambda x. M *)
| term term (* M N *)

s_decl ::= schema s_id ":" alt_blk "."

s_id ::= id

alt_blk ::= blk {"+" blk}

blk ::= block id ":" tp {";" id ":" tp}

Fig. 1 ORBI Grammar for Syntax, Judgments, Inference Rules, and Context Schemas

grammar rules are basically the standard ones used both in Twelf and Beluga
and we do not discuss them in detail here. We only note that while the presented
grammar allows for general dependent types up to level n, ORBI specifications will
only use level 0 and level 1. Intuitively, specifications at level 0 define the syntax
of a given object language, while specifications at level 1 (i.e. type families which
are indexed by terms of level 0) describe the judgments and rules for a given OL.
We exemplify the grammar relative to the example of algorithmic vs. declarative
equality used in Subsections 3.1, 3.3, and 3.4. The full ORBI specification is given
in Appendix B, and all examples described in this section are taken from that
specification. For the remaining example specifications, we refer the reader to the
the companion paper (Felty et al, 2014) or to https://github.com/pientka/ORBI.

To assist compact translations to systems that do not include the LF lan-
guage, we also support directives written as comments of a special form, i.e., they
are prefixed by % and ignored by the LF type checker. For example, we provide
directives that allow us to distinguish between the syntax definition of an object
language and the definition of its judgments and inference rules. (See Appendix B.)
Directives, including their grammar, are detailed in Section 4.2.

Syntax An ORBI files starts in the Syntax section with the declaration of the
constants used to encode the syntax of the OL in question, here untyped lambda-
terms, which are introduced with the declaration tm:type. This declaration along
with the declarations of the constructors app and lam in the Syntax section fully
specify the syntax of OL terms. We represent binders in the OL using binders

28 Amy P. Felty et al.

in the HOAS meta-language. Hence the constructor lam takes in a function of
type tm -> tm. For example, the OL term (lamx. lam y. app x y) is represented
as lam (\x. lam (\y. app x y)), where “\” is the binder of the metalanguage.
Bound variables found in the object language are not explicitly represented in the
meta-language.

Judgments and Rules These are introduced as LF type families (predicates) in
the Judgments section followed by object-level inference rules for these judgments
in the Rules section.8 In our running example, we have two judgments, aeq and
deq of type tm -> tm -> type. Consider first the inference rule for algorithmic
equality for application, where the ORBI text is a straightforward encoding of the
rule:

ae_a: aeq M1 N1 -> aeq M2 N2
-> aeq (app M1 M2) (app N1 N2).

aeqM1 N1 aeqM2 N2

aeq (appM1 M2) (app N1 N2)
aea

Uppercase letters such as M1 denote “schematic” variables, which are implicitly
quantified at the outermost level, namely {M1:tm}, as commonly done for read-
ability purposes in Twelf and Beluga.

The binder case is more interesting:

ae_l: ({x:tm} aeq x x -> aeq (M x) (N x))
-> aeq (lam (\x. M x)) (lam (\x. N x)).

is tm x
x

aeq x x aev

...
aeqM N

aeq (lamx.M) (lamx.N)
aex,aevl

We view the is tm x assumption as the parametric assumption x:tm, while the
hypothesis aeq x x (and its scoping) is encoded within the embedded implication
aeq x x → aeq (M x) (N x) in the current (informal) signature augmented with
the dynamic declaration for x.9 Recall that the “variable” case of an implicit-
context presentation, namely aev, is folded inside the binder case.

Schemas A schema declaration s_decl is introduced using the keyword schema.
A blk consists of one or more declarations and alt_blk describes alternating
schemas. For example, schema Sxa in Section 3.1.2 appears in the Schemas section
of Appendix B as:

schema xaG: block (x:tm; u:aeq x x).

As another example, in this case illustrating a schema sporting alternatives, we
encode the schema Saeq from polymorphic equality as:

schema aeqG: block (a:tp; u:atp a a) + block (x:tm; v:aeq x x).

While we can type-check the schema definitions using an extension of the LF
type checker (as implemented in Beluga), we do not verify that the given schema
definition is meaningful with respect to the specification of the syntax and inference
rules; in other words, we do not perform “world checking” in Twelf lingo.

8 There are several excellent tutorials (Pfenning, 2001; Harper and Licata, 2007) on how to
encode OLs in LF, and hence we keep it brief.

9 As is well known, parametric assumptions and embedded implication are unified in the
type-theoretic view.

The Next 700 Challenge Problems: A Foundational View 29

Definitions So far we have considered the specification language for encoding for-
mal systems. ORBI also supports declaring inductive definitions for specifying
context relations and theorems. We start with the grammar for inductive defi-
nition (Fig. 2). An inductive predicate is declared via the production def_dec to
have a given r_kind. Although we eventually want to provide syntax for specifying
more general inductive definitions, in this version of ORBI we only define context
relations inductively, that is n-ary predicates between contexts of a given schema.
Hence the base predicate is of the form id {ctx} relating different contexts.

def_dec ::= "inductive" id ":" r_kind "=" def_body "."

r_kind ::= "prop"
| "{" id ":" s_id "}" r_kind

def_body ::= "|" id ":" def_prp {def_body}

def_prp ::= id {ctx}
| def_prp "->" def_prp

ctx ::= nil | id | ctx "," blk

Fig. 2 ORBI Grammar for Inductive Definitions describing Context Relations

For example, the relation Φx ∼ Φxa is encoded in the Definitions section of
Appendix B as:

inductive xaR : {G:xG} {H:xaG} prop =

| xa_nil: xaR nil nil

| xa_cons: xaR G H -> xaR (G, block x:tm) (H, block x:tm; u:aeq x x).

This kind of relation can be translated fairly directly to inductive n-ary predicates
in systems supporting the proof-theoretic view. In the type-theoretic framework
underlying Beluga, inductive predicates relating contexts correspond to recursive
data types indexed by contexts; this also allows for a straightforward translation.
Twelf’s type theoretic framework, however, is not rich enough to support inductive
definitions.

4.2 Language for Theorems and Directives

While the elements of an ORBI specification described in the previous subsection
were relatively easy to define in a manner that is well understood by all the differ-
ent systems we are targeting, we describe in this subsection those elements that
are harder to describe uniformly due to the different treatment and meaning of
contexts in the different systems.

Theorems We describe the grammar for theorems in Fig. 3. Our reasoning lan-
guage includes prp that specifies the logical formulas we support. The base predi-
cates include false,true, term equality, atomic predicates of the form id {ctx},
which are used to express context relations, and predicates of the form [ctx |- J],

30 Amy P. Felty et al.

which represent judgments of an object language within a given context. Connec-
tives and quantifiers include implication, conjunction, disjunction, universal and
existential quantification over terms, and universal quantification over context vari-
ables.

thm ::= "theorem" id ":" prp "."

prp ::= id {ctx} (* Context relation *)
| "[" ctx "|-" id {term} "]" (* Judgment in a context *)
| term "=" term (* Term equality *)
| false (* Falsehood *)
| true (* Truth *)
| prp "&" prp (* Conjunction *)
| prp "||" prp (* Disjunction *)
| prp "->" prp (* Implication *)
| quantif prp (* Quantification *)

quantif ::= "{" id ":" s_id "}" (* universal over contexts *)
| "{" id ":" tp "}" (* universal over terms *)
| "<" id ":" tp ">" (* existential over terms *)

Fig. 3 ORBI Grammar for Theorems

The specification of the G and R versions of the completeness theorem is as
follows:

theorem ceqG: {G:daG} [G |- deq M N] -> [G |- aeq M N].

theorem ceqR: {G:xdG}{H:xaG} daR G H -> [G |- deq M N] -> [H |- aeq M N].

This and all the others theorems pertaining to the development of the meta-
theory of algorithmic and declarative equality are listed in the Theorems section
of Appendix B. The theorems stated are a straightforward encoding of the main
theorems in Subsections 3.1, 3.3, and 3.4.

As mentioned, we do not type-check theorems; in particular, we do not define
the meaning of [ctx |- J], since several interpretations are possible. In Beluga,
every judgment J must be meaningful within the given context ctx; in particular,
terms occurring in the judgment J must be meaningful in ctx. As a consequence,
both parametric and hypothetical assumptions relevant for establishing the proof
of J must be contained in ctx. Instead of the local context view adopted in Beluga,
Twelf has one global ambient context containing all relevant parametric and hy-
pothetical assumptions. Systems based on proof-theory such as Hybrid and Abella
distinguish between assumptions denoting eigenvariables (i.e. parametric assump-
tions), which live in a global ambient context and proof assumptions (i.e. hypthet-
ical assumptions), which live in the context ctx. While users of different systems
understand how to interpret [ctx |- J], reconciling these different perspectives
in ORBI is beyond the scope of this paper. Thus for the time being, we view the-
orem statements in ORBI as a kind of comment, where it is up to the user of a
particular system to determine how to translate them.

Directives As we have mentioned before, directives are comments that help the
ORBI2X tools to generate target representations of the ORBI specifications. The
idea is reminiscent of what Ott (Sewell et al, 2010) does to customize certain

The Next 700 Challenge Problems: A Foundational View 31

declarations, e.g. the representation of variables, to the different programming
languages/proof assistants it supports. The grammar for directives is listed in
Fig. 4.

dir ::= ’%’ sy_id what decl {dest} ’.’
| ’%%’ sepr ’.’

sy_id ::= hy | ab | bel | tw

sy_set ::= ’[’ sy_id {’,’ sy_id} ’]’

what ::= wf | explicit | implicit

dest ::= ’in’ ctx | ’in’ s_id | ’in’ id

sepr ::= Syntax | Judgments | Rules | Schemas | Definitions
| Directives | Theorems

Fig. 4 ORBI Grammar for Directives

Most of the directives that we consider in this version of ORBI are dedicated
to help the translations into proof-theoretical systems, although we include also
some to facilitate the translation of theorems to Beluga. The set of directives is not
intended to be complete and the meaning of directives is system-specific. Beyond
directives (sepr) meant to structure ORBI specs, the instructions wf and explicit

are concerned with the asymmetry in the proof-theoretic view between declarations
that give typing information, e.g. tm:type, and those expressing judgments, e.g.
aeq:tm -> tm -> type. In Abella and Hybrid, the former may need to be reified
in a judgment, in order to show that judgments preserve the well-formedness of
their constituents as well as to provide induction on the structure of terms; yet, in
order to keep proofs compact and modular, we want to minimize this reification
and only include them where necessary.

The first line in the Directives section of Appendix B states the directive
“% [hy,ab] wf tm” which refers to the first line of the Syntax section where tm is
introduced, and indicates that we need a predicate (e.g., is_tm) to express well-
formedness of terms of type tm. Formulas expressing the definition of this predicate
are automatically generated from the declarations of the constructors app and lam

with their types.
The keyword explicit indicates when such well-formedness predicates should

be included in the translation of the declarations in the Rules section. For example,
the following formulas both represent possible translations of the ae_l rule to
Abella and Hybrid:

∀M,N. (∀x. is tm x→ aeq x x→ aeqMx Nx)→ aeq (lam M) (lam N)
∀M,N. (∀x. aeq x x→ aeqMx Nx)→ aeq (lam M) (lam N)

where the typing information is explicit in the first and implicit in the second.
By default, we choose the latter, that is well-formed judgments are assumed to be
implicit, and require a directive if the former is desired. In fact, in the previous
section, we assumed that whenever a judgment is provable, the terms in it are
well-formed, e.g., if aeq M N is provable, then so are is_tm M and is_tm N. Such

32 Amy P. Felty et al.

a lemma is indeed provable in Abella and Hybrid from the implicit translation
of the rules for aeq. Proving a similar lemma for the deq judgment, on the other
hand, requires some strategically placed explicit well-formedness information. In
particular, the two directives

% [hy,ab] explicit x in de_l.

% [hy,ab] explicit M in de_r.

require the clauses de_l and de_r to be translated to the following formulas:

∀M,N. (∀x. is tm x→ deq x x→ deqMx Nx)→ deq (lam M) (lam N)
∀M. is tm M → aeqM M

The case for schemas is analogous: in the proof-theoretic view, schemas are
translated to unary inductive predicates. Again, typing information is left implicit
in the translation unless a directive is included. For example, the xaG schema
with no associated directive will be translated to a definition that expresses that
whenever context G has schema xaG, then so does G,aeq x x. For the daG schema,
with directive

% [hy,ab] explicit x in daG.

the translation will express that whenever G has schema daG, then so does
G, (is_tm x;deq x x;aeq x x).

Similarly, directives in context relations, such as:

% [hy,ab] explicit x in G in xaR.

also state which well-formedness annotations to make explicit in the translated
version. In this case, when translating the definition of xaR in the Definitions

section, they are to be kept in G, but skipped in H.

Keeping in mind that we consider the notion of directive open to cover other
benchmarks and different systems, we offer some speculation about directives that
we may need to translate theorems for the examples and systems that we are
considering. (Speculative directives are omitted from Appendix B). For example,
theorems reflG is proven by induction over M. As a consequence, M must be explicit.

% [hy,ab,bel] explicit M in H in reflG.

Hybrid and Abella interpret the directive by adding an explicit assumption
[H ` is tm M], as illustrated by the result of the translation:

∀H,M. [H ` is tm M]→ [H ` aeqM M]

In Beluga, the directive is interpreted as

{H:xaG} {M:[H.tm]} [H.aeq (M ..) (M ..)].

where M will have type tm in the context H. Moreover, since the term M is used in
the judgment aeq within the context H, we associate M with an identity substitution
(denoted by ..). In short, the directive allows us to lift the type specified in ORBI
to a contextual type which is meaningful in Beluga. In fact, Beluga always needs
additional information on how to interpret terms—are they closed or can they
depend on a given context? For translating symG for example, we use the following
directive to indicate the dependence on the context:

% [bel] implicit M in H in symG.

% [bel] implicit N in H in symG.

The Next 700 Challenge Problems: A Foundational View 33

4.3 Guidelines

In addition, we introduce a set of guidelines for ORBI specification writers, with
the goal of helping translators generate output that is more likely to be accepted
by a specific system. ORBI 0.1 includes four such guidelines, which are motivated
by the desire not to put too many constraints in the grammar rules. First, as
we have seen in our examples, we use as a convention that free variables which
denote “schematic” variables in rules are written using upper case identifiers; we
use lower case identifiers for eigenvariables in rules. Second, while the grammar
does not restrict what types we can quantify over, the intention is that we quantify
over types of level-0, i.e. objects of the syntax level, only. Third, in order to more
easily accommodate systems without dependent types, Pi should not be used
when writing non-dependent types. An arrow should be used instead. (In LF,
for example, A -> B is an abbreviation for Pi x:A.B for the case when x does not
occur in B. Following this guideline means favoring this abbreviation whenever it
applies.) Fourth, when writing a context (grammar ctx), distinct variable names
should be used in different blocks.

5 Related Work

Our approach to the theory of context of assumptions takes its inspiration from
Martin-Löf’s theory of judgments (Martin-Löf, 1996), especially in the way it has
been realized in Edinburgh LF (Harper et al, 1993). However, our formulation owes
more to Beluga’s type theory, where contexts are first-class citizens, than to the
notion of regular world in Twelf. The latter was introduced in Schürmann (2000),
and used in Schürmann and Pfenning (2003) for the meta-theory of Twelf and
in Momigliano (2000) for different purposes. It was further explicated in Harper
and Licata (2007)’s review of Twelf’s methodology, but its treatment remained
unsatisfactory since the notion of worlds is extra-logical. Recent work (Wang and
Nadathur, 2013) on a logical rendering of Twelf’s totality checking has so far been
limited to closed objects.

The creation and sharing of a library of benchmarks has proven to be very
beneficial to the field it represents. The brightest example is TPTP (Sutcliffe,
2009), whose influence on the development, testing and evaluation of automated
theorem provers cannot be underestimated. Clearly our ambitions are much more
limited. We have also taken some inspiration from its higher-order extension THF0
(Benzmüller et al, 2008), in particular in its construction in stages.

The success of TPTP has spurned other benchmark suites in related subjects,
see for example SATLIB (Hoos and Stützle, 2000); however, the only one concerned
with induction is the Induction Challenge Problems (http://www.cs.nott.ac.
uk/~lad/research/challenges), a collection of examples geared to the automa-
tion of inductive proof. The benchmarks are taken from arithmetic, puzzles, func-
tional programming specifications etc. and as such have little connection with our
endeavor. On the other hand both Twelf’s wiki (http://twelf.org/wiki/Case_
studies), Abella’s library (http://abella-prover.org/examples) and Beluga’s
distribution contain a set of context-intensive examples, some of which coincide
with the ones presented here. As such they are prime candidates to be included in
ORBI.

34 Amy P. Felty et al.

Other projects have put LF as a common ground: Logosphere’s goal (http:
//www.logosphere.org) was the design of a representation language for logical
formalisms, individual theories, and proofs, with an interface to other theorem
proving systems that were somewhat connected, but the project never material-
ized. SASyLF (Aldrich et al, 2008) originated as a tool to teach programming
language theory: the user specifies the syntax, judgments, theorems and proofs
thereof (albeit limited to closed objects) in a paper-and-pencil HOAS-friendly
way and the system converts them to totality-checked Twelf code. The capability
of expressing and sharing proofs is of obvious interest to us, although such proofs,
being a literal verbalization of the Twelf type family, are irremediably verbose.

Why3 (http://why3.lri.fr) is a software verification platform that intends
to provide a front-end to third-party theorem provers, from proof assistants such
as Coq to SMT-solvers. To this end Why3 provides a first-order logic with rank-1
polymorphism, recursive definitions, algebraic data types and inductive predicates
(Filliâtre, 2013), whose specifications are then translated in the several systems
that Why3 supports. Typically, those translations are forgetful, but sometimes,
e.g., with respect to Coq, they add some annotations, for example to ensure non-
emptiness of types. Although we are really not in the same business as Why3,
there are several ideas that are relevant, such as the notion of a driver, that
is, a configuration file to drive transformations specific to a system. Moreover,
Why3 provides an API for users to write and implement their own drivers and
transformations.

Ott (Sewell et al, 2010) is a highly engineered tool for “working semanticists,”
allowing them to write programming language definitions in a style very close to
paper-and-pen specifications; then those are compiled into Latex and, more inter-
estingly, into proof assistant code, currently supporting Coq, Isabelle/HOL and
HOL. Ott’s metalanguage is endowed with a rich theory of binders, but at the mo-
ment it favors the “concrete” (non α-quotiented) representation, while providing
support for the nameless representation for a single binder. Conceptually, it would
be natural to extend Ott to generate ORBI code, as a bridge for Ott to support
HOAS-based systems. Conversely, an ORBI user would benefit from having Ott as
a front-end, since the latter notion of grammar and judgment seems at first sight
general enough to support the notion of schema and context relation.

In the category of environments for programming language descriptions we
mention PLT-Redex (Felleisen et al, 2009) and also the K framework (Roşu and
Şerbănuţă, 2010). In both, several large-scale language descriptions have been
specified and tested. However, none of those systems has any support for binders,
let alone context specifications, nor can any meta-theory be carried out.

Finally, there is a whole research area dedicated to the handling and sharing
of mathematical content (MMK http://www.mkm-ig.org) and its representation
(OMDoc https://trac.omdoc.org/OMDoc), which is only very loosely connected
to our project.

6 Conclusion and Future Work

We have presented an initial set of benchmarks that highlight a variety of differ-
ent aspects of reasoning within a context of assumptions using HOAS. We have

The Next 700 Challenge Problems: A Foundational View 35

also provided both theoretical and practical support for formalizing these bench-
marks in a variety of HOAS-based systems, and for facilitating their comparison.
We have developed a theory of contexts of assumptions as structured sequences,
which provides additional structure to contexts via schemas and characterizes their
basic structural properties. Finally, we have designed (the initial version of) the
ORBI (Open challenge problem Repository for systems supporting reasoning with
BInders) specification language, and created an open repository of specifications,
which initially contains the benchmarks introduced in this paper.

Selecting a small set of benchmarks has an inherent element of arbitrariness.
The reader may (rightly) complain that there are many other features and issues
not covered in Section 3. We agree and we mention some additional categories
that we could not discuss in the present paper for the sake of space, but which
will (eventually) make it into the ORBI repository. To begin with, one of the weak
spots of some HOAS-based systems is the lack of libraries, built-in data-types and
related decision procedures: for example, case studies involving calculi of explicit
substitutions require a small corpus of arithmetic facts, that, albeit trivial, still
need to be (re)proven, while they could be automatically discharged by decision
procedures such as Coq’s omega.10

There are also specifications that are functional in nature, such as those that
descend through the structure of a lambda term, say counting its depth, the num-
ber of bound occurrences of a given variable etc.; most HOAS systems would
encode those functions relationally, but this entails again the additional proof
obligation of proving those relations total and deterministic.

In the benchmarks that we have presented blocks which are all composed
of atoms, but there are natural specifications, for example the solution to the
POPLMark challenge in Pientka (2007), where contexts have more structure, as
they are induced by third-order specifications. For example, the rule for subtyp-
ing universally quantified types introduces a block containing among others a
non-atomic axiom about transitivity, of the form {a:tp}({U:tp} {V:tp} sub a U

→ sub U V → sub a V).

Proofs by logical relations form another challenging benchmark and typically
require, in order to define reducibility candidates, inductive definitions and strong
function spaces, i.e. a function space that does not only model binding. A direct
encodings of such proofs is out of reach for systems such as Twelf, although indirect
encodings of such proofs exist (Schürmann and Sarnat, 2008). Other systems, such
as Beluga and Abella, are well capable of encoding such proofs, but differ in how
this is accomplished, see Cave and Pientka (2014) and Gacek et al (2012).

Finally, a subject that is gaining importance is the encoding of infinite behav-
ior, typically realized via some form of co-induction. Context-intensive case studies
have been explored in Momigliano (2012).

One of the outcomes of our theory of context of assumptions is the unified
treatment of all weakening/strengthening/exchange re-arrangements, via the rm
and perm operations. This opens the road to a lattice-theoretic view of declarations
and contexts, where, roughly, x � y holds iff x can be reached from y by some
rm operation: a generalized context will be the join of two contexts and context

10 Case in point, the strong normalization of the λσ calculus in Abella http://
abella-prover.org/examples/lambda-calculus/exsub-sn/, 15% of which consists of basic
facts about addition.

36 Amy P. Felty et al.

relations can be identified by navigating the lattice starting from the join of the
to-be-related contexts. We plan to develop this view and use it to convert G proofs
into R and vice versa, as a crucial step towards breaking the proof/type theory
barrier.

The description of ORBI given in Section 4 is best thought of as a step-
ping stone towards a more comprehensive specification language, much as THF0
(Benzmüller et al, 2008) has been extended to the more expressive formalism
THFi, adding for instance, rank 1 polymorphism. Many are the features that we
plan to provide in the near future, starting from general (monotone) co-inductive
definitions; currently we only relate contexts, while it is clearly desirable to relate
arbitrary well-typed terms, as shown for example in Cave and Pientka (2012) and
Gacek et al (2012) with respect to normalization proofs. Further, it is only natural
to support coinductive definitions. However, full support for (co)induction is less
trivial that it sounds, as it essentially entails fully understanding the relationship
between the proof-theory behind Abella and Hybrid and the type theory of Beluga.
Once this is in place, we can “rescue” ORBI theorems from their current status
as comments and even include a notion of proof in ORBI.

Clearly, there is a significant amount of implementation work ahead, mainly
on the ORBI2X tools side, but also on the practicalities of the benchmark suite.
Finally, we would like to open up the repository to other styles of specification
such nominal, locally nameless etc.

Acknowledgements The first and third author acknowledge the support of the Natural
Sciences and Engineering Research Council of Canada. We also thank Kaustuv Chaudhuri,
Andrew Gacek, Nada Habli, and Dale Miller for discussing some aspects of this work with us.
The first author would also like to extend her gratitude to the University of Ottawa’s Women’s
Writers Retreats.

References

Aldrich J, Simmons RJ, Shin K (2008) SASyLF: An educational proof assistant for
language theory. In: 2008 International Workshop on Functional and Declarative
Programming in Education, ACM, pp 31–40

Aydemir BE, Bohannon A, Fairbairn M, Foster JN, Pierce BC, Sewell P, Vytiniotis
D, Washburn G, Weirich S, Zdancewic S (2005) Mechanized metatheory for the
masses: The POPLmark challenge. In: Eighteenth International Conference on
Theorem Proving in Higher Order Logics, Springer, Lecture Notes in Computer
Science, vol 3603, pp 50–65

Benzmüller C, Rabe F, Sutcliffe G (2008) THF0—the core of the TPTP language
for higher-order logic. In: Fourth International Joint Conference on Automated
Reasoning, Springer, Lecture Notes in Computer Science, vol 5195, pp 491–506

Bertot Y, Castéran P (2004) Interactive Theorem Proving and Program Develop-
ment. Coq’Art: The Calculus of Inductive Constructions. Springer

Cave A, Pientka B (2012) Programming with binders and indexed data-types.
In: Thirty-Ninth Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, ACM Press, pp 413–424

Cave A, Pientka B (2014) Mechanizing logical relation proofs using contextual
objects. Tech. rep., School of Computer Science, McGill

The Next 700 Challenge Problems: A Foundational View 37

Crary K (2009) Explicit contexts in LF (extended abstract). In: Third Interna-
tional Workshop on Logical Frameworks and Meta-Languages: Theory and Prac-
tice (LFMTP 2008), Electronic Notes in Theoretical Computer Science, vol 228,
pp 53–68

Felleisen M, Findler RB, Flatt M (2009) Semantics Engineering with PLT Redex.
The MIT Press

Felty A, Pientka B (2010) Reasoning with higher-order abstract syntax and con-
texts: A comparison. In: First International Conference on Interactive Theorem
Proving, Springer, Lecture Notes in Computer Science, vol 6172, pp 227–242

Felty A, Momigliano A, Pientka B (2014) The next 700 challenge problems for
reasoning with higher-order abstract syntax representations: Part 2—a survey,
submitted for publication simultaneously with this paper

Felty AP, Momigliano A (2012) Hybrid: A definitional two-level approach to rea-
soning with higher-order abstract syntax. Journal of Automated Reasoning
48(1):43–105

Fernández M, Urban C (2012) Preface: Theory and applications of abstraction,
substitution and naming. Journal of Automated Reasoning 49(2):111–114

Filliâtre JC (2013) One logic to use them all. In: 24th International Conference on
Automated Deduction, Springer, Lecture Notes in Computer Science, vol 7898,
pp 1–20

Gacek A (2008) The Abella interactive theorem prover (system description). In:
Fourth International Joint Conference on Automated Reasoning, Springer, Lec-
ture Notes in Computer Science, vol 5195, pp 154–161

Gacek A, Miller D, Nadathur G (2012) A two-level logic approach to reasoning
about computations. Journal of Automated Reasoning 49(2):241–273

Girard JY, Lafont Y, Tayor P (1990) Proofs and Types. Cambridge University
Press

Habli N, Felty AP (2013) Translating higher-order specifications to Coq libraries
supporting Hybrid proofs. In: Third International Workshop on Proof Exchange
for Theorem Proving, EasyChair Proceedings in Computing, vol 14, pp 67–76

Harper R, Licata DR (2007) Mechanizing metatheory in a logical framework. Jour-
nal of Functional Programming 17(4-5):613–673

Harper R, Honsell F, Plotkin G (1993) A framework for defining logics. Journal
of the Association for Computing Machinery 40(1):143–184

Hoos HH, Stützle T (2000) Satlib: An online resource for research on SAT. In: Gent
I, Maaren HV, Walsh T (eds) SAT 2000: Highlights of Satisfiability Research in
the Year 2000, IOS Press, Frontiers in Artificial Intelligence and Applications,
vol 63, pp 283–292

Martin-Löf P (1996) On the meanings of the logical constants and the justifications
of the logical laws. Nordic Journal of Philosophical Logic 1(1):11–60

Miller D (1991) A logic programming language with lambda-abstraction, function
variables, and simple unification. Journal of Logic and Computation 1(4):497–
536

Miller D, Palamidessi C (1999) Foundational aspects of syntax. ACM Computing
Surveys 31(3es):1–6, Article No. 11

Momigliano A (2000) Elimination of negation in a logical framework. In: Computer
Sceince Logic, Springer, Lecture Notes in Computer Science, vol 1862, pp 411–
426

38 Amy P. Felty et al.

Momigliano A (2012) A supposedly fun thing I may have to do again: A HOAS en-
coding of Howe’s method. In: Seventh ACM SIGPLAN International Workshop
on Logical Frameworks and Meta-Languages, Theory and Practice, pp 33–42

Momigliano A, Martin AJ, Felty AP (2008) Two-level Hybrid: A system for rea-
soning using higher-order abstract syntax. In: Second International Workshop
on Logical Frameworks and Meta-Languages: Theory and Practice (LFMTP
2007), Electronic Notes in Theoretical Computer Science, vol 196, pp 85–93

Nipkow T, Paulson LC, Wenzel M (2002) Isabelle/HOL: A Proof Assistant for
Higher-Order Logic, Lecture Notes in Computer Science, vol 2283. Springer
Verlag

Pfenning F (2001) Computation and deduction, URL http://www.cs.cmu.edu/

~fp/courses/comp-ded/handouts/cd.pdf, accessed 14 February 2014
Pientka B (2007) Proof pearl: The power of higher-order encodings in the logical

framework LF. In: Twentieth International Conference on Theorem Proving in
Higher-Order Logics, Springer, Lecture Notes in Computer Science, pp 246–261

Pientka B (2008) A type-theoretic foundation for programming with higher-order
abstract syntax and first-class substitutions. In: Thirty-Fifth Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
ACM Press, pp 371–382

Pientka B, Dunfield J (2010) Beluga: A framework for programming and reasoning
with deductive systems (system description). In: Fifth International Joint Con-
ference on Automated Reasoning, Springer, Lecture Notes in Computer Science,
vol 6173, pp 15–21

Pierce BC (2002) Types and Programming Languages. MIT Press
Pierce BC, Weirich S (2012) Preface to special issue: The POPLmark challenge.

Journal of Automated Reasoning 49(3):301–302
Poswolsky AB, Schürmann C (2008) Practical programming with higher-order

encodings and dependent types. In: Seventeenth European Symposium on Pro-
gramming, Springer, Lecture Notes in Computer Science, vol 4960, pp 93–107

Roşu G, Şerbănuţă TF (2010) An overview of the K semantic framework. Journal
of Logic and Algebraic Programming 79(6):397–434

Schürmann C (2000) Automating the meta theory of deductive systems. PhD
thesis, Department of Computer Science, Carnegie Mellon University, available
as Technical Report CMU-CS-00-146

Schürmann C (2009) The Twelf proof assistant. In: Twenty-Second International
Conference on Theorem Proving in Higher Order Logics, Springer, Lecture Notes
in Computer Science, vol 5674, pp 79–83

Schürmann C, Pfenning F (2003) A coverage checking algorithm for LF. In: Six-
teenth International Conference on Theorem Proving in Higher Order Logics,
Springer, Lecture Notes in Computer Science, vol 2758, pp 120–135

Schürmann C, Sarnat J (2008) Structural logical relations. In: Twenty-Third An-
nual IEEE Symposium on Logic in Computer Science, IEEE Computer Society,
pp 69–80

Sewell P, Nardelli FZ, Owens S, Peskine G, Ridge T, Sarkar S, Strnǐsa R (2010)
Ott: Effective tool support for the working semanticist. Journal of Functional
Programming 20(1):71–122

Sutcliffe G (2009) The TPTP problem library and associated infrastructure. Jour-
nal of Automated Reasoning 43(4):337–0362

The Next 700 Challenge Problems: A Foundational View 39

Wang Y, Nadathur G (2013) Towards extracting explicit proofs from totality
checking in twelf. In: Eighth ACM SIGPLAN International Workshop on Logical
Frameworks and Meta-languages: Theory and Practice, pp 55–66

A Overview of Benchmarks

In this appendix, we provide a quick reference guide to some of the key elements of the
benchmark problems discussed in Section 3. In the tables below, ULC (STLC) stands for
the untyped (simply-typed) lambda-calculus, and POLY stands for the polymorphic lambda
calculus. The entry “same” means that there is no difference between the R and G version of
the theorem because there is only one context involved.

A.1 A Recap of Benchmark Theorems

Theorem Thm No. Version Page
aeq-reflexivity for ULC 7 R 14
aeq-reflexivity for ULC 8 G 15
aeq-symmetry and transitivity for ULC 10 same 16
atp-reflexivity for POLY 11 G 17
aeq-reflexivity for POLY 13 G 18
atp-reflexivity for POLY 14 R 19
aeq-reflexivity for POLY 17 R 19
aeq/deq-completeness for ULC 19 G 20
aeq/deq-completeness for ULC 22 R 22
type uniqueness for STLC 24 same 24
type preservation for parallel reduction for STLC 26 R 25
aeq-parallel substitution for ULC 23 same 23

A.2 A Recap of Schemas and Their Usage

Context Schema Block Description/Used in:
Φα Sα is tp α type variables
Φx Sx is tm x term variables
Φαx Sαx is tp α |||| is tm x type/term variables
Φαt Sαt is tp α |||| is tm x;x:T type-checking for POLY
Φxa Sxa is tm x; aeq x x Thm 8, 10, and 23
Φatp Satp is tp α; atp α α Thm 11
Φaeq Saeq is tp α; atp α α |||| is tm x; aeq x x Thm 13
Γda Sda is tm x; deq x x; aeq x x Thm 19
Φxd Sxd is tm x; deq x x Thm 22
Φt St is tm x; oft x A Thm 24
Φr Sr is tm x;x; x Thm 26

A.3 A Recap of the Main Context Relations and Their Usage

Relation Related Blocks Used in:
Φx ∼ Φxa is tm x ∼ (is tm x; aeq x x) Thm 7
Φα ∼ Φatp is tp α ∼ (is tp α; atp α α) Thm 14
Φαx ∼ Φaeq Φx ∼ Φxa plus Φα ∼ Φatp Thm 17
Φxa ∼ Φxd (is tm x; aeq x x) ∼ (is tm x; deq x x) Thm 22
Φr ∼ Φt (is tm x;x; x) ∼ (is tm x;x:A) Thm 26

40 Amy P. Felty et al.

B ORBI Specification of Algorithmic and Declarative Equality

The following ORBI specification provides a complete encoding of the example of algorithmic
vs. declarative equality used in Subsections 3.1, 3.3, and 3.4.

%% Syntax
tm: type.

app: tm -> tm -> tm.
lam: (tm -> tm) -> tm.

%% Judgments
aeq: tm -> tm -> type.
deq: tm -> tm -> type.

%% Rules
ae_a: aeq M1 N1 -> aeq M2 N2 -> aeq (app M1 M2) (app N1 N2).
ae_l: ({x:tm} aeq x x -> aeq (M x) (N x))

-> aeq (lam (\x. M x)) (lam (\x. N x)).

de_a: deq M1 N1 -> deq M2 N2 -> deq (app M1 M2) (app N1 N2).
de_l: ({x:tm} deq x x -> deq (M x) (N x))

-> deq (lam (\x. M x)) (lam (\x. N x)).
de_r: deq M M.
de_s: deq M1 M2 -> deq M2 M1.
de_t: deq M1 M2 -> deq M2 M3 -> deq M1 M3.

%% Schemas
schema xG: block (x:tm).
schema xaG: block (x:tm; u:aeq x x).
schema xdG: block (x:tm; u:deq x x).
schema daG: block (x:tm; u:deq x x; v:aeq x x).

%% Definitions
inductive xaR : {G:xG} {H:xaG} prop =
| xa_nil: xaR nil nil
| xa_cons: xaR G H -> xaR (G, block x:tm) (H, block x:tm; u:aeq x x).

inductive daR : {G:xdG} {H:xaG} prop =
| da_nil: daR nil nil
| da_cons: daR G H -> daR (G, block x:tm; v:deq x x)

(H, block x:tm; u:aeq x x).

%% Theorems
theorem reflG: {H:xaG} {M:tm} [H |- aeq M M].
theorem symG: {H:xaG}{M:tm}{N:tm} [H |- aeq M N] -> [H |- aeq N M].
theorem transG: {H:xaG}{M:tm}{N:tm}{L:tm}

[H |- aeq M N] & [H |- aeq N L] -> [H |- aeq M L].
theorem ceqG: {G:daG} [G |- deq M N] -> [G |- aeq M N].
theorem substG: {H:xaG}{M1:tm->tm}{M2:tm}{N1:tm}{N2:tm}

[H, block x:tm; aeq x x |- aeq (M1 x) (M2 x)] & [H |- aeq N1 N2] ->
[H |- aeq (M1 N1) (M2 N2)].

theorem reflR : {G:xG}{H:xaG}{M:tm} xaR G H -> [H |- aeq M M].
theorem ceqR: {G:xdG}{H:xaG} daR G H -> [G |- deq M N] -> [H |- aeq M N].

%% Directives
% [hy,ab] wf tm.
% [hy,ab] explicit x in de_l.
% [hy,ab] explicit M in de_r.
% [hy,ab] explicit x in xG.

The Next 700 Challenge Problems: A Foundational View 41

% [hy,ab] explicit x in xdG.
% [hy,ab] explicit x in daG.
% [hy,ab] explicit x in G in xaR.
% [hy,ab] explicit x in G in daR.

