
Lecture 9: Why do policy evaluation
algorithms work? Control

Recall: TD-family for policy evaluation

The TD family of methods is between MC and DP
Interpolating in terms of credit assignment length!
With bootstrapping (TD), we don’t get true gradient
descent methods with function approximation

this complicates the analysis
but learning is can be much faster

2

width
of backup

height
(depth)

of backup

Temporal-
difference

learning

Dynamic
programming

Monte
Carlo

...

Exhaustive
search

3

Recall: Unified View

Multi-step
bootstrapping

Monte Carlo:

TD:
Use Vt to estimate remaining return

n-step TD:
2 step return:

n-step return:

with

Recall: Different Targets

7.1. N -STEP TD PREDICTION 153

More formally, consider the backup applied to state St as a result of the state–
reward sequence, St, Rt+1, St+1, Rt+2, . . . , RT , ST (omitting the actions for simplic-
ity). We know that in Monte Carlo backups the estimate of v⇡(St) is updated in the
direction of the complete return:

Gt

.
= Rt+1 + �Rt+2 + �2Rt+3 + · · · + �T�t�1RT ,

where T is the last time step of the episode. Let us call this quantity the target of
the backup. Whereas in Monte Carlo backups the target is the return, in one-step
backups the target is the first reward plus the discounted estimated value of the next
state, which we call the one-step return:

G(1)
t

.
= Rt+1 + �Vt(St+1),

where Vt : S ! R here is the estimate at time t of v⇡, in which case it makes sense
that �Vt(St+1) should take the place of the remaining terms �Rt+2 + �2Rt+3 + · · · +
�T�t�1RT , as we discussed in the previous chapter. Our point now is that this idea
makes just as much sense after two steps as it does after one. The target for a
two-step target is the two-step return:

G(2)
t

.
= Rt+1 + �Rt+2 + �2Vt(St+2),

where now �2Vt(St+2) corrects for the absence of the terms �2Rt+3 + �3Rt+4 + · · · +
�T�t�1RT . Similarly, the target for an arbitrary n-step backup is the n-step return:

G(n)
t

.
= Rt+1 + �Rt+2 + �2 + · · · + �n�1Rt+n + �nVt(St+n), 8n � 1. (7.1)

All the n-step returns can be considered approximations to the full return, truncated
after n steps and then corrected for the remaining missing terms by Vt(St+n).

The time t + n is called the horizon of the n-step return. If the episode ends
before the horizon is reached, then the truncation in an n-step return e↵ectively
occurs at the episode’s end, resulting in the conventional complete return. In other

words, if t+n � T , then G(n)
t

= Gt. Thus, the last n n-step returns of an episode are
always complete returns, and an infinite-step return is always a complete return. This
definition enables us to treat Monte Carlo methods as the special case of infinite-step
targets. All of this is consistent with the tricks for treating episodic and continuing
tasks equivalently that we introduced in Section 3.4. There we chose to treat the
terminal state as a state that always transitions to itself with zero reward. Under
this trick, all n-step returns that last up to or past termination have the same value
as the complete return.

An n-step backup is defined to be a backup toward the n-step return. In the tab-
ular, state-value case, the n-step backup at time t produces the following increment
�t(St) in the estimated value Vt(St):

�t(St)
.
= ↵

h
G(n)

t
� Vt(St)

i
, (7.2)

7.1. N -STEP TD PREDICTION 153

More formally, consider the backup applied to state St as a result of the state–
reward sequence, St, Rt+1, St+1, Rt+2, . . . , RT , ST (omitting the actions for simplic-
ity). We know that in Monte Carlo backups the estimate of v⇡(St) is updated in the
direction of the complete return:

Gt

.
= Rt+1 + �Rt+2 + �2Rt+3 + · · · + �T�t�1RT ,

where T is the last time step of the episode. Let us call this quantity the target of
the backup. Whereas in Monte Carlo backups the target is the return, in one-step
backups the target is the first reward plus the discounted estimated value of the next
state, which we call the one-step return:

G(1)
t

.
= Rt+1 + �Vt(St+1),

where Vt : S ! R here is the estimate at time t of v⇡, in which case it makes sense
that �Vt(St+1) should take the place of the remaining terms �Rt+2 + �2Rt+3 + · · · +
�T�t�1RT , as we discussed in the previous chapter. Our point now is that this idea
makes just as much sense after two steps as it does after one. The target for a
two-step target is the two-step return:

G(2)
t

.
= Rt+1 + �Rt+2 + �2Vt(St+2),

where now �2Vt(St+2) corrects for the absence of the terms �2Rt+3 + �3Rt+4 + · · · +
�T�t�1RT . Similarly, the target for an arbitrary n-step backup is the n-step return:

G(n)
t

.
= Rt+1 + �Rt+2 + �2 + · · · + �n�1Rt+n + �nVt(St+n), 8n � 1. (7.1)

All the n-step returns can be considered approximations to the full return, truncated
after n steps and then corrected for the remaining missing terms by Vt(St+n).

The time t + n is called the horizon of the n-step return. If the episode ends
before the horizon is reached, then the truncation in an n-step return e↵ectively
occurs at the episode’s end, resulting in the conventional complete return. In other

words, if t+n � T , then G(n)
t

= Gt. Thus, the last n n-step returns of an episode are
always complete returns, and an infinite-step return is always a complete return. This
definition enables us to treat Monte Carlo methods as the special case of infinite-step
targets. All of this is consistent with the tricks for treating episodic and continuing
tasks equivalently that we introduced in Section 3.4. There we chose to treat the
terminal state as a state that always transitions to itself with zero reward. Under
this trick, all n-step returns that last up to or past termination have the same value
as the complete return.

An n-step backup is defined to be a backup toward the n-step return. In the tab-
ular, state-value case, the n-step backup at time t produces the following increment
�t(St) in the estimated value Vt(St):

�t(St)
.
= ↵

h
G(n)

t
� Vt(St)

i
, (7.2)

7.1. N -STEP TD PREDICTION 153

More formally, consider the backup applied to state St as a result of the state–
reward sequence, St, Rt+1, St+1, Rt+2, . . . , RT , ST (omitting the actions for simplic-
ity). We know that in Monte Carlo backups the estimate of v⇡(St) is updated in the
direction of the complete return:

Gt

.
= Rt+1 + �Rt+2 + �2Rt+3 + · · · + �T�t�1RT ,

where T is the last time step of the episode. Let us call this quantity the target of
the backup. Whereas in Monte Carlo backups the target is the return, in one-step
backups the target is the first reward plus the discounted estimated value of the next
state, which we call the one-step return:

G(1)
t

.
= Rt+1 + �Vt(St+1),

where Vt : S ! R here is the estimate at time t of v⇡, in which case it makes sense
that �Vt(St+1) should take the place of the remaining terms �Rt+2 + �2Rt+3 + · · · +
�T�t�1RT , as we discussed in the previous chapter. Our point now is that this idea
makes just as much sense after two steps as it does after one. The target for a
two-step target is the two-step return:

G(2)
t

.
= Rt+1 + �Rt+2 + �2Vt(St+2),

where now �2Vt(St+2) corrects for the absence of the terms �2Rt+3 + �3Rt+4 + · · · +
�T�t�1RT . Similarly, the target for an arbitrary n-step backup is the n-step return:

G(n)
t

.
= Rt+1 + �Rt+2 + �2 + · · · + �n�1Rt+n + �nVt(St+n), 8n � 1. (7.1)

All the n-step returns can be considered approximations to the full return, truncated
after n steps and then corrected for the remaining missing terms by Vt(St+n).

The time t + n is called the horizon of the n-step return. If the episode ends
before the horizon is reached, then the truncation in an n-step return e↵ectively
occurs at the episode’s end, resulting in the conventional complete return. In other

words, if t+n � T , then G(n)
t

= Gt. Thus, the last n n-step returns of an episode are
always complete returns, and an infinite-step return is always a complete return. This
definition enables us to treat Monte Carlo methods as the special case of infinite-step
targets. All of this is consistent with the tricks for treating episodic and continuing
tasks equivalently that we introduced in Section 3.4. There we chose to treat the
terminal state as a state that always transitions to itself with zero reward. Under
this trick, all n-step returns that last up to or past termination have the same value
as the complete return.

An n-step backup is defined to be a backup toward the n-step return. In the tab-
ular, state-value case, the n-step backup at time t produces the following increment
�t(St) in the estimated value Vt(St):

�t(St)
.
= ↵

h
G(n)

t
� Vt(St)

i
, (7.2)

7.1. N -STEP TD PREDICTION 153

More formally, consider the backup applied to state St as a result of the state–
reward sequence, St, Rt+1, St+1, Rt+2, . . . , RT , ST (omitting the actions for simplic-
ity). We know that in Monte Carlo backups the estimate of v⇡(St) is updated in the
direction of the complete return:

Gt

.
= Rt+1 + �Rt+2 + �2Rt+3 + · · · + �T�t�1RT ,

where T is the last time step of the episode. Let us call this quantity the target of
the backup. Whereas in Monte Carlo backups the target is the return, in one-step
backups the target is the first reward plus the discounted estimated value of the next
state, which we call the one-step return:

G(1)
t

.
= Rt+1 + �Vt(St+1),

where Vt : S ! R here is the estimate at time t of v⇡, in which case it makes sense
that �Vt(St+1) should take the place of the remaining terms �Rt+2 + �2Rt+3 + · · · +
�T�t�1RT , as we discussed in the previous chapter. Our point now is that this idea
makes just as much sense after two steps as it does after one. The target for a
two-step target is the two-step return:

G(2)
t

.
= Rt+1 + �Rt+2 + �2Vt(St+2),

where now �2Vt(St+2) corrects for the absence of the terms �2Rt+3 + �3Rt+4 + · · · +
�T�t�1RT . Similarly, the target for an arbitrary n-step backup is the n-step return:

G(n)
t

.
= Rt+1 + �Rt+2 + �2 + · · · + �n�1Rt+n + �nVt(St+n), 8n � 1. (7.1)

All the n-step returns can be considered approximations to the full return, truncated
after n steps and then corrected for the remaining missing terms by Vt(St+n).

The time t + n is called the horizon of the n-step return. If the episode ends
before the horizon is reached, then the truncation in an n-step return e↵ectively
occurs at the episode’s end, resulting in the conventional complete return. In other

words, if t+n � T , then G(n)
t

= Gt. Thus, the last n n-step returns of an episode are
always complete returns, and an infinite-step return is always a complete return. This
definition enables us to treat Monte Carlo methods as the special case of infinite-step
targets. All of this is consistent with the tricks for treating episodic and continuing
tasks equivalently that we introduced in Section 3.4. There we chose to treat the
terminal state as a state that always transitions to itself with zero reward. Under
this trick, all n-step returns that last up to or past termination have the same value
as the complete return.

An n-step backup is defined to be a backup toward the n-step return. In the tab-
ular, state-value case, the n-step backup at time t produces the following increment
�t(St) in the estimated value Vt(St):

�t(St)
.
= ↵

h
G(n)

t
� Vt(St)

i
, (7.2)

7.1. N -STEP TD PREDICTION 151

state, which we call the one-step return:

G(1)
t

.
= Rt+1 + �Vt(St+1),

where Vt : S ! R here is the estimate at time t of v⇡, in which case it makes sense
that �Vt(St+1) should take the place of the remaining terms �Rt+2 + �2Rt+3 + · · · +
�T�t�1RT , as we discussed in the previous chapter. Our point now is that this idea
makes just as much sense after two steps as it does after one. The target for a
two-step target is the two-step return:

G(2)
t

.
= Rt+1 + �Rt+2 + �2Vt+1(St+2),

where now �2Vt+1(St+2) corrects for the absence of the terms �2Rt+3 + �3Rt+4 +
· · · + �T�t�1RT . Similarly, the target for an arbitrary n-step backup is the n-step
return:

G(n)
t

.
= Rt+1+�Rt+2+· · ·+�n�1Rt+n+�nVt+n�1(St+n), n � 1, 0  t < T �n. (7.1)

All the n-step returns can be considered approximations to the full return, truncated
after n steps and then corrected for the remaining missing terms by Vt+n�1(St+n).
If t + n � T (if the n-step return extends to or beyond termination), then all the
missing terms are taken as zero and the n-step return defined to be equal to the

ordinary full return (G(n)
t

.
= Gt if t + n � T).

Note that n-step returns for n > 1 involve future rewards and value functions that
are not available at the time of transition from t to t + 1. No real algorithm can use
the n-step return until after it had seen Rt+n and computed Vt+n�1. The first time
these are available to be used is t+n. The natural algorithm for using n-step returns
is thus

Vt+n(St)
.
= Vt+n�1(St) + ↵

h
G(n)

t
� Vt+n�1(St)

i
, 0  t < T, (7.2)

while the values of all other states remain unchanged, Vt+n(s) = Vt+n�1(s), 8s 6= St.
We call this algorithm n-step TD. Note that no changes at all are made during the
first n � 1 steps of each episode. To make up for that, an equal number of addition
updates are made at the end of the episode, after termination and before starting
the next episode. Complete pseudocode is given in the box on the next page.

The n-step return uses the value function Vt+n�1 to correct for the missing rewards
beyond Rt+n. An important property of n-step returns is that their expectation is
guaranteed to be a better estimate of v⇡ than Vt+n�1 is, in a worst-state sense. That
is, the worst error of the expected n-step return is guaranteed to be less than or
equal to �n times the worst error under Vt+n�1:

max
s

���E⇡

h
G(n)

t

���St =s
i

� v⇡(s)
���  �n max

s

���Vt+n�1(s) � v⇡(s)
���, (7.3)

for all n � 1. This is called the error reduction property of n-step returns. Because
of the error reduction property, one can show formally that all n-step TD methods

Do policy evaluation methods converge?

If so, under what circumstances? To what solution?
DP policy evaluation in the tabular case
TD methods in the tabular case
TD methods with function approximation
MC with function approximation

5

Setup: Finite MDPs

Recall in general expected reward is a function
This can be represented as a matrix:
Transitions can be represented as a matrix:

Suppose we have a fixed policy
Policy can be represented as a matrix containing, for every
state, a row containing :
(Reason for this coming soon)
Value function can be represented as a vector of size
number of states:

r(s, a)
r ∈ ℝ|S|×|A|

P(s′ |s, a)
P ∈ ℝ|S|×|A|×|S|

π(a |s) π ∈ ℝ|S|×|A|

vπ ∈ ℝ|S|

6

Example

7

Bellman equation in vector form

Let np.einsum be a
matrix of probabilities of transitions between

states under policy
Let np.einsum be a size
column vector representing the expected immediate reward
from every state
The Bellman equation for policy evaluation can then be re-
written as:
As discussed before, is we know the model , this is
a linear system of equations
This system of equations has a unique solution:

The inverse exists because is a stochastic matrix (rows

Pπ = (′ sa, sax → sx′ , π, P)
|S | × |S |

π
rπ = (′ sa, sa → s′ , π, r) |S |

vπ = rπ + γPπvπ
(rπ, Pπ)

vπ = (I − γPπ)−1rπ
Pπ 8

DP for policy evaluation

The algorithm we had before can be summarized as:

Does the value function end up approximating the true
unique value function ?

v0 = 0
Repeat: vk+1 = rπ + γPπvk

vπ

9

Example: Bellman update

10

-norm∞

If we have two vectors u and v, we can define their
distance as the largest absolute difference in corresponding
values:

Very useful for analyzing stability of algorithms!
If the max difference is decreasing as we consider vectors
obtained through iteration, then all other differences are
also decreasing
So we will have convergence!

| |u − v | |∞ = max
s∈|S|

|u(s) − v(s) |

11

DP policy evaluation convergence
We know
Subtract from this the DP update:
We have:

So the -norm of the error at each iteration decreases by at
least a factor of !
This is called a contraction
By induction, at iteration k:
So the error becomes 0 in the limit! And decreases fast

vπ = rπ + γPπvπ
vk+1 = rπ + γPπvk

| |vπ − vk+1 | |∞ = | |rπ + γPπvπ − rπ − γPπvk | |∞
= | |γPπ(vπ − vk) | |∞
≤ | |γPπ | |vπ − vk | |∞ | |∞
≤ γ | |vπ − vk | |∞

∞
γ

| |vπ − vk+1 | |∞ ≤ γk | |vπ − v0 | |∞

12

Example

13

What about TD?

Every time you are in state s you update with a sample
target:
What is the expected value of the target?

So the expected target is the same as for DP!
Therefore, contraction argument applies for the expected
TD update!
Footnote: to show convergence of the incremental
algorithm we also need to show that updates have finite
variance, and impose Robins-Monroe conditions on the
learning rate

R + γV(s′)

𝔼π [R + γV(s′) |s] = rπ(s′ |s) + γ∑
s′

Pπ(s′ |s)V(s′)

14

What about 2-step TD?

For 2-step, the expected target is:

Is this a contraction? If so with what factor?

rπ + γPπrπ + γ2P2
πV

15

What about n-step TD?

Expected update:

So as we increase n, the influence of V (aka bias)
decreases!
And variance from the reward terms potentially increases
In the limit of , we get MC! No bias from using V
to bootstrap, but potentially high variance
All of the n-step algorithms converge because of the same
contraction argument

rπ + γPπrπ + … + γn−1Pn−1
π rπ + γnPn

πV

n → ∞

16

Recall: Eligibility traces (forward view)

The λ-return can be rewritten as:

If λ = 1, you get the MC target:

If λ = 0, you get the TD(0) target:

17

Until termination After termination

160 CHAPTER 7. ELIGIBILITY TRACES

1!"

(1!") "

(1!") "
2

= 1

TD("), "-return

"
T-t-1

Figure 7.3: The backup digram for TD(�). If � = 0, then the overall backup
reduces to its first component, the one-step TD backup, whereas if � = 1, then
the overall backup reduces to its last component, the Monte Carlo backup.

The TD(�) algorithm can be understood as one particular way of averaging
n-step backups. This average contains all the n-step backups, each weighted
proportional to �n�1, where 0  �  1 (Figure 7.3). A normalization factor
of 1 � � ensures that the weights sum to 1. The resulting backup is toward a
return, called the �-return, defined by

G�
t = (1 � �)

1X

n=1

�n�1G(n)
t .

Figure 7.4 illustrates this weighting sequence. The one-step return is given
the largest weight, 1 � �; the two-step return is given the next largest weight,
(1 � �)�; the three-step return is given the weight (1 � �)�2; and so on. The
weight fades by � with each additional step. After a terminal state has been
reached, all subsequent n-step returns are equal to Gt. If we want, we can
separate these terms from the main sum, yielding

G�
t = (1 � �)

T�t�1X

n=1

�n�1G(n)
t + �T�t�1Gt. (7.3)

This equation makes it clearer what happens when � = 1. In this case the
main sum goes to zero, and the remaining term reduces to the conventional
return, Gt. Thus, for � = 1, backing up according to the �-return is the
same as the Monte Carlo algorithm that we called constant-↵ MC (6.1) in

G�
t = (1� �)

T�t�1X

n=1

�n�1G(n)
t + �T�t�1Gt (1)

G�
t = (1� 1)

T�t�1X

n=1

1n�1G(n)
t + 1T�t�1Gt = Gt (2)

G�
t = (1� 0)

T�t�1X

n=1

0n�1G(n)
t + 0T�t�1Gt = G(1)

t (3)

R S A(s)
Ea[a]

! = s0, a0, s1, a1, . . .

The other random variables are a function of this sequence. The transitional
target rt+1 is a function of st, at, and st+1. The termination condition �t,
terminal target zt, and prediction yt, are functions of st alone.

R(n)
t = rt+1 + �t+1zt+1 + (1� �t+1)R

(n�1)
t+1

R(0)
t = yt

R�
t = (1� �)

1X

n=1

�n�1R(n)
t

⇢t =
⇡(st, at)

b(st, at)

�wo↵(!) = �won(!)
1Y

i=1

⇢i

�wt = ↵t(CtR
�
t � yt)rwyt

�wt = ↵t(R̄
�
t � yt)rwyt

1

G�
t = (1� �)

T�t�1X

n=1

�n�1G(n)
t + �T�t�1Gt (1)

G�
t = (1� 1)

T�t�1X

n=1

1n�1G(n)
t + 1T�t�1Gt = Gt (2)

G�
t = (1� 0)

T�t�1X

n=1

0n�1G(n)
t + 0T�t�1Gt = G(1)

t (3)

R S A(s)
Ea[a]

! = s0, a0, s1, a1, . . .

The other random variables are a function of this sequence. The transitional
target rt+1 is a function of st, at, and st+1. The termination condition �t,
terminal target zt, and prediction yt, are functions of st alone.

R(n)
t = rt+1 + �t+1zt+1 + (1� �t+1)R

(n�1)
t+1

R(0)
t = yt

R�
t = (1� �)

1X

n=1

�n�1R(n)
t

⇢t =
⇡(st, at)

b(st, at)

�wo↵(!) = �won(!)
1Y

i=1

⇢i

�wt = ↵t(CtR
�
t � yt)rwyt

�wt = ↵t(R̄
�
t � yt)rwyt

1

Convergence of TD(λ)

This is a convex combination of n-step targets
The expected value of each of those is a contraction with at
least factor
So the convex combination is also a contraction!
Therefore in the tabular case we have convergence for all
values of to
Footnote on variance and learning rates remains

γ

λ vπ

18

Linear FA

19

Features define the plane and the quality of solutions!
Example: Tile coding, Fourier basis

Geometric intuition

20

according to a stationary decision making policy ⇡ : S ⇥ A ! [0, 1] where ⇡(s, a) is the
probability that At = a given that St = s, for all t. To solve the MDP is to find an optimal
policy ⇡

⇤, defined as a policy that maximizes the expected �-discounted reward received
from each state:

⇡
⇤ = argmax

⇡
v⇡(s), 8s 2 S,

where

v⇡(s) = E⇡
⇥
Rt+1 + �Rt+2 + �

2
Rt+3 + · · ·

�� St = s
⇤
, 8s 2 S, (1)

where � 2 [0, 1) is known as the discount-rate parameter, and the subscript on the E
indicates that the expectation is conditional on the policy ⇡ being used to select actions.
The function v⇡ is called the state-value function for policy ⇡.

A key subproblem underlying almost all e�cient solution strategies for MDPs is policy

evaluation, the computation or estimation of v⇡ for a given policy ⇡. For example, the
popular DP algorithm known as policy iteration involves computing the value function for
a sequence of policies, each of which is better than the previous, until an optimal policy is
found. In TDL, algorithms such as TD(�) are used to approximate the value function for
the current policy, for example as part of actor–critic methods.

If the state space is finite, then the estimated value function may be represented in a
computer as a large array with one entry for each state and the entries directly updated to
form the estimate. Such tabular methods can handle large state spaces, even continuous
ones, through discretization, state aggregation, and interpolation, but as the dimensionality
of the state space increases, these methods rapidly become computationally infeasible or
ine↵ective. This is the e↵ect which gave rise to the phrase “the curse of dimensionality.”

A more general and flexible approach is to represent the value function by a functional
form of fixed size and fixed structure with many variable parameters or weights. The weights
are then changed to reshape the approximate value function to better match the true value
function. We denote the parameterized value function approximator as

v✓(s) ⇡ v⇡(s), 8s 2 S, (2)

where ✓ 2 Rn, with n ⌧ |S|, is the weight/parameter vector. The approximate value
function can have arbitrary form as long as it is everywhere di↵erentiable with respect to
the weights. For example, it could be a cubic spline, or it could implemented by a multi-
layer neural network where ✓ is the concatenation of all the connection weights. Henceforth
refer to ✓ exclusively as the weights, or weight vector, and reserve the word “parameter”
for things like the discount-rate parameter, �, and step-size parameters.

An important special case is that in which the approximate value function is linear in
the weights and in features of the state:

v✓(s) = ✓
>
�(s), (3)

where the �(s) 2 Rn, 8s 2 S, are feature vectors characterizing each state s, and x
>
y

denotes the inner product of two vectors x and y.

2

The other two goals for approximation are related to the Bellman equation, which can
be written compactly in vector form as

v⇡ = B⇡v⇡, (7)

where B⇡ : R|S| ! R|S| is the Bellman operator for policy ⇡, defined by

(B⇡v)(s) =
X

a2A
⇡(s, a)

"
r(s, a) + �

X

s02S
p(s0|s, a)v(s0)

#
, 8s 2 S, 8v : S ! R. (8)

(If the state and action spaces are continuous, then the sums are replaced by integrals and
the function p(·|s, a) is taken to be a probability density.) The true value function v⇡ is
the unique solution to the Bellman equation; the Bellman equation can be viewed as an
alternate way of defining v⇡. For any value function v : S ! R not equal to v⇡, there will
always be at least one state s at which v(s) 6= (B⇡v)(s).

The discrepancy between the two sides of the Bellman equation, v⇡ � B⇡v⇡, is an error
vector, and reducing it is the basis for our second and third goals for approximation. The
second goal is to minimize the error vector’s length in the d-metric. That is, to minimize
the mean-squared Bellman error :

BE(✓) =
X

s2S
d(s)

⇥
(B⇡v✓)(s) � v✓(s)

⇤2
. (9)

Note that if v⇡ is not representable, then it is not be possible to reduce the Bellman error
to zero. For any v✓, the corresponding B⇡v✓ will generally not be representable; it will lie
outside the space of representable functions, as suggested by the figure...

Finally, in our third goal of approximation, we first project the Bellman error and then
minimize its length. That is, we minimize the error not in the Bellman equation (7) but in
its projected form:

v✓ = ⇧B⇡v✓, (10)

Unlike the original Bellman equation, for most function approximators (e.g., linear ones)
the projected Bellman equation can be solved exactly. If it can’t be solved exactly, you can
minimize the mean-squared projected Bellman error :

PBE(✓) =
X

s2S
d(s)

⇥
(⇧(B⇡v✓ � v✓))(s)

⇤2
. (11)

The minimum is achieved at the projection fixpoint, at which

X

s2S
d(s)

⇥
(B⇡v✓)(s) � v✓(s)

⇤
r✓v✓(s) = ~0. (12)

p
VE

p
BE

p
PBE

p
VE

p
VE

4

The other two goals for approximation are related to the Bellman equation, which can
be written compactly in vector form as

v⇡ = B⇡v⇡, (7)

where B⇡ : R|S| ! R|S| is the Bellman operator for policy ⇡, defined by

(B⇡v)(s) =
X

a2A
⇡(s, a)

"
r(s, a) + �

X

s02S
p(s0|s, a)v(s0)

#
, 8s 2 S, 8v : S ! R. (8)

(If the state and action spaces are continuous, then the sums are replaced by integrals and
the function p(·|s, a) is taken to be a probability density.) The true value function v⇡ is
the unique solution to the Bellman equation; the Bellman equation can be viewed as an
alternate way of defining v⇡. For any value function v : S ! R not equal to v⇡, there will
always be at least one state s at which v(s) 6= (B⇡v)(s).

The discrepancy between the two sides of the Bellman equation, v⇡ � B⇡v⇡, is an error
vector, and reducing it is the basis for our second and third goals for approximation. The
second goal is to minimize the error vector’s length in the d-metric. That is, to minimize
the mean-squared Bellman error :

BE(✓) =
X

s2S
d(s)

⇥
(B⇡v✓)(s) � v✓(s)

⇤2
. (9)

Note that if v⇡ is not representable, then it is not be possible to reduce the Bellman error
to zero. For any v✓, the corresponding B⇡v✓ will generally not be representable; it will lie
outside the space of representable functions, as suggested by the figure...

Finally, in our third goal of approximation, we first project the Bellman error and then
minimize its length. That is, we minimize the error not in the Bellman equation (7) but in
its projected form:

v✓ = ⇧B⇡v✓, (10)

Unlike the original Bellman equation, for most function approximators (e.g., linear ones)
the projected Bellman equation can be solved exactly. If it can’t be solved exactly, you can
minimize the mean-squared projected Bellman error :

PBE(✓) =
X

s2S
d(s)

⇥
(⇧(B⇡v✓ � v✓))(s)

⇤2
. (11)

The minimum is achieved at the projection fixpoint, at which

X

s2S
d(s)

⇥
(B⇡v✓)(s) � v✓(s)

⇤
r✓v✓(s) = ~0. (12)

p
VE

p
BE

p
PBE

p
VE

p
VE

4

The other two goals for approximation are related to the Bellman equation, which can
be written compactly in vector form as

v⇡ = B⇡v⇡, (7)

where B⇡ : R|S| ! R|S| is the Bellman operator for policy ⇡, defined by

(B⇡v)(s) =
X

a2A
⇡(s, a)

"
r(s, a) + �

X

s02S
p(s0|s, a)v(s0)

#
, 8s 2 S, 8v : S ! R. (8)

(If the state and action spaces are continuous, then the sums are replaced by integrals and
the function p(·|s, a) is taken to be a probability density.) The true value function v⇡ is
the unique solution to the Bellman equation; the Bellman equation can be viewed as an
alternate way of defining v⇡. For any value function v : S ! R not equal to v⇡, there will
always be at least one state s at which v(s) 6= (B⇡v)(s).

The discrepancy between the two sides of the Bellman equation, v⇡ � B⇡v⇡, is an error
vector, and reducing it is the basis for our second and third goals for approximation. The
second goal is to minimize the error vector’s length in the d-metric. That is, to minimize
the mean-squared Bellman error :

BE(✓) =
X

s2S
d(s)

⇥
(B⇡v✓)(s) � v✓(s)

⇤2
. (9)

Note that if v⇡ is not representable, then it is not be possible to reduce the Bellman error
to zero. For any v✓, the corresponding B⇡v✓ will generally not be representable; it will lie
outside the space of representable functions, as suggested by the figure...

Finally, in our third goal of approximation, we first project the Bellman error and then
minimize its length. That is, we minimize the error not in the Bellman equation (7) but in
its projected form:

v✓ = ⇧B⇡v✓, (10)

Unlike the original Bellman equation, for most function approximators (e.g., linear ones)
the projected Bellman equation can be solved exactly. If it can’t be solved exactly, you can
minimize the mean-squared projected Bellman error :

PBE(✓) =
X

s2S
d(s)

⇥
(⇧(B⇡v✓ � v✓))(s)

⇤2
. (11)

The minimum is achieved at the projection fixpoint, at which

X

s2S
d(s)

⇥
(B⇡v✓)(s) � v✓(s)

⇤
r✓v✓(s) = ~0. (12)

p
VE

p
BE

p
PBE

p
VE

p
VE

4

The subspace of all value functions representable as

The other two goals for approximation are related to the Bellman equation, which can
be written compactly in vector form as

v⇡ = B⇡v⇡, (7)

where B⇡ : R|S| ! R|S| is the Bellman operator for policy ⇡, defined by

(B⇡v)(s) =
X

a2A
⇡(s, a)

"
r(s, a) + �

X

s02S
p(s0|s, a)v(s0)

#
, 8s 2 S, 8v : S ! R. (8)

(If the state and action spaces are continuous, then the sums are replaced by integrals and
the function p(·|s, a) is taken to be a probability density.) The true value function v⇡ is
the unique solution to the Bellman equation; the Bellman equation can be viewed as an
alternate way of defining v⇡. For any value function v : S ! R not equal to v⇡, there will
always be at least one state s at which v(s) 6= (B⇡v)(s).

The discrepancy between the two sides of the Bellman equation, v⇡ � B⇡v⇡, is an error
vector, and reducing it is the basis for our second and third goals for approximation. The
second goal is to minimize the error vector’s length in the d-metric. That is, to minimize
the mean-squared Bellman error :

BE(✓) =
X

s2S
d(s)

⇥
(B⇡v✓)(s) � v✓(s)

⇤2
. (9)

Note that if v⇡ is not representable, then it is not be possible to reduce the Bellman error
to zero. For any v✓, the corresponding B⇡v✓ will generally not be representable; it will lie
outside the space of representable functions, as suggested by the figure...

Finally, in our third goal of approximation, we first project the Bellman error and then
minimize its length. That is, we minimize the error not in the Bellman equation (7) but in
its projected form:

v✓ = ⇧B⇡v✓, (10)

Unlike the original Bellman equation, for most function approximators (e.g., linear ones)
the projected Bellman equation can be solved exactly. If it can’t be solved exactly, you can
minimize the mean-squared projected Bellman error :

PBE(✓) =
X

s2S
d(s)

⇥
(⇧(B⇡v✓ � v✓))(s)

⇤2
. (11)

The minimum is achieved at the projection fixpoint, at which

X

s2S
d(s)

⇥
(B⇡v✓)(s) � v✓(s)

⇤
r✓v✓(s) = ~0. (12)

p
VE

p
BE

p
PBE

p
VE

p
VE

4

The space of all
 value functions

Be
llm

an
 er

ro
r (

BE
)

The other two goals for approximation are related to the Bellman equation, which can
be written compactly in vector form as

v⇡ = B⇡v⇡, (7)

where B⇡ : R|S| ! R|S| is the Bellman operator for policy ⇡, defined by

(B⇡v)(s) =
X

a2A
⇡(s, a)

"
r(s, a) + �

X

s02S
p(s0|s, a)v(s0)

#
, 8s 2 S, 8v : S ! R. (8)

(If the state and action spaces are continuous, then the sums are replaced by integrals and
the function p(·|s, a) is taken to be a probability density.) The true value function v⇡ is
the unique solution to the Bellman equation; the Bellman equation can be viewed as an
alternate way of defining v⇡. For any value function v : S ! R not equal to v⇡, there will
always be at least one state s at which v(s) 6= (B⇡v)(s).

The discrepancy between the two sides of the Bellman equation, v⇡ � B⇡v⇡, is an error
vector, and reducing it is the basis for our second and third goals for approximation. The
second goal is to minimize the error vector’s length in the d-metric. That is, to minimize
the mean-squared Bellman error :

BE(✓) =
X

s2S
d(s)

⇥
(B⇡v✓)(s) � v✓(s)

⇤2
. (9)

Note that if v⇡ is not representable, then it is not be possible to reduce the Bellman error
to zero. For any v✓, the corresponding B⇡v✓ will generally not be representable; it will lie
outside the space of representable functions, as suggested by the figure...

Finally, in our third goal of approximation, we first project the Bellman error and then
minimize its length. That is, we minimize the error not in the Bellman equation (7) but in
its projected form:

v✓ = ⇧B⇡v✓, (10)

Unlike the original Bellman equation, for most function approximators (e.g., linear ones)
the projected Bellman equation can be solved exactly. If it can’t be solved exactly, you can
minimize the mean-squared projected Bellman error :

PBE(✓) =
X

s2S
d(s)

⇥
(⇧(B⇡v✓ � v✓))(s)

⇤2
. (11)

The minimum is achieved at the projection fixpoint, at which

X

s2S
d(s)

⇥
(B⇡v✓)(s) � v✓(s)

⇤
r✓v✓(s) = ~0. (12)

PBE = 0 min BE

Now we must finish this section by discussing the relative merits of the second and
third goals. This comes down to two counterexamples using POMDPs. One shows that
the BE is not well defined for POMDP data, the other shows that the minimum is not

5

The other two goals for approximation are related to the Bellman equation, which can
be written compactly in vector form as

v⇡ = B⇡v⇡, (7)

where B⇡ : R|S| ! R|S| is the Bellman operator for policy ⇡, defined by

(B⇡v)(s) =
X

a2A
⇡(s, a)

"
r(s, a) + �

X

s02S
p(s0|s, a)v(s0)

#
, 8s 2 S, 8v : S ! R. (8)

(If the state and action spaces are continuous, then the sums are replaced by integrals and
the function p(·|s, a) is taken to be a probability density.) The true value function v⇡ is
the unique solution to the Bellman equation; the Bellman equation can be viewed as an
alternate way of defining v⇡. For any value function v : S ! R not equal to v⇡, there will
always be at least one state s at which v(s) 6= (B⇡v)(s).

The discrepancy between the two sides of the Bellman equation, v⇡ � B⇡v⇡, is an error
vector, and reducing it is the basis for our second and third goals for approximation. The
second goal is to minimize the error vector’s length in the d-metric. That is, to minimize
the mean-squared Bellman error :

BE(✓) =
X

s2S
d(s)

⇥
(B⇡v✓)(s) � v✓(s)

⇤2
. (9)

Note that if v⇡ is not representable, then it is not be possible to reduce the Bellman error
to zero. For any v✓, the corresponding B⇡v✓ will generally not be representable; it will lie
outside the space of representable functions, as suggested by the figure...

Finally, in our third goal of approximation, we first project the Bellman error and then
minimize its length. That is, we minimize the error not in the Bellman equation (7) but in
its projected form:

v✓ = ⇧B⇡v✓, (10)

Unlike the original Bellman equation, for most function approximators (e.g., linear ones)
the projected Bellman equation can be solved exactly. If it can’t be solved exactly, you can
minimize the mean-squared projected Bellman error :

PBE(✓) =
X

s2S
d(s)

⇥
(⇧(B⇡v✓ � v✓))(s)

⇤2
. (11)

The minimum is achieved at the projection fixpoint, at which

X

s2S
d(s)

⇥
(B⇡v✓)(s) � v✓(s)

⇤
r✓v✓(s) = ~0. (12)

PBE = 0 min BE ✓1 ✓2

Now we must finish this section by discussing the relative merits of the second and
third goals. This comes down to two counterexamples using POMDPs. One shows that
the BE is not well defined for POMDP data, the other shows that the minimum is not

5

The other two goals for approximation are related to the Bellman equation, which can
be written compactly in vector form as

v⇡ = B⇡v⇡, (7)

where B⇡ : R|S| ! R|S| is the Bellman operator for policy ⇡, defined by

(B⇡v)(s) =
X

a2A
⇡(s, a)

"
r(s, a) + �

X

s02S
p(s0|s, a)v(s0)

#
, 8s 2 S, 8v : S ! R. (8)

(If the state and action spaces are continuous, then the sums are replaced by integrals and
the function p(·|s, a) is taken to be a probability density.) The true value function v⇡ is
the unique solution to the Bellman equation; the Bellman equation can be viewed as an
alternate way of defining v⇡. For any value function v : S ! R not equal to v⇡, there will
always be at least one state s at which v(s) 6= (B⇡v)(s).

The discrepancy between the two sides of the Bellman equation, v⇡ � B⇡v⇡, is an error
vector, and reducing it is the basis for our second and third goals for approximation. The
second goal is to minimize the error vector’s length in the d-metric. That is, to minimize
the mean-squared Bellman error :

BE(✓) =
X

s2S
d(s)

⇥
(B⇡v✓)(s) � v✓(s)

⇤2
. (9)

Note that if v⇡ is not representable, then it is not be possible to reduce the Bellman error
to zero. For any v✓, the corresponding B⇡v✓ will generally not be representable; it will lie
outside the space of representable functions, as suggested by the figure...

Finally, in our third goal of approximation, we first project the Bellman error and then
minimize its length. That is, we minimize the error not in the Bellman equation (7) but in
its projected form:

v✓ = ⇧B⇡v✓, (10)

Unlike the original Bellman equation, for most function approximators (e.g., linear ones)
the projected Bellman equation can be solved exactly. If it can’t be solved exactly, you can
minimize the mean-squared projected Bellman error :

PBE(✓) =
X

s2S
d(s)

⇥
(⇧(B⇡v✓ � v✓))(s)

⇤2
. (11)

The minimum is achieved at the projection fixpoint, at which

X

s2S
d(s)

⇥
(B⇡v✓)(s) � v✓(s)

⇤
r✓v✓(s) = ~0. (12)

PBE = 0 min BE ✓1 ✓2

Now we must finish this section by discussing the relative merits of the second and
third goals. This comes down to two counterexamples using POMDPs. One shows that
the BE is not well defined for POMDP data, the other shows that the minimum is not

5

The other two goals for approximation are related to the Bellman equation, which can
be written compactly in vector form as

v⇡ = B⇡v⇡, (7)

where B⇡ : R|S| ! R|S| is the Bellman operator for policy ⇡, defined by

(B⇡v)(s) =
X

a2A
⇡(s, a)

"
r(s, a) + �

X

s02S
p(s0|s, a)v(s0)

#
, 8s 2 S, 8v : S ! R. (8)

(If the state and action spaces are continuous, then the sums are replaced by integrals and
the function p(·|s, a) is taken to be a probability density.) The true value function v⇡ is
the unique solution to the Bellman equation; the Bellman equation can be viewed as an
alternate way of defining v⇡. For any value function v : S ! R not equal to v⇡, there will
always be at least one state s at which v(s) 6= (B⇡v)(s).

The discrepancy between the two sides of the Bellman equation, v⇡ � B⇡v⇡, is an error
vector, and reducing it is the basis for our second and third goals for approximation. The
second goal is to minimize the error vector’s length in the d-metric. That is, to minimize
the mean-squared Bellman error :

BE(✓) =
X

s2S
d(s)

⇥
(B⇡v✓)(s) � v✓(s)

⇤2
. (9)

Note that if v⇡ is not representable, then it is not be possible to reduce the Bellman error
to zero. For any v✓, the corresponding B⇡v✓ will generally not be representable; it will lie
outside the space of representable functions, as suggested by the figure...

Finally, in our third goal of approximation, we first project the Bellman error and then
minimize its length. That is, we minimize the error not in the Bellman equation (7) but in
its projected form:

v✓ = ⇧B⇡v✓, (10)

Unlike the original Bellman equation, for most function approximators (e.g., linear ones)
the projected Bellman equation can be solved exactly. If it can’t be solved exactly, you can
minimize the mean-squared projected Bellman error :

PBE(✓) =
X

s2S
d(s)

⇥
(⇧(B⇡v✓ � v✓))(s)

⇤2
. (11)

The minimum is achieved at the projection fixpoint, at which

X

s2S
d(s)

⇥
(B⇡v✓)(s) � v✓(s)

⇤
r✓v✓(s) = ~0. (12)

p
VE

p
BE

p
PBE ⇧v⇡ = v✓⇤VE

v✓⇤PBE
v✓⇤BE

4

ac
co

rd
in

g
to

a
st

at
io

n
ar

y
d
ec

is
io

n
m

ak
in

g
p
ol

ic
y

⇡
:

S
⇥

A
!

[0
,
1]

w
h
er

e
⇡
(s

,
a
)

is
th

e
p
ro

b
ab

il
it
y

th
at

A
t
=

a
gi

ve
n

th
at

S
t
=

s
,
fo

r
al

l
t
.

T
o

so
lv

e
th

e
M

D
P

is
to

fi
n
d

an
op

ti
m

al
p
ol

ic
y

⇡
⇤ ,

d
efi

n
ed

as
a

p
ol

ic
y

th
at

m
ax

im
iz

es
th

e
ex

p
ec

te
d

�
-d

is
co

u
nt

ed
re

w
ar

d
re

ce
iv

ed
fr

om
ea

ch
st

at
e:

⇡
⇤

=
ar

gm
ax

⇡
v
⇡
(s

),
8s

2
S,

w
h
er

e

v
⇡
(s

)
=

E ⇡
⇥ R

t+
1
+

�
R

t+
2
+

�
2
R

t+
3
+

··
·� � S

t
=

s
⇤ ,

8s
2

S,
(1

)

w
h
er

e
�

2
[0

,
1)

is
kn

ow
n

as
th

e
d
is

co
u
nt

-r
at

e
p
ar

am
et

er
,

an
d

th
e

su
b
sc

ri
p
t

on
th

e
E

in
d
ic

at
es

th
at

th
e

ex
p
ec

ta
ti

on
is

co
n
d
it

io
n
al

on
th

e
p
ol

ic
y

⇡
b
ei

n
g

u
se

d
to

se
le

ct
ac

ti
on

s.
T

h
e

fu
n
ct

io
n

v
⇡

is
ca

ll
ed

th
e

s
ta

te
-
v
a
lu

e
fu

n
c
ti
o
n

fo
r

p
ol

ic
y

⇡
.

A
ke

y
su

b
p
ro

b
le

m
u
n
d
er

ly
in

g
al

m
os

t
al

l
e�

ci
en

t
so

lu
ti

on
st

ra
te

gi
es

fo
r

M
D

P
s

is
p
o
li
c
y

e
v
a
lu

a
ti
o
n
,

th
e

co
m

p
u
ta

ti
on

or
es

ti
m

at
io

n
of

v
⇡

fo
r

a
gi

ve
n

p
ol

ic
y

⇡
.

F
or

ex
am

p
le

,
th

e
p
op

u
la

r
D

P
al

go
ri

th
m

kn
ow

n
as

p
ol

ic
y

it
er

at
io

n
in

vo
lv

es
co

m
p
u
ti

n
g

th
e

va
lu

e
fu

n
ct

io
n

fo
r

a
se

qu
en

ce
of

p
ol

ic
ie

s,
ea

ch
of

w
h
ic

h
is

b
et

te
r

th
an

th
e

p
re

vi
ou

s,
u
nt

il
an

op
ti

m
al

p
ol

ic
y

is
fo

u
n
d
.

In
T

D
L
,
al

go
ri

th
m

s
su

ch
as

T
D

(�
)

ar
e

u
se

d
to

ap
p
ro

xi
m

at
e

th
e

va
lu

e
fu

n
ct

io
n

fo
r

th
e

cu
rr

en
t

p
ol

ic
y,

fo
r

ex
am

p
le

as
p
ar

t
of

ac
to

r–
cr

it
ic

m
et

h
od

s.

If
th

e
st

at
e

sp
ac

e
is

fi
n
it

e,
th

en
th

e
es

ti
m

at
ed

va
lu

e
fu

n
ct

io
n

m
ay

b
e

re
p
re

se
nt

ed
in

a
co

m
p
u
te

r
as

a
la

rg
e

ar
ra

y
w

it
h

on
e

en
tr

y
fo

r
ea

ch
st

at
e

an
d

th
e

en
tr

ie
s

d
ir

ec
tl

y
u
p
d
at

ed
to

fo
rm

th
e

es
ti

m
at

e.
S
u
ch

ta
b
u
la

r
m

et
h
od

s
ca

n
h
an

d
le

la
rg

e
st

at
e

sp
ac

es
,

ev
en

co
nt

in
u
ou

s
on

es
,
th

ro
u
gh

d
is

cr
et

iz
at

io
n
,
st

at
e

ag
gr

eg
at

io
n
,
an

d
in

te
rp

ol
at

io
n
,
b
u
t
as

th
e

d
im

en
si

on
al

it
y

of
th

e
st

at
e

sp
ac

e
in

cr
ea

se
s,

th
es

e
m

et
h
od

s
ra

p
id

ly
b
ec

om
e

co
m

p
u
ta

ti
on

al
ly

in
fe

as
ib

le
or

in
e↵

ec
ti
ve

.
T

h
is

is
th

e
e↵

ec
t

w
h
ic

h
ga

ve
ri

se
to

th
e

p
h
ra

se
“t

h
e

cu
rs

e
of

d
im

en
si

on
al

it
y.

”

A
m

or
e

ge
n
er

al
an

d
fl
ex

ib
le

ap
p
ro

ac
h

is
to

re
p
re

se
nt

th
e

va
lu

e
fu

n
ct

io
n

by
a

fu
n
ct

io
n
al

fo
rm

of
fi
xe

d
si

ze
an

d
fi
xe

d
st

ru
ct

u
re

w
it

h
m

an
y

va
ri

ab
le

p
ar

am
et

er
s
or

w
ei

gh
ts

.
T

h
e

w
ei

gh
ts

ar
e

th
en

ch
an

ge
d

to
re

sh
ap

e
th

e
ap

p
ro

xi
m

at
e

va
lu

e
fu

n
ct

io
n

to
b
et

te
r

m
at

ch
th

e
tr

u
e

va
lu

e
fu

n
ct

io
n
.

W
e

d
en

ot
e

th
e

p
ar

am
et

er
iz

ed
va

lu
e

fu
n
ct

io
n

ap
p
ro

xi
m

at
or

as

v
✓
(s

)
⇡

v
⇡
(s

),
8s

2
S,

(2
)

w
h
er

e
✓

2
R

n
,

w
it

h
n

⌧
|S

|,
is

th
e

w
ei

gh
t/

p
ar

am
et

er
ve

ct
or

.
T

h
e

ap
p
ro

xi
m

at
e

va
lu

e
fu

n
ct

io
n

ca
n

h
av

e
ar

b
it

ra
ry

fo
rm

as
lo

n
g

as
it

is
ev

er
yw

h
er

e
d
i↵

er
en

ti
ab

le
w

it
h

re
sp

ec
t

to
th

e
w

ei
gh

ts
.

F
or

ex
am

p
le

,
it

co
u
ld

b
e

a
cu

b
ic

sp
li
n
e,

or
it

co
u
ld

im
p
le

m
en

te
d

by
a

m
u
lt

i-
la

ye
r

n
eu

ra
l
n
et

w
or

k
w

h
er

e
✓

is
th

e
co

n
ca

te
n
at

io
n

of
al

l
th

e
co

n
n
ec

ti
on

w
ei

gh
ts

.
H

en
ce

fo
rt

h
re

fe
r

to
✓

ex
cl

u
si

ve
ly

as
th

e
w

ei
gh

ts
,

or
w

ei
gh

t
ve

ct
or

,
an

d
re

se
rv

e
th

e
w

or
d

“p
ar

am
et

er
”

fo
r

th
in

gs
li
ke

th
e

d
is

co
u
nt

-r
at

e
p
ar

am
et

er
,
�
,
an

d
st

ep
-s

iz
e

p
ar

am
et

er
s.

A
n

im
p
or

ta
nt

sp
ec

ia
l
ca

se
is

th
at

in
w

h
ic

h
th

e
ap

p
ro

xi
m

at
e

va
lu

e
fu

n
ct

io
n

is
li
n
ea

r
in

th
e

w
ei

gh
ts

an
d

in
fe

at
u
re

s
of

th
e

st
at

e: v
✓
(s

)
=

✓
>
�
(s

),
(3

)

w
h
er

e
th

e
�
(s

)
2

R
n
,

8s
2

S,
ar

e
fe

at
u
re

ve
ct

or
s

ch
ar

ac
te

ri
zi

n
g

ea
ch

st
at

e
s
,

an
d

x
>
y

d
en

ot
es

th
e

in
n
er

p
ro

d
u
ct

of
tw

o
ve

ct
or

s
x

an
d

y
.

2

TheothertwogoalsforapproximationarerelatedtotheBellmanequation,whichcan
bewrittencompactlyinvectorformas

v⇡=B⇡v⇡,(7)

whereB⇡:R|S|!R|S|istheBellmanoperatorforpolicy⇡,definedby

(B⇡v)(s)=
X

a2A
⇡(s,a)

"
r(s,a)+�

X

s02S
p(s0|s,a)v(s0)

#
,8s2S,8v:S!R.(8)

(Ifthestateandactionspacesarecontinuous,thenthesumsarereplacedbyintegralsand
thefunctionp(·|s,a)istakentobeaprobabilitydensity.)Thetruevaluefunctionv⇡is
theuniquesolutiontotheBellmanequation;theBellmanequationcanbeviewedasan
alternatewayofdefiningv⇡.Foranyvaluefunctionv:S!Rnotequaltov⇡,therewill
alwaysbeatleastonestatesatwhichv(s)6=(B⇡v)(s).

ThediscrepancybetweenthetwosidesoftheBellmanequation,v⇡�B⇡v⇡,isanerror
vector,andreducingitisthebasisforoursecondandthirdgoalsforapproximation.The
secondgoalistominimizetheerrorvector’slengthinthed-metric.Thatis,tominimize
themean-squaredBellmanerror:

BE(✓)=
X

s2S
d(s)

⇥
(B⇡v✓)(s)�v✓(s)

⇤2
.(9)

Notethatifv⇡isnotrepresentable,thenitisnotbepossibletoreducetheBellmanerror
tozero.Foranyv✓,thecorrespondingB⇡v✓willgenerallynotberepresentable;itwilllie
outsidethespaceofrepresentablefunctions,assuggestedbythefigure...

Finally,inourthirdgoalofapproximation,wefirstprojecttheBellmanerrorandthen
minimizeitslength.Thatis,weminimizetheerrornotintheBellmanequation(7)butin
itsprojectedform:

v✓=⇧B⇡v✓,(10)

UnliketheoriginalBellmanequation,formostfunctionapproximators(e.g.,linearones)
theprojectedBellmanequationcanbesolvedexactly.Ifitcan’tbesolvedexactly,youcan
minimizethemean-squaredprojectedBellmanerror:

PBE(✓)=
X

s2S
d(s)

⇥
(⇧(B⇡v✓�v✓))(s)

⇤2
.(11)

Theminimumisachievedattheprojectionfixpoint,atwhich

X

s2S
d(s)

⇥
(B⇡v✓)(s)�v✓(s)

⇤
r✓v✓(s)=~0.(12)

�
VE

�
BE

�
PBE

�
VE

�
VE

4

T
h
e

ot
h
er

tw
o

go
al

s
fo

r
ap

p
ro

xi
m

at
io

n
ar

e
re

la
te

d
to

th
e

B
e
ll
m

a
n

e
q
u
a
ti
o
n
,
w

h
ic

h
ca

n
b
e

w
ri

tt
en

co
m

p
ac

tl
y

in
ve

ct
or

fo
rm

as

v
⇡

=
B

⇡
v
⇡
,

(7
)

w
h
er

e
B

⇡
:
R

|S
|
!

R
|S

|
is

th
e

B
e
ll
m

a
n

o
p
e
r
a
to

r
fo

r
p
ol

ic
y

⇡
,
d
efi

n
ed

by

(B
⇡
v
)(

s
)

=
X a
2

A
⇡
(s

,
a
)

" r
(s

,
a
)
+

�

X s0
2

S
p
(s

0 |s
,
a
)v

(s
0)

#
,

8s
2

S,
8v

:
S

!
R

.
(8

)

(I
f
th

e
st

at
e

an
d

ac
ti

on
sp

ac
es

ar
e

co
nt

in
u
ou

s,
th

en
th

e
su

m
s

ar
e

re
p
la

ce
d

by
in

te
gr

al
s

an
d

th
e

fu
n
ct

io
n

p
(·|

s
,
a
)

is
ta

ke
n

to
b
e

a
p
ro

b
ab

il
it
y

d
en

si
ty

.)
T

h
e

tr
u
e

va
lu

e
fu

n
ct

io
n

v
⇡

is
th

e
u
n
iq

u
e

so
lu

ti
on

to
th

e
B

el
lm

an
eq

u
at

io
n
;

th
e

B
el

lm
an

eq
u
at

io
n

ca
n

b
e

vi
ew

ed
as

an
al

te
rn

at
e

w
ay

of
d
efi

n
in

g
v
⇡
.

F
or

an
y

va
lu

e
fu

n
ct

io
n

v
:
S

!
R

n
ot

eq
u
al

to
v
⇡
,
th

er
e

w
il
l

al
w

ay
s

b
e

at
le

as
t

on
e

st
at

e
s

at
w

h
ic

h
v
(s

)
6=

(B
⇡
v
)(

s
).

T
h
e

d
is

cr
ep

an
cy

b
et

w
ee

n
th

e
tw

o
si

d
es

of
th

e
B

el
lm

an
eq

u
at

io
n
,
v
⇡

�
B

⇡
v
⇡
,
is

an
er

ro
r

ve
ct

or
,
an

d
re

d
u
ci

n
g

it
is

th
e

b
as

is
fo

r
ou

r
se

co
n
d

an
d

th
ir

d
go

al
s

fo
r

ap
p
ro

xi
m

at
io

n
.

T
h
e

se
co

n
d

go
al

is
to

m
in

im
iz

e
th

e
er

ro
r

ve
ct

or
’s

le
n
gt

h
in

th
e

d
-m

et
ri

c.
T

h
at

is
,
to

m
in

im
iz

e
th

e
m

ea
n
-s

qu
ar

ed
B
e
ll
m

a
n

e
r
r
o
r
:

B
E

(✓
)

=
X s2

S
d
(s

)⇥ (B
⇡
v
✓
)(

s
)
�

v
✓
(s

)⇤ 2
.

(9
)

N
ot

e
th

at
if

v
⇡

is
n
ot

re
p
re

se
nt

ab
le

,
th

en
it

is
n
ot

b
e

p
os

si
b
le

to
re

d
u
ce

th
e

B
el

lm
an

er
ro

r
to

ze
ro

.
F
or

an
y

v
✓
,
th

e
co

rr
es

p
on

d
in

g
B

⇡
v
✓

w
il
l
ge

n
er

al
ly

n
ot

b
e

re
p
re

se
nt

ab
le

;
it

w
il
l
li
e

ou
ts

id
e

th
e

sp
ac

e
of

re
p
re

se
nt

ab
le

fu
n
ct

io
n
s,

as
su

gg
es

te
d

by
th

e
fi
gu

re
..
.

F
in

al
ly

,
in

ou
r

th
ir

d
go

al
of

ap
p
ro

xi
m

at
io

n
,
w

e
fi
rs

t
p
ro

je
ct

th
e

B
el

lm
an

er
ro

r
an

d
th

en
m

in
im

iz
e

it
s

le
n
gt

h
.

T
h
at

is
,
w

e
m

in
im

iz
e

th
e

er
ro

r
n
ot

in
th

e
B

el
lm

an
eq

u
at

io
n

(7
)

b
u
t

in
it

s
p
ro

je
ct

ed
fo

rm
:

v
✓

=
⇧

B
⇡
v
✓
,

(1
0)

U
n
li
ke

th
e

or
ig

in
al

B
el

lm
an

eq
u
at

io
n
,

fo
r

m
os

t
fu

n
ct

io
n

ap
p
ro

xi
m

at
or

s
(e

.g
.,

li
n
ea

r
on

es
)

th
e

p
ro

je
ct

ed
B

el
lm

an
eq

u
at

io
n

ca
n

b
e

so
lv

ed
ex

ac
tl

y.
If

it
ca

n
’t

b
e

so
lv

ed
ex

ac
tl

y,
yo

u
ca

n
m

in
im

iz
e

th
e

m
ea

n
-s

qu
ar

ed
p
r
o
je

c
te

d
B
e
ll
m

a
n

e
r
r
o
r
:

P
B

E
(✓

)
=

X s2
S

d
(s

)⇥ (⇧
(B

⇡
v
✓
�

v
✓
))

(s
)⇤ 2

.
(1

1)

T
h
e

m
in

im
u
m

is
ac

h
ie

ve
d

at
th

e
p
r
o
je

c
ti
o
n

fi
x
p
o
in

t,
at

w
h
ic

h

X s2
S

d
(s

)⇥ (B
⇡
v
✓
)(

s
)
�

v
✓
(s

)⇤ r
✓
v
✓
(s

)
=

~ 0
.

(1
2)

�
V

E
�

B
E

�
P

B
E

�
V

E
�

V
E

4

T
h
e

ot
h
er

tw
o

go
al

s
fo

r
ap

p
ro

xi
m

at
io

n
ar

e
re

la
te

d
to

th
e

B
e
ll
m

a
n

e
q
u
a
ti
o
n
,
w

h
ic

h
ca

n
b
e

w
ri

tt
en

co
m

p
ac

tl
y

in
ve

ct
or

fo
rm

as

v
⇡

=
B

⇡
v
⇡
,

(7
)

w
h
er

e
B

⇡
:
R

|S
|
!

R
|S

|
is

th
e

B
e
ll
m

a
n

o
p
e
r
a
to

r
fo

r
p
ol

ic
y

⇡
,
d
efi

n
ed

by

(B
⇡
v
)(

s
)

=
X a
2

A
⇡
(s

,
a
)

" r
(s

,
a
)
+

�

X s0
2

S
p
(s

0 |s
,
a
)v

(s
0)

#
,

8s
2

S,
8v

:
S

!
R

.
(8

)

(I
f
th

e
st

at
e

an
d

ac
ti

on
sp

ac
es

ar
e

co
nt

in
u
ou

s,
th

en
th

e
su

m
s

ar
e

re
p
la

ce
d

by
in

te
gr

al
s

an
d

th
e

fu
n
ct

io
n

p
(·|

s
,
a
)

is
ta

ke
n

to
b
e

a
p
ro

b
ab

il
it
y

d
en

si
ty

.)
T

h
e

tr
u
e

va
lu

e
fu

n
ct

io
n

v
⇡

is
th

e
u
n
iq

u
e

so
lu

ti
on

to
th

e
B

el
lm

an
eq

u
at

io
n
;

th
e

B
el

lm
an

eq
u
at

io
n

ca
n

b
e

vi
ew

ed
as

an
al

te
rn

at
e

w
ay

of
d
efi

n
in

g
v
⇡
.

F
or

an
y

va
lu

e
fu

n
ct

io
n

v
:
S

!
R

n
ot

eq
u
al

to
v
⇡
,
th

er
e

w
il
l

al
w

ay
s

b
e

at
le

as
t

on
e

st
at

e
s

at
w

h
ic

h
v
(s

)
6=

(B
⇡
v
)(

s
).

T
h
e

d
is

cr
ep

an
cy

b
et

w
ee

n
th

e
tw

o
si

d
es

of
th

e
B

el
lm

an
eq

u
at

io
n
,
v
⇡

�
B

⇡
v
⇡
,
is

an
er

ro
r

ve
ct

or
,
an

d
re

d
u
ci

n
g

it
is

th
e

b
as

is
fo

r
ou

r
se

co
n
d

an
d

th
ir

d
go

al
s

fo
r

ap
p
ro

xi
m

at
io

n
.

T
h
e

se
co

n
d

go
al

is
to

m
in

im
iz

e
th

e
er

ro
r

ve
ct

or
’s

le
n
gt

h
in

th
e

d
-m

et
ri

c.
T

h
at

is
,
to

m
in

im
iz

e
th

e
m

ea
n
-s

qu
ar

ed
B
e
ll
m

a
n

e
r
r
o
r
:

B
E

(✓
)

=
X s2

S
d
(s

)⇥ (B
⇡
v
✓
)(

s
)
�

v
✓
(s

)⇤ 2
.

(9
)

N
ot

e
th

at
if

v
⇡

is
n
ot

re
p
re

se
nt

ab
le

,
th

en
it

is
n
ot

b
e

p
os

si
b
le

to
re

d
u
ce

th
e

B
el

lm
an

er
ro

r
to

ze
ro

.
F
or

an
y

v
✓
,
th

e
co

rr
es

p
on

d
in

g
B

⇡
v
✓

w
il
l
ge

n
er

al
ly

n
ot

b
e

re
p
re

se
nt

ab
le

;
it

w
il
l
li
e

ou
ts

id
e

th
e

sp
ac

e
of

re
p
re

se
nt

ab
le

fu
n
ct

io
n
s,

as
su

gg
es

te
d

by
th

e
fi
gu

re
..
.

F
in

al
ly

,
in

ou
r

th
ir

d
go

al
of

ap
p
ro

xi
m

at
io

n
,
w

e
fi
rs

t
p
ro

je
ct

th
e

B
el

lm
an

er
ro

r
an

d
th

en
m

in
im

iz
e

it
s

le
n
gt

h
.

T
h
at

is
,
w

e
m

in
im

iz
e

th
e

er
ro

r
n
ot

in
th

e
B

el
lm

an
eq

u
at

io
n

(7
)

b
u
t

in
it

s
p
ro

je
ct

ed
fo

rm
:

v
✓

=
⇧

B
⇡
v
✓
,

(1
0)

U
n
li
ke

th
e

or
ig

in
al

B
el

lm
an

eq
u
at

io
n
,

fo
r

m
os

t
fu

n
ct

io
n

ap
p
ro

xi
m

at
or

s
(e

.g
.,

li
n
ea

r
on

es
)

th
e

p
ro

je
ct

ed
B

el
lm

an
eq

u
at

io
n

ca
n

b
e

so
lv

ed
ex

ac
tl

y.
If

it
ca

n
’t

b
e

so
lv

ed
ex

ac
tl

y,
yo

u
ca

n
m

in
im

iz
e

th
e

m
ea

n
-s

qu
ar

ed
p
r
o
je

c
te

d
B
e
ll
m

a
n

e
r
r
o
r
:

P
B

E
(✓

)
=

X s2
S

d
(s

)⇥ (⇧
(B

⇡
v
✓
�

v
✓
))

(s
)⇤ 2

.
(1

1)

T
h
e

m
in

im
u
m

is
ac

h
ie

ve
d

at
th

e
p
r
o
je

c
ti
o
n

fi
x
p
o
in

t,
at

w
h
ic

h

X s2
S

d
(s

)⇥ (B
⇡
v
✓
)(

s
)
�

v
✓
(s

)⇤ r
✓
v
✓
(s

)
=

~ 0
.

(1
2)

�
V

E
�

B
E

�
P

B
E

�
V

E
�

V
E

4

T
h
e

ot
h
er

tw
o

go
al

s
fo

r
ap

p
ro

xi
m

at
io

n
ar

e
re

la
te

d
to

th
e

B
e
ll
m

a
n

e
q
u
a
ti
o
n
,
w

h
ic

h
ca

n
b
e

w
ri

tt
en

co
m

p
ac

tl
y

in
ve

ct
or

fo
rm

as

v
⇡

=
B

⇡
v
⇡
,

(7
)

w
h
er

e
B

⇡
:
R

|S
|
!

R
|S

|
is

th
e

B
e
ll
m

a
n

o
p
e
r
a
to

r
fo

r
p
ol

ic
y

⇡
,
d
efi

n
ed

by

(B
⇡
v
)(

s
)

=
X a
2

A
⇡
(s

,
a
)

" r
(s

,
a
)
+

�

X s0
2

S
p
(s

0 |s
,
a
)v

(s
0)

#
,

8s
2

S,
8v

:
S

!
R

.
(8

)

(I
f
th

e
st

at
e

an
d

ac
ti

on
sp

ac
es

ar
e

co
nt

in
u
ou

s,
th

en
th

e
su

m
s

ar
e

re
p
la

ce
d

by
in

te
gr

al
s

an
d

th
e

fu
n
ct

io
n

p
(·|

s
,
a
)

is
ta

ke
n

to
b
e

a
p
ro

b
ab

il
it
y

d
en

si
ty

.)
T

h
e

tr
u
e

va
lu

e
fu

n
ct

io
n

v
⇡

is
th

e
u
n
iq

u
e

so
lu

ti
on

to
th

e
B

el
lm

an
eq

u
at

io
n
;

th
e

B
el

lm
an

eq
u
at

io
n

ca
n

b
e

vi
ew

ed
as

an
al

te
rn

at
e

w
ay

of
d
efi

n
in

g
v
⇡
.

F
or

an
y

va
lu

e
fu

n
ct

io
n

v
:
S

!
R

n
ot

eq
u
al

to
v
⇡
,
th

er
e

w
il
l

al
w

ay
s

b
e

at
le

as
t

on
e

st
at

e
s

at
w

h
ic

h
v
(s

)
6=

(B
⇡
v
)(

s
).

T
h
e

d
is

cr
ep

an
cy

b
et

w
ee

n
th

e
tw

o
si

d
es

of
th

e
B

el
lm

an
eq

u
at

io
n
,
v
⇡

�
B

⇡
v
⇡
,
is

an
er

ro
r

ve
ct

or
,
an

d
re

d
u
ci

n
g

it
is

th
e

b
as

is
fo

r
ou

r
se

co
n
d

an
d

th
ir

d
go

al
s

fo
r

ap
p
ro

xi
m

at
io

n
.

T
h
e

se
co

n
d

go
al

is
to

m
in

im
iz

e
th

e
er

ro
r

ve
ct

or
’s

le
n
gt

h
in

th
e

d
-m

et
ri

c.
T

h
at

is
,
to

m
in

im
iz

e
th

e
m

ea
n
-s

qu
ar

ed
B
e
ll
m

a
n

e
r
r
o
r
:

B
E

(✓
)

=
X s2

S
d
(s

)⇥ (B
⇡
v
✓
)(

s
)
�

v
✓
(s

)⇤ 2
.

(9
)

N
ot

e
th

at
if

v
⇡

is
n
ot

re
p
re

se
nt

ab
le

,
th

en
it

is
n
ot

b
e

p
os

si
b
le

to
re

d
u
ce

th
e

B
el

lm
an

er
ro

r
to

ze
ro

.
F
or

an
y

v
✓
,
th

e
co

rr
es

p
on

d
in

g
B

⇡
v
✓

w
il
l
ge

n
er

al
ly

n
ot

b
e

re
p
re

se
nt

ab
le

;
it

w
il
l
li
e

ou
ts

id
e

th
e

sp
ac

e
of

re
p
re

se
nt

ab
le

fu
n
ct

io
n
s,

as
su

gg
es

te
d

by
th

e
fi
gu

re
..
.

F
in

al
ly

,
in

ou
r

th
ir

d
go

al
of

ap
p
ro

xi
m

at
io

n
,
w

e
fi
rs

t
p
ro

je
ct

th
e

B
el

lm
an

er
ro

r
an

d
th

en
m

in
im

iz
e

it
s

le
n
gt

h
.

T
h
at

is
,
w

e
m

in
im

iz
e

th
e

er
ro

r
n
ot

in
th

e
B

el
lm

an
eq

u
at

io
n

(7
)

b
u
t

in
it

s
p
ro

je
ct

ed
fo

rm
:

v
✓

=
⇧

B
⇡
v
✓
,

(1
0)

U
n
li
ke

th
e

or
ig

in
al

B
el

lm
an

eq
u
at

io
n
,

fo
r

m
os

t
fu

n
ct

io
n

ap
p
ro

xi
m

at
or

s
(e

.g
.,

li
n
ea

r
on

es
)

th
e

p
ro

je
ct

ed
B

el
lm

an
eq

u
at

io
n

ca
n

b
e

so
lv

ed
ex

ac
tl

y.
If

it
ca

n
’t

b
e

so
lv

ed
ex

ac
tl

y,
yo

u
ca

n
m

in
im

iz
e

th
e

m
ea

n
-s

qu
ar

ed
p
r
o
je

c
te

d
B
e
ll
m

a
n

e
r
r
o
r
:

P
B

E
(✓

)
=

X s2
S

d
(s

)⇥ (⇧
(B

⇡
v
✓
�

v
✓
))

(s
)⇤ 2

.
(1

1)

T
h
e

m
in

im
u
m

is
ac

h
ie

ve
d

at
th

e
p
r
o
je

c
ti
o
n

fi
x
p
o
in

t,
at

w
h
ic

h

X s2
S

d
(s

)⇥ (B
⇡
v
✓
)(

s
)
�

v
✓
(s

)⇤ r
✓
v
✓
(s

)
=

~ 0
.

(1
2)

�
V

E
�

B
E

�
P

B
E

�
V

E
�

V
E

4

The
oth

er
tw

ogo
als

for
ap

pro
xim

ati
on

are
rel

ate
dto

the
B
el
lm

an
eq

ua
tio

n,
whic

hcan

be
writ

ten
com

pa
ctl

yin
vec

tor
for

m
as

v
⇡=

B
⇡v

⇡,

(7)

whe
re

B
⇡:R|S|

!
R|S|

is
the

B
el
lm

an
op

er
at
or

for
po

lic
y⇡,de

fin
ed

by

(B
⇡v)(

s)
=X

a2
A

⇡(s,
a)

"

r(s
,a

)+
�X

s02
S

p(s0|s
,a

)v(
s0)

#

,

8s
2S,8v

:S
!

R.
(8)

(If
the

sta
te

an
dact

ion
spa

ces
are

con
tin

uo
us,

the
nthe

sum
sare

rep
lac

ed
by

int
egr

als
an

d

the
fun

cti
on

p(·|
s,

a)
is

tak
en

to
be

apro
ba

bil
ity

de
nsi

ty.
)

The
tru

eval
ue

fun
cti

on
v
⇡is

the
un

iqu
esol

uti
on

to
the

Bell
man

equ
ati

on
;the

Bell
man

equ
ati

on
can

be
vie

wed
as

an

alt
ern

ate
way

of
de

fin
ing

v
⇡.Fo

ran
yval

ue
fun

cti
on

v
:S

!
Rno

tequ
al

to
v
⇡,the

re
will

alw
ay

sbe
at

lea
st

on
esta

te
s

at
whic

hv(s
)6=(B

⇡v)(
s).

The
dis

cre
pa

nc
ybe

tw
een

the
tw

osid
es

of
the

Bell
man

equ
ati

on
,v

⇡�B
⇡v

⇡,is
an

err
or

vec
tor

,an
dred

uc
ing

it
is

the
ba

sis
for

ou
rsec

on
dan

dthi
rd

go
als

for
ap

pro
xim

ati
on

.The

sec
on

dgo
al

is
to

mini
mize

the
err

or
vec

tor
’s

len
gth

in
the

d-m
etr

ic.
Tha

tis,
to

mini
mize

the
mean

-sq
ua

red
B
el
lm

an
er

ro
r:

BE(✓)
=X

s2S
d(s

)⇥
(B

⇡v
✓)(s

)�v
✓(s

)⇤2
.

(9)

Note
tha

tifv
⇡is

no
trep

res
ent

ab
le,

the
nit

is
no

tbe
po

ssi
ble

to
red

uc
ethe

Bell
man

err
or

to
zer

o.
Fo

ran
yv

✓,the
cor

res
po

nd
ing

B
⇡v

✓will
gen

era
lly

no
tbe

rep
res

ent
ab

le;
it

will
lie

ou
tsi

de
the

spa
ce

of
rep

res
ent

ab
le

fun
cti

on
s,

as
sug

ges
ted

by
the

fig
ure

...

Fina
lly

,in
ou

rthi
rd

go
al

of
ap

pro
xim

ati
on

,wefirs
tpro

jec
tthe

Bell
man

err
or

an
dthe

n

mini
mize

its
len

gth
.Tha

tis,
wemini

mize
the

err
or

no
tin

the
Bell

man
equ

ati
on

(7)
bu

tin

its
pro

jec
ted

for
m:

v
✓=

⇧B
⇡v

✓,

(10
)

Unli
ke

the
ori

gin
al

Bell
man

equ
ati

on
,for

most
fun

cti
on

ap
pro

xim
ato

rs
(e.

g.,
lin

ear
on

es)

the
pro

jec
ted

Bell
man

equ
ati

on
can

be
sol

ved
exa

ctl
y.

Ifitcan
’tbe

sol
ved

exa
ctl

y,
yo

ucan

mini
mize

the
mean

-sq
ua

red
pr

oj
ec

te
d

B
el
lm

an
er

ro
r:

PBE(✓)
=X

s2S
d(s

)⇥
(⇧

(B
⇡v

✓�v
✓))(

s)⇤2
.

(11
)

The
mini

mum
is

ach
iev

ed
at

the
pr

oj
ec

tio
n

fix
po

in
t,at

whic
h

X

s2S
d(s

)⇥
(B

⇡v
✓)(s

)�v
✓(s

)⇤
r✓v

✓(s
)=~0.

(12
)

�
VE�

BE�
PBE�

VE�
VE

4

T
h
e

ot
h
er

tw
o

go
al

s
fo

r
ap

p
ro

xi
m

at
io

n
ar

e
re

la
te

d
to

th
e

B
e
ll
m

a
n

e
q
u
a
ti
o
n
,
w

h
ic

h
ca

n

b
e

w
ri
tt

en
co

m
p
ac

tl
y

in
ve

ct
or

fo
rm

as

v
⇡

=
B

⇡
v

⇡
,

(7
)

w
h
er

e
B

⇡
:
R|S

|
!

R|S
|
is

th
e

B
e
ll
m

a
n

o
p
e
r
a
to

r
fo

r
p
ol

ic
y

⇡
,
d
efi

n
ed

by

(B
⇡
v
)(

s
)
=

X a
2

A

⇡
(s

,
a
)"

r
(s

,
a
)
+

�

X s0
2

S

p
(s

0 |s
,
a
)v

(s
0)#

,
8s

2
S,

8v
:
S

!
R

.
(8

)

(I
f
th

e
st

at
e

an
d

ac
ti
on

sp
ac

es
ar

e
co

nt
in

u
ou

s,
th

en
th

e
su

m
s

ar
e

re
p
la

ce
d

by
in

te
gr

al
s

an
d

th
e

fu
n
ct

io
n

p
(·|

s
,
a
)

is
ta

ke
n

to
b
e

a
p
ro

b
ab

il
it
y

d
en

si
ty

.)
T

h
e

tr
u
e

va
lu

e
fu

n
ct

io
n

v
⇡

is

th
e

u
n
iq

u
e

so
lu

ti
on

to
th

e
B

el
lm

an
eq

u
at

io
n
;

th
e

B
el

lm
an

eq
u
at

io
n

ca
n

b
e

vi
ew

ed
as

an

al
te

rn
at

e
w

ay
of

d
efi

n
in

g
v

⇡
.

F
or

an
y

va
lu

e
fu

n
ct

io
n

v
:
S

!
R

n
ot

eq
u
al

to
v

⇡
,
th

er
e

w
il
l

al
w

ay
s

b
e

at
le

as
t

on
e

st
at

e
s

at
w

h
ic

h
v
(s

)
6=

(B
⇡
v
)(

s
).

T
h
e

d
is

cr
ep

an
cy

b
et

w
ee

n
th

e
tw

o
si

d
es

of
th

e
B

el
lm

an
eq

u
at

io
n
,
v

⇡
�

B
⇡
v

⇡
,
is

an
er

ro
r

ve
ct

or
,
an

d
re

d
u
ci

n
g

it
is

th
e

b
as

is
fo

r
ou

r
se

co
n
d

an
d

th
ir
d

go
al

s
fo

r
ap

p
ro

xi
m

at
io

n
.

T
h
e

se
co

n
d

go
al

is
to

m
in

im
iz

e
th

e
er

ro
r

ve
ct

or
’s

le
n
gt

h
in

th
e

d
-m

et
ri
c.

T
h
at

is
,
to

m
in

im
iz

e

th
e

m
ea

n
-s

qu
ar

ed
B
e
ll
m

a
n

e
r
r
o
r
:

B
E

(✓
)
=

X s2
S

d
(s

)⇥ (B
⇡
v

✓
)(

s
)
�

v
✓
(s

)⇤ 2
.

(9
)

N
ot

e
th

at
if

v
⇡

is
n
ot

re
p
re

se
nt

ab
le

,
th

en
it

is
n
ot

b
e

p
os

si
b
le

to
re

d
u
ce

th
e

B
el

lm
an

er
ro

r

to
ze

ro
.

F
or

an
y

v
✓
,
th

e
co

rr
es

p
on

d
in

g
B

⇡
v

✓
w

il
l
ge

n
er

al
ly

n
ot

b
e

re
p
re

se
nt

ab
le

;
it

w
il
l
li
e

ou
ts

id
e

th
e

sp
ac

e
of

re
p
re

se
nt

ab
le

fu
n
ct

io
n
s,

as
su

gg
es

te
d

by
th

e
fi
gu

re
..
.

F
in

al
ly

,
in

ou
r

th
ir
d

go
al

of
ap

p
ro

xi
m

at
io

n
,
w

e
fi
rs

t
p
ro

je
ct

th
e

B
el

lm
an

er
ro

r
an

d
th

en

m
in

im
iz

e
it
s

le
n
gt

h
.

T
h
at

is
,
w

e
m

in
im

iz
e

th
e

er
ro

r
n
ot

in
th

e
B

el
lm

an
eq

u
at

io
n

(7
)

b
u
t

in

it
s

p
ro

je
ct

ed
fo

rm
:

v
✓

=
⇧

B
⇡
v

✓
,

(1
0)

U
n
li
ke

th
e

or
ig

in
al

B
el

lm
an

eq
u
at

io
n
,

fo
r

m
os

t
fu

n
ct

io
n

ap
p
ro

xi
m

at
or

s
(e

.g
.,

li
n
ea

r
on

es
)

th
e

p
ro

je
ct

ed
B

el
lm

an
eq

u
at

io
n

ca
n

b
e

so
lv

ed
ex

ac
tl
y.

If
it

ca
n
’t

b
e

so
lv

ed
ex

ac
tl
y,

yo
u

ca
n

m
in

im
iz

e
th

e
m

ea
n
-s

qu
ar

ed
p
r
o
je
c
te

d
B
e
ll
m

a
n

e
r
r
o
r
:

P
B

E
(✓

)
=

X s2
S

d
(s

)⇥ (⇧
(B

⇡
v

✓
�

v
✓
))

(s
)⇤ 2

.

(1
1)

T
h
e

m
in

im
u
m

is
ac

h
ie

ve
d

at
th

e
p
r
o
je
c
ti
o
n

fi
x
p
o
in

t,
at

w
h
ic

h

X s2
S

d
(s

)⇥ (B
⇡
v

✓
)(

s
)
�

v
✓
(s

)⇤ r
✓
v

✓
(s

)
=

~ 0
.

(1
2)

�
V

E
�

B
E

�
P

B
E

�
V

E
�

V
E

4

Th
e

su
bs

pa
ce

 o
f a

ll
va

lu
e

fu
nc

tio
ns

 re
pr

es
en

ta
bl

e
as

T
h
e

ot
h
er

tw
o

go
al

s
fo

r
ap

p
ro

xi
m

at
io

n
ar

e
re

la
te

d
to

th
e

B
e
ll
m

a
n

e
q
u
a
ti
o
n
,
w

h
ic

h
ca

n
b
e

w
ri

tt
en

co
m

p
ac

tl
y

in
ve

ct
or

fo
rm

as

v
⇡

=
B

⇡
v
⇡
,

(7
)

w
h
er

e
B

⇡
:
R

|S
|
!

R
|S

|
is

th
e

B
e
ll
m

a
n

o
p
e
r
a
to

r
fo

r
p
ol

ic
y

⇡
,
d
efi

n
ed

by

(B
⇡
v
)(

s
)

=
X a
2

A
⇡
(s

,
a
)

" r
(s

,
a
)
+

�

X s0
2

S
p
(s

0 |s
,
a
)v

(s
0)

#
,

8s
2

S,
8v

:
S

!
R

.
(8

)

(I
f
th

e
st

at
e

an
d

ac
ti

on
sp

ac
es

ar
e

co
nt

in
u
ou

s,
th

en
th

e
su

m
s

ar
e

re
p
la

ce
d

by
in

te
gr

al
s

an
d

th
e

fu
n
ct

io
n

p
(·|

s
,
a
)

is
ta

ke
n

to
b
e

a
p
ro

b
ab

il
it
y

d
en

si
ty

.)
T

h
e

tr
u
e

va
lu

e
fu

n
ct

io
n

v
⇡

is
th

e
u
n
iq

u
e

so
lu

ti
on

to
th

e
B

el
lm

an
eq

u
at

io
n
;

th
e

B
el

lm
an

eq
u
at

io
n

ca
n

b
e

vi
ew

ed
as

an
al

te
rn

at
e

w
ay

of
d
efi

n
in

g
v
⇡
.

F
or

an
y

va
lu

e
fu

n
ct

io
n

v
:
S

!
R

n
ot

eq
u
al

to
v
⇡
,
th

er
e

w
il
l

al
w

ay
s

b
e

at
le

as
t

on
e

st
at

e
s

at
w

h
ic

h
v
(s

)
6=

(B
⇡
v
)(

s
).

T
h
e

d
is

cr
ep

an
cy

b
et

w
ee

n
th

e
tw

o
si

d
es

of
th

e
B

el
lm

an
eq

u
at

io
n
,
v
⇡

�
B

⇡
v
⇡
,
is

an
er

ro
r

ve
ct

or
,
an

d
re

d
u
ci

n
g

it
is

th
e

b
as

is
fo

r
ou

r
se

co
n
d

an
d

th
ir

d
go

al
s

fo
r

ap
p
ro

xi
m

at
io

n
.

T
h
e

se
co

n
d

go
al

is
to

m
in

im
iz

e
th

e
er

ro
r

ve
ct

or
’s

le
n
gt

h
in

th
e

d
-m

et
ri

c.
T

h
at

is
,
to

m
in

im
iz

e
th

e
m

ea
n
-s

qu
ar

ed
B
e
ll
m

a
n

e
r
r
o
r
:

B
E

(✓
)

=
X s2

S
d
(s

)⇥ (B
⇡
v
✓
)(

s
)
�

v
✓
(s

)⇤ 2
.

(9
)

N
ot

e
th

at
if

v
⇡

is
n
ot

re
p
re

se
nt

ab
le

,
th

en
it

is
n
ot

b
e

p
os

si
b
le

to
re

d
u
ce

th
e

B
el

lm
an

er
ro

r
to

ze
ro

.
F
or

an
y

v
✓
,
th

e
co

rr
es

p
on

d
in

g
B

⇡
v
✓

w
il
l
ge

n
er

al
ly

n
ot

b
e

re
p
re

se
nt

ab
le

;
it

w
il
l
li
e

ou
ts

id
e

th
e

sp
ac

e
of

re
p
re

se
nt

ab
le

fu
n
ct

io
n
s,

as
su

gg
es

te
d

by
th

e
fi
gu

re
..
.

F
in

al
ly

,
in

ou
r

th
ir

d
go

al
of

ap
p
ro

xi
m

at
io

n
,
w

e
fi
rs

t
p
ro

je
ct

th
e

B
el

lm
an

er
ro

r
an

d
th

en
m

in
im

iz
e

it
s

le
n
gt

h
.

T
h
at

is
,
w

e
m

in
im

iz
e

th
e

er
ro

r
n
ot

in
th

e
B

el
lm

an
eq

u
at

io
n

(7
)

b
u
t

in
it

s
p
ro

je
ct

ed
fo

rm
:

v
✓

=
⇧

B
⇡
v
✓
,

(1
0)

U
n
li
ke

th
e

or
ig

in
al

B
el

lm
an

eq
u
at

io
n
,

fo
r

m
os

t
fu

n
ct

io
n

ap
p
ro

xi
m

at
or

s
(e

.g
.,

li
n
ea

r
on

es
)

th
e

p
ro

je
ct

ed
B

el
lm

an
eq

u
at

io
n

ca
n

b
e

so
lv

ed
ex

ac
tl

y.
If

it
ca

n
’t

b
e

so
lv

ed
ex

ac
tl

y,
yo

u
ca

n
m

in
im

iz
e

th
e

m
ea

n
-s

qu
ar

ed
p
r
o
je

c
te

d
B
e
ll
m

a
n

e
r
r
o
r
:

P
B

E
(✓

)
=

X s2
S

d
(s

)⇥ (⇧
(B

⇡
v
✓
�

v
✓
))

(s
)⇤ 2

.
(1

1)

T
h
e

m
in

im
u
m

is
ac

h
ie

ve
d

at
th

e
p
r
o
je

c
ti
o
n

fi
x
p
o
in

t,
at

w
h
ic

h

X s2
S

d
(s

)⇥ (B
⇡
v
✓
)(

s
)
�

v
✓
(s

)⇤ r
✓
v
✓
(s

)
=

~ 0
.

(1
2)

�
V

E
�

B
E

�
P

B
E

�
V

E
�

V
E

4

Th
e

sp
ac

e
of

 a
ll

 v
al

ue
 fu

nc
tio

ns

Bellm
an error vector

T
h
e

ot
h
er

tw
o

go
al

s
fo

r
ap

p
ro

xi
m

at
io

n
ar

e
re

la
te

d
to

th
e

B
e
ll
m

a
n

e
q
u
a
ti
o
n
,
w

h
ic

h
ca

n
b
e

w
ri

tt
en

co
m

p
ac

tl
y

in
ve

ct
or

fo
rm

as

v
⇡

=
B

⇡
v
⇡
,

(7
)

w
h
er

e
B

⇡
:
R

|S
|
!

R
|S

|
is

th
e

B
e
ll
m

a
n

o
p
e
r
a
to

r
fo

r
p
ol

ic
y

⇡
,
d
efi

n
ed

by

(B
⇡
v
)(

s
)

=
X a
2

A
⇡
(s

,
a
)

" r
(s

,
a
)
+

�

X s0
2

S
p
(s

0 |s
,
a
)v

(s
0)

#
,

8s
2

S,
8v

:
S

!
R

.
(8

)

(I
f
th

e
st

at
e

an
d

ac
ti

on
sp

ac
es

ar
e

co
nt

in
u
ou

s,
th

en
th

e
su

m
s

ar
e

re
p
la

ce
d

by
in

te
gr

al
s

an
d

th
e

fu
n
ct

io
n

p
(·|

s
,
a
)

is
ta

ke
n

to
b
e

a
p
ro

b
ab

il
it
y

d
en

si
ty

.)
T

h
e

tr
u
e

va
lu

e
fu

n
ct

io
n

v
⇡

is
th

e
u
n
iq

u
e

so
lu

ti
on

to
th

e
B

el
lm

an
eq

u
at

io
n
;

th
e

B
el

lm
an

eq
u
at

io
n

ca
n

b
e

vi
ew

ed
as

an
al

te
rn

at
e

w
ay

of
d
efi

n
in

g
v
⇡
.

F
or

an
y

va
lu

e
fu

n
ct

io
n

v
:
S

!
R

n
ot

eq
u
al

to
v
⇡
,
th

er
e

w
il
l

al
w

ay
s

b
e

at
le

as
t

on
e

st
at

e
s

at
w

h
ic

h
v
(s

)
6=

(B
⇡
v
)(

s
).

T
h
e

d
is

cr
ep

an
cy

b
et

w
ee

n
th

e
tw

o
si

d
es

of
th

e
B

el
lm

an
eq

u
at

io
n
,
v
⇡

�
B

⇡
v
⇡
,
is

an
er

ro
r

ve
ct

or
,
an

d
re

d
u
ci

n
g

it
is

th
e

b
as

is
fo

r
ou

r
se

co
n
d

an
d

th
ir

d
go

al
s

fo
r

ap
p
ro

xi
m

at
io

n
.

T
h
e

se
co

n
d

go
al

is
to

m
in

im
iz

e
th

e
er

ro
r

ve
ct

or
’s

le
n
gt

h
in

th
e

d
-m

et
ri

c.
T

h
at

is
,
to

m
in

im
iz

e
th

e
m

ea
n
-s

qu
ar

ed
B
e
ll
m

a
n

e
r
r
o
r
:

B
E

(✓
)

=
X s2

S
d
(s

)⇥ (B
⇡
v
✓
)(

s
)
�

v
✓
(s

)⇤ 2
.

(9
)

N
ot

e
th

at
if

v
⇡

is
n
ot

re
p
re

se
nt

ab
le

,
th

en
it

is
n
ot

b
e

p
os

si
b
le

to
re

d
u
ce

th
e

B
el

lm
an

er
ro

r
to

ze
ro

.
F
or

an
y

v
✓
,
th

e
co

rr
es

p
on

d
in

g
B

⇡
v
✓

w
il
l
ge

n
er

al
ly

n
ot

b
e

re
p
re

se
nt

ab
le

;
it

w
il
l
li
e

ou
ts

id
e

th
e

sp
ac

e
of

re
p
re

se
nt

ab
le

fu
n
ct

io
n
s,

as
su

gg
es

te
d

by
th

e
fi
gu

re
..
.

F
in

al
ly

,
in

ou
r

th
ir

d
go

al
of

ap
p
ro

xi
m

at
io

n
,
w

e
fi
rs

t
p
ro

je
ct

th
e

B
el

lm
an

er
ro

r
an

d
th

en
m

in
im

iz
e

it
s

le
n
gt

h
.

T
h
at

is
,
w

e
m

in
im

iz
e

th
e

er
ro

r
n
ot

in
th

e
B

el
lm

an
eq

u
at

io
n

(7
)

b
u
t

in
it

s
p
ro

je
ct

ed
fo

rm
:

v
✓

=
⇧

B
⇡
v
✓
,

(1
0)

U
n
li
ke

th
e

or
ig

in
al

B
el

lm
an

eq
u
at

io
n
,

fo
r

m
os

t
fu

n
ct

io
n

ap
p
ro

xi
m

at
or

s
(e

.g
.,

li
n
ea

r
on

es
)

th
e

p
ro

je
ct

ed
B

el
lm

an
eq

u
at

io
n

ca
n

b
e

so
lv

ed
ex

ac
tl

y.
If

it
ca

n
’t

b
e

so
lv

ed
ex

ac
tl

y,
yo

u
ca

n
m

in
im

iz
e

th
e

m
ea

n
-s

qu
ar

ed
p
r
o
je

c
te

d
B
e
ll
m

a
n

e
r
r
o
r
:

P
B

E
(✓

)
=

X s2
S

d
(s

)⇥ (⇧
(B

⇡
v
✓
�

v
✓
))

(s
)⇤ 2

.
(1

1)

T
h
e

m
in

im
u
m

is
ac

h
ie

ve
d

at
th

e
p
r
o
je

c
ti
o
n

fi
x
p
o
in

t,
at

w
h
ic

h

X s2
S

d
(s

)⇥ (B
⇡
v
✓
)(

s
)
�

v
✓
(s

)⇤ r
✓
v
✓
(s

)
=

~ 0
.

(1
2)

P
B

E
=

0
m

in
B

E

N
ow

w
e

m
u
st

fi
n
is

h
th

is
se

ct
io

n
by

d
is

cu
ss

in
g

th
e

re
la

ti
ve

m
er

it
s

of
th

e
se

co
n
d

an
d

th
ir

d
go

al
s.

T
h
is

co
m

es
d
ow

n
to

tw
o

co
u
nt

er
ex

am
p
le

s
u
si

n
g

P
O

M
D

P
s.

O
n
e

sh
ow

s
th

at
th

e
B

E
is

n
ot

w
el

l
d
efi

n
ed

fo
r

P
O

M
D

P
d
at

a,
th

e
ot

h
er

sh
ow

s
th

at
th

e
m

in
im

u
m

is
n
ot

5

T
h
e

ot
h
er

tw
o

go
al

s
fo

r
ap

p
ro

xi
m

at
io

n
ar

e
re

la
te

d
to

th
e

B
e
ll
m

a
n

e
q
u
a
ti
o
n
,
w

h
ic

h
ca

n
b
e

w
ri

tt
en

co
m

p
ac

tl
y

in
ve

ct
or

fo
rm

as

v
⇡

=
B

⇡
v
⇡
,

(7
)

w
h
er

e
B

⇡
:
R

|S
|
!

R
|S

|
is

th
e

B
e
ll
m

a
n

o
p
e
r
a
to

r
fo

r
p
ol

ic
y

⇡
,
d
efi

n
ed

by

(B
⇡
v
)(

s
)

=
X a
2

A
⇡
(s

,
a
)

" r
(s

,
a
)
+

�

X s0
2

S
p
(s

0 |s
,
a
)v

(s
0)

#
,

8s
2

S,
8v

:
S

!
R

.
(8

)

(I
f
th

e
st

at
e

an
d

ac
ti

on
sp

ac
es

ar
e

co
nt

in
u
ou

s,
th

en
th

e
su

m
s

ar
e

re
p
la

ce
d

by
in

te
gr

al
s

an
d

th
e

fu
n
ct

io
n

p
(·|

s
,
a
)

is
ta

ke
n

to
b
e

a
p
ro

b
ab

il
it
y

d
en

si
ty

.)
T

h
e

tr
u
e

va
lu

e
fu

n
ct

io
n

v
⇡

is
th

e
u
n
iq

u
e

so
lu

ti
on

to
th

e
B

el
lm

an
eq

u
at

io
n
;

th
e

B
el

lm
an

eq
u
at

io
n

ca
n

b
e

vi
ew

ed
as

an
al

te
rn

at
e

w
ay

of
d
efi

n
in

g
v
⇡
.

F
or

an
y

va
lu

e
fu

n
ct

io
n

v
:
S

!
R

n
ot

eq
u
al

to
v
⇡
,
th

er
e

w
il
l

al
w

ay
s

b
e

at
le

as
t

on
e

st
at

e
s

at
w

h
ic

h
v
(s

)
6=

(B
⇡
v
)(

s
).

T
h
e

d
is

cr
ep

an
cy

b
et

w
ee

n
th

e
tw

o
si

d
es

of
th

e
B

el
lm

an
eq

u
at

io
n
,
v
⇡

�
B

⇡
v
⇡
,
is

an
er

ro
r

ve
ct

or
,
an

d
re

d
u
ci

n
g

it
is

th
e

b
as

is
fo

r
ou

r
se

co
n
d

an
d

th
ir

d
go

al
s

fo
r

ap
p
ro

xi
m

at
io

n
.

T
h
e

se
co

n
d

go
al

is
to

m
in

im
iz

e
th

e
er

ro
r

ve
ct

or
’s

le
n
gt

h
in

th
e

d
-m

et
ri

c.
T

h
at

is
,
to

m
in

im
iz

e
th

e
m

ea
n
-s

qu
ar

ed
B
e
ll
m

a
n

e
r
r
o
r
:

B
E

(✓
)

=
X s2

S
d
(s

)⇥ (B
⇡
v
✓
)(

s
)
�

v
✓
(s

)⇤ 2
.

(9
)

N
ot

e
th

at
if

v
⇡

is
n
ot

re
p
re

se
nt

ab
le

,
th

en
it

is
n
ot

b
e

p
os

si
b
le

to
re

d
u
ce

th
e

B
el

lm
an

er
ro

r
to

ze
ro

.
F
or

an
y

v
✓
,
th

e
co

rr
es

p
on

d
in

g
B

⇡
v
✓

w
il
l
ge

n
er

al
ly

n
ot

b
e

re
p
re

se
nt

ab
le

;
it

w
il
l
li
e

ou
ts

id
e

th
e

sp
ac

e
of

re
p
re

se
nt

ab
le

fu
n
ct

io
n
s,

as
su

gg
es

te
d

by
th

e
fi
gu

re
..
.

F
in

al
ly

,
in

ou
r

th
ir

d
go

al
of

ap
p
ro

xi
m

at
io

n
,
w

e
fi
rs

t
p
ro

je
ct

th
e

B
el

lm
an

er
ro

r
an

d
th

en
m

in
im

iz
e

it
s

le
n
gt

h
.

T
h
at

is
,
w

e
m

in
im

iz
e

th
e

er
ro

r
n
ot

in
th

e
B

el
lm

an
eq

u
at

io
n

(7
)

b
u
t

in
it

s
p
ro

je
ct

ed
fo

rm
:

v
✓

=
⇧

B
⇡
v
✓
,

(1
0)

U
n
li
ke

th
e

or
ig

in
al

B
el

lm
an

eq
u
at

io
n
,

fo
r

m
os

t
fu

n
ct

io
n

ap
p
ro

xi
m

at
or

s
(e

.g
.,

li
n
ea

r
on

es
)

th
e

p
ro

je
ct

ed
B

el
lm

an
eq

u
at

io
n

ca
n

b
e

so
lv

ed
ex

ac
tl

y.
If

it
ca

n
’t

b
e

so
lv

ed
ex

ac
tl

y,
yo

u
ca

n
m

in
im

iz
e

th
e

m
ea

n
-s

qu
ar

ed
p
r
o
je

c
te

d
B
e
ll
m

a
n

e
r
r
o
r
:

P
B

E
(✓

)
=

X s2
S

d
(s

)⇥ (⇧
(B

⇡
v
✓
�

v
✓
))

(s
)⇤ 2

.
(1

1)

T
h
e

m
in

im
u
m

is
ac

h
ie

ve
d

at
th

e
p
r
o
je

c
ti
o
n

fi
x
p
o
in

t,
at

w
h
ic

h

X s2
S

d
(s

)⇥ (B
⇡
v
✓
)(

s
)
�

v
✓
(s

)⇤ r
✓
v
✓
(s

)
=

~ 0
.

(1
2)

P
B

E
=

0
m

in
B

E

N
ow

w
e

m
u
st

fi
n
is

h
th

is
se

ct
io

n
by

d
is

cu
ss

in
g

th
e

re
la

ti
ve

m
er

it
s

of
th

e
se

co
n
d

an
d

th
ir

d
go

al
s.

T
h
is

co
m

es
d
ow

n
to

tw
o

co
u
nt

er
ex

am
p
le

s
u
si

n
g

P
O

M
D

P
s.

O
n
e

sh
ow

s
th

at
th

e
B

E
is

n
ot

w
el

l
d
efi

n
ed

fo
r

P
O

M
D

P
d
at

a,
th

e
ot

h
er

sh
ow

s
th

at
th

e
m

in
im

u
m

is
n
ot

5

T
h
e

ot
h
er

tw
o

go
al

s
fo

r
ap

p
ro

xi
m

at
io

n
ar

e
re

la
te

d
to

th
e

B
e
ll
m

a
n

e
q
u
a
ti
o
n
,
w

h
ic

h
ca

n
b
e

w
ri

tt
en

co
m

p
ac

tl
y

in
ve

ct
or

fo
rm

as

v
⇡

=
B

⇡
v
⇡
,

(7
)

w
h
er

e
B

⇡
:
R

|S
|
!

R
|S

|
is

th
e

B
e
ll
m

a
n

o
p
e
r
a
to

r
fo

r
p
ol

ic
y

⇡
,
d
efi

n
ed

by

(B
⇡
v
)(

s
)

=
X a
2

A
⇡
(s

,
a
)

" r
(s

,
a
)
+

�

X s0
2

S
p
(s

0 |s
,
a
)v

(s
0)

#
,

8s
2

S,
8v

:
S

!
R

.
(8

)

(I
f
th

e
st

at
e

an
d

ac
ti

on
sp

ac
es

ar
e

co
nt

in
u
ou

s,
th

en
th

e
su

m
s

ar
e

re
p
la

ce
d

by
in

te
gr

al
s

an
d

th
e

fu
n
ct

io
n

p
(·|

s
,
a
)

is
ta

ke
n

to
b
e

a
p
ro

b
ab

il
it
y

d
en

si
ty

.)
T

h
e

tr
u
e

va
lu

e
fu

n
ct

io
n

v
⇡

is
th

e
u
n
iq

u
e

so
lu

ti
on

to
th

e
B

el
lm

an
eq

u
at

io
n
;

th
e

B
el

lm
an

eq
u
at

io
n

ca
n

b
e

vi
ew

ed
as

an
al

te
rn

at
e

w
ay

of
d
efi

n
in

g
v
⇡
.

F
or

an
y

va
lu

e
fu

n
ct

io
n

v
:
S

!
R

n
ot

eq
u
al

to
v
⇡
,
th

er
e

w
il
l

al
w

ay
s

b
e

at
le

as
t

on
e

st
at

e
s

at
w

h
ic

h
v
(s

)
6=

(B
⇡
v
)(

s
).

T
h
e

d
is

cr
ep

an
cy

b
et

w
ee

n
th

e
tw

o
si

d
es

of
th

e
B

el
lm

an
eq

u
at

io
n
,
v
⇡

�
B

⇡
v
⇡
,
is

an
er

ro
r

ve
ct

or
,
an

d
re

d
u
ci

n
g

it
is

th
e

b
as

is
fo

r
ou

r
se

co
n
d

an
d

th
ir

d
go

al
s

fo
r

ap
p
ro

xi
m

at
io

n
.

T
h
e

se
co

n
d

go
al

is
to

m
in

im
iz

e
th

e
er

ro
r

ve
ct

or
’s

le
n
gt

h
in

th
e

d
-m

et
ri

c.
T

h
at

is
,
to

m
in

im
iz

e
th

e
m

ea
n
-s

qu
ar

ed
B
e
ll
m

a
n

e
r
r
o
r
:

B
E

(✓
)

=
X s2

S
d
(s

)⇥ (B
⇡
v
✓
)(

s
)
�

v
✓
(s

)⇤ 2
.

(9
)

N
ot

e
th

at
if

v
⇡

is
n
ot

re
p
re

se
nt

ab
le

,
th

en
it

is
n
ot

b
e

p
os

si
b
le

to
re

d
u
ce

th
e

B
el

lm
an

er
ro

r
to

ze
ro

.
F
or

an
y

v
✓
,
th

e
co

rr
es

p
on

d
in

g
B

⇡
v
✓

w
il
l
ge

n
er

al
ly

n
ot

b
e

re
p
re

se
nt

ab
le

;
it

w
il
l
li
e

ou
ts

id
e

th
e

sp
ac

e
of

re
p
re

se
nt

ab
le

fu
n
ct

io
n
s,

as
su

gg
es

te
d

by
th

e
fi
gu

re
..
.

F
in

al
ly

,
in

ou
r

th
ir

d
go

al
of

ap
p
ro

xi
m

at
io

n
,
w

e
fi
rs

t
p
ro

je
ct

th
e

B
el

lm
an

er
ro

r
an

d
th

en
m

in
im

iz
e

it
s

le
n
gt

h
.

T
h
at

is
,
w

e
m

in
im

iz
e

th
e

er
ro

r
n
ot

in
th

e
B

el
lm

an
eq

u
at

io
n

(7
)

b
u
t

in
it

s
p
ro

je
ct

ed
fo

rm
:

v
✓

=
⇧

B
⇡
v
✓
,

(1
0)

U
n
li
ke

th
e

or
ig

in
al

B
el

lm
an

eq
u
at

io
n
,

fo
r

m
os

t
fu

n
ct

io
n

ap
p
ro

xi
m

at
or

s
(e

.g
.,

li
n
ea

r
on

es
)

th
e

p
ro

je
ct

ed
B

el
lm

an
eq

u
at

io
n

ca
n

b
e

so
lv

ed
ex

ac
tl

y.
If

it
ca

n
’t

b
e

so
lv

ed
ex

ac
tl

y,
yo

u
ca

n
m

in
im

iz
e

th
e

m
ea

n
-s

qu
ar

ed
p
r
o
je

c
te

d
B
e
ll
m

a
n

e
r
r
o
r
:

P
B

E
(✓

)
=

X s2
S

d
(s

)⇥ (⇧
(B

⇡
v
✓
�

v
✓
))

(s
)⇤ 2

.
(1

1)

T
h
e

m
in

im
u
m

is
ac

h
ie

ve
d

at
th

e
p
r
o
je

c
ti
o
n

fi
x
p
o
in

t,
at

w
h
ic

h

X s2
S

d
(s

)⇥ (B
⇡
v
✓
)(

s
)
�

v
✓
(s

)⇤ r
✓
v
✓
(s

)
=

~ 0
.

(1
2)

P
B

E
=

0
m

in
B

E
✓
1

✓
2

N
ow

w
e

m
u
st

fi
n
is

h
th

is
se

ct
io

n
by

d
is

cu
ss

in
g

th
e

re
la

ti
ve

m
er

it
s

of
th

e
se

co
n
d

an
d

th
ir

d
go

al
s.

T
h
is

co
m

es
d
ow

n
to

tw
o

co
u
nt

er
ex

am
p
le

s
u
si

n
g

P
O

M
D

P
s.

O
n
e

sh
ow

s
th

at
th

e
B

E
is

n
ot

w
el

l
d
efi

n
ed

fo
r

P
O

M
D

P
d
at

a,
th

e
ot

h
er

sh
ow

s
th

at
th

e
m

in
im

u
m

is
n
ot

5

T
h
e

ot
h
er

tw
o

go
al

s
fo

r
ap

p
ro

xi
m

at
io

n
ar

e
re

la
te

d
to

th
e

B
e
ll
m

a
n

e
q
u
a
ti
o
n
,
w

h
ic

h
ca

n
b
e

w
ri

tt
en

co
m

p
ac

tl
y

in
ve

ct
or

fo
rm

as

v
⇡

=
B

⇡
v
⇡
,

(7
)

w
h
er

e
B

⇡
:
R

|S
|
!

R
|S

|
is

th
e

B
e
ll
m

a
n

o
p
e
r
a
to

r
fo

r
p
ol

ic
y

⇡
,
d
efi

n
ed

by

(B
⇡
v
)(

s
)

=
X a
2

A
⇡
(s

,
a
)

" r
(s

,
a
)
+

�

X s0
2

S
p
(s

0 |s
,
a
)v

(s
0)

#
,

8s
2

S,
8v

:
S

!
R

.
(8

)

(I
f
th

e
st

at
e

an
d

ac
ti

on
sp

ac
es

ar
e

co
nt

in
u
ou

s,
th

en
th

e
su

m
s

ar
e

re
p
la

ce
d

by
in

te
gr

al
s

an
d

th
e

fu
n
ct

io
n

p
(·|

s
,
a
)

is
ta

ke
n

to
b
e

a
p
ro

b
ab

il
it
y

d
en

si
ty

.)
T

h
e

tr
u
e

va
lu

e
fu

n
ct

io
n

v
⇡

is
th

e
u
n
iq

u
e

so
lu

ti
on

to
th

e
B

el
lm

an
eq

u
at

io
n
;

th
e

B
el

lm
an

eq
u
at

io
n

ca
n

b
e

vi
ew

ed
as

an
al

te
rn

at
e

w
ay

of
d
efi

n
in

g
v
⇡
.

F
or

an
y

va
lu

e
fu

n
ct

io
n

v
:
S

!
R

n
ot

eq
u
al

to
v
⇡
,
th

er
e

w
il
l

al
w

ay
s

b
e

at
le

as
t

on
e

st
at

e
s

at
w

h
ic

h
v
(s

)
6=

(B
⇡
v
)(

s
).

T
h
e

d
is

cr
ep

an
cy

b
et

w
ee

n
th

e
tw

o
si

d
es

of
th

e
B

el
lm

an
eq

u
at

io
n
,
v
⇡

�
B

⇡
v
⇡
,
is

an
er

ro
r

ve
ct

or
,
an

d
re

d
u
ci

n
g

it
is

th
e

b
as

is
fo

r
ou

r
se

co
n
d

an
d

th
ir

d
go

al
s

fo
r

ap
p
ro

xi
m

at
io

n
.

T
h
e

se
co

n
d

go
al

is
to

m
in

im
iz

e
th

e
er

ro
r

ve
ct

or
’s

le
n
gt

h
in

th
e

d
-m

et
ri

c.
T

h
at

is
,
to

m
in

im
iz

e
th

e
m

ea
n
-s

qu
ar

ed
B
e
ll
m

a
n

e
r
r
o
r
:

B
E

(✓
)

=
X s2

S
d
(s

)⇥ (B
⇡
v
✓
)(

s
)
�

v
✓
(s

)⇤ 2
.

(9
)

N
ot

e
th

at
if

v
⇡

is
n
ot

re
p
re

se
nt

ab
le

,
th

en
it

is
n
ot

b
e

p
os

si
b
le

to
re

d
u
ce

th
e

B
el

lm
an

er
ro

r
to

ze
ro

.
F
or

an
y

v
✓
,
th

e
co

rr
es

p
on

d
in

g
B

⇡
v
✓

w
il
l
ge

n
er

al
ly

n
ot

b
e

re
p
re

se
nt

ab
le

;
it

w
il
l
li
e

ou
ts

id
e

th
e

sp
ac

e
of

re
p
re

se
nt

ab
le

fu
n
ct

io
n
s,

as
su

gg
es

te
d

by
th

e
fi
gu

re
..
.

F
in

al
ly

,
in

ou
r

th
ir

d
go

al
of

ap
p
ro

xi
m

at
io

n
,
w

e
fi
rs

t
p
ro

je
ct

th
e

B
el

lm
an

er
ro

r
an

d
th

en
m

in
im

iz
e

it
s

le
n
gt

h
.

T
h
at

is
,
w

e
m

in
im

iz
e

th
e

er
ro

r
n
ot

in
th

e
B

el
lm

an
eq

u
at

io
n

(7
)

b
u
t

in
it

s
p
ro

je
ct

ed
fo

rm
:

v
✓

=
⇧

B
⇡
v
✓
,

(1
0)

U
n
li
ke

th
e

or
ig

in
al

B
el

lm
an

eq
u
at

io
n
,

fo
r

m
os

t
fu

n
ct

io
n

ap
p
ro

xi
m

at
or

s
(e

.g
.,

li
n
ea

r
on

es
)

th
e

p
ro

je
ct

ed
B

el
lm

an
eq

u
at

io
n

ca
n

b
e

so
lv

ed
ex

ac
tl

y.
If

it
ca

n
’t

b
e

so
lv

ed
ex

ac
tl

y,
yo

u
ca

n
m

in
im

iz
e

th
e

m
ea

n
-s

qu
ar

ed
p
r
o
je

c
te

d
B
e
ll
m

a
n

e
r
r
o
r
:

P
B

E
(✓

)
=

X s2
S

d
(s

)⇥ (⇧
(B

⇡
v
✓
�

v
✓
))

(s
)⇤ 2

.
(1

1)

T
h
e

m
in

im
u
m

is
ac

h
ie

ve
d

at
th

e
p
r
o
je

c
ti
o
n

fi
x
p
o
in

t,
at

w
h
ic

h

X s2
S

d
(s

)⇥ (B
⇡
v
✓
)(

s
)
�

v
✓
(s

)⇤ r
✓
v
✓
(s

)
=

~ 0
.

(1
2)

P
B

E
=

0
m

in
B

E
✓
1

✓
2

N
ow

w
e

m
u
st

fi
n
is

h
th

is
se

ct
io

n
by

d
is

cu
ss

in
g

th
e

re
la

ti
ve

m
er

it
s

of
th

e
se

co
n
d

an
d

th
ir

d
go

al
s.

T
h
is

co
m

es
d
ow

n
to

tw
o

co
u
nt

er
ex

am
p
le

s
u
si

n
g

P
O

M
D

P
s.

O
n
e

sh
ow

s
th

at
th

e
B

E
is

n
ot

w
el

l
d
efi

n
ed

fo
r

P
O

M
D

P
d
at

a,
th

e
ot

h
er

sh
ow

s
th

at
th

e
m

in
im

u
m

is
n
ot

5

T
h
e

ot
h
er

tw
o

go
al

s
fo

r
ap

p
ro

x
im

at
io

n
ar

e
re

la
te

d
to

th
e

B
e
ll
m

a
n

e
q
u
a
ti
o
n
,
w

h
ic

h
ca

n
b
e

w
ri

tt
en

co
m

p
ac

tl
y

in
ve

ct
or

fo
rm

as

v
⇡

=
B

⇡
v
⇡
,

(7
)

w
h
er

e
B

⇡
:
R

|S
|
!

R
|S

|
is

th
e

B
e
ll
m

a
n

o
p
e
r
a
to

r
fo

r
p
ol

ic
y

⇡
,
d
efi

n
ed

b
y

(B
⇡
v
)(

s
)

=
X a
2

A
⇡
(s

,
a
)

" r
(s

,
a
)
+

�

X s0
2

S
p
(s

0 |s
,
a
)v

(s
0)

#
,

8s
2

S
,
8v

:
S

!
R

.
(8

)

(I
f
th

e
st

at
e

an
d

ac
ti

on
sp

ac
es

ar
e

co
n
ti

n
u
ou

s,
th

en
th

e
su

m
s

ar
e

re
p
la

ce
d

b
y

in
te

gr
al

s
an

d
th

e
fu

n
ct

io
n

p
(·

|s
,
a
)

is
ta

ke
n

to
b
e

a
p
ro

b
ab

il
it
y

d
en

si
ty

.)
T

h
e

tr
u
e

va
lu

e
fu

n
ct

io
n

v
⇡

is
th

e
u
n
iq

u
e

so
lu

ti
on

to
th

e
B

el
lm

an
eq

u
at

io
n
;

th
e

B
el

lm
an

eq
u
at

io
n

ca
n

b
e

v
ie

w
ed

as
an

al
te

rn
at

e
w

ay
of

d
efi

n
in

g
v
⇡
.

F
or

an
y

va
lu

e
fu

n
ct

io
n

v
:
S

!
R

n
ot

eq
u
al

to
v
⇡
,
th

er
e

w
il
l

al
w

ay
s

b
e

at
le

as
t

on
e

st
at

e
s

at
w

h
ic

h
v
(s

)
6=

(B
⇡
v
)(

s
).

T
h
e

d
is

cr
ep

an
cy

b
et

w
ee

n
th

e
tw

o
si

d
es

of
th

e
B

el
lm

an
eq

u
at

io
n
,
v
⇡

�
B

⇡
v
⇡
,
is

an
er

ro
r

ve
ct

or
,
an

d
re

d
u
ci

n
g

it
is

th
e

b
as

is
fo

r
ou

r
se

co
n
d

an
d

th
ir

d
go

al
s

fo
r

ap
p
ro

x
im

at
io

n
.

T
h
e

se
co

n
d

go
al

is
to

m
in

im
iz

e
th

e
er

ro
r

ve
ct

or
’s

le
n
gt

h
in

th
e

d
-m

et
ri

c.
T

h
at

is
,
to

m
in

im
iz

e
th

e
m

ea
n
-s

q
u
ar

ed
B
e
ll
m

a
n

e
r
r
o
r
:

B
E

(✓
)

=
X s2

S
d
(s

)⇥ (B
⇡
v
✓
)(

s
)
�

v
✓
(s

)⇤ 2
.

(9
)

N
ot

e
th

at
if

v
⇡

is
n
ot

re
p
re

se
n
ta

b
le

,
th

en
it

is
n
ot

b
e

p
os

si
b
le

to
re

d
u
ce

th
e

B
el

lm
an

er
ro

r
to

ze
ro

.
F
or

an
y

v
✓
,
th

e
co

rr
es

p
on

d
in

g
B

⇡
v
✓

w
il
l
ge

n
er

al
ly

n
ot

b
e

re
p
re

se
n
ta

b
le

;
it

w
il
l
li
e

ou
ts

id
e

th
e

sp
ac

e
of

re
p
re

se
n
ta

b
le

fu
n
ct

io
n
s,

as
su

gg
es

te
d

b
y

th
e

fi
gu

re
..
.

F
in

al
ly

,
in

ou
r

th
ir

d
go

al
of

ap
p
ro

x
im

at
io

n
,
w

e
fi
rs

t
p
ro

je
ct

th
e

B
el

lm
an

er
ro

r
an

d
th

en
m

in
im

iz
e

it
s

le
n
gt

h
.

T
h
at

is
,
w

e
m

in
im

iz
e

th
e

er
ro

r
n
ot

in
th

e
B

el
lm

an
eq

u
at

io
n

(7
)

b
u
t

in
it

s
p
ro

je
ct

ed
fo

rm
:

v
✓

=
⇧

B
⇡
v
✓
,

(1
0)

U
n
li
ke

th
e

or
ig

in
al

B
el

lm
an

eq
u
at

io
n
,

fo
r

m
os

t
fu

n
ct

io
n

ap
p
ro

x
im

at
or

s
(e

.g
.,

li
n
ea

r
on

es
)

th
e

p
ro

je
ct

ed
B

el
lm

an
eq

u
at

io
n

ca
n

b
e

so
lv

ed
ex

ac
tl

y.
If

it
ca

n
’t

b
e

so
lv

ed
ex

ac
tl

y,
yo

u
ca

n
m

in
im

iz
e

th
e

m
ea

n
-s

q
u
ar

ed
p
r
o
je

c
te

d
B
e
ll
m

a
n

e
r
r
o
r
:

P
B

E
(✓

)
=

X s2
S

d
(s

)⇥ (⇧
(B

⇡
v
✓
�

v
✓
))

(s
)⇤ 2

.
(1

1)

T
h
e

m
in

im
u
m

is
ac

h
ie

ve
d

at
th

e
p
r
o
je

c
ti
o
n

fi
x
p
o
in

t,
at

w
h
ic

h

X s2
S

d
(s

)⇥ (B
⇡
v
✓
)(

s
)
�

v
✓
(s

)⇤ r
✓
v
✓
(s

)
=

~ 0
.

(1
2)

�
V

E
�

B
E

�
P

B
E

⇧
v
⇡

=
v
✓

� V
E

v
✓

� P
B

E
v
✓

� B
E

4

T
h
e

ot
h
er

tw
o

go
al

s
fo

r
ap

p
ro

xi
m

at
io

n
ar

e
re

la
te

d
to

th
e

B
e
ll
m

a
n

e
q
u
a
ti
o
n
,
w

h
ic

h
ca

n
b
e

w
ri

tt
en

co
m

p
ac

tl
y

in
ve

ct
or

fo
rm

as

v
⇡

=
B

⇡
v
⇡
,

(7
)

w
h
er

e
B

⇡
:
R

|S
|
!

R
|S

|
is

th
e

B
e
ll
m

a
n

o
p
e
r
a
to

r
fo

r
p
ol

ic
y

⇡
,
d
efi

n
ed

by

(B
⇡
v
)(

s
)

=
X a
2

A
⇡
(s

,
a
)

" r
(s

,
a
)
+

�

X s0
2

S
p
(s

0 |s
,
a
)v

(s
0)

#
,

8s
2

S,
8v

:
S

!
R

.
(8

)

(I
f
th

e
st

at
e

an
d

ac
ti

on
sp

ac
es

ar
e

co
nt

in
u
ou

s,
th

en
th

e
su

m
s

ar
e

re
p
la

ce
d

by
in

te
gr

al
s

an
d

th
e

fu
n
ct

io
n

p
(·|

s
,
a
)

is
ta

ke
n

to
b
e

a
p
ro

b
ab

il
it
y

d
en

si
ty

.)
T

h
e

tr
u
e

va
lu

e
fu

n
ct

io
n

v
⇡

is
th

e
u
n
iq

u
e

so
lu

ti
on

to
th

e
B

el
lm

an
eq

u
at

io
n
;

th
e

B
el

lm
an

eq
u
at

io
n

ca
n

b
e

vi
ew

ed
as

an
al

te
rn

at
e

w
ay

of
d
efi

n
in

g
v
⇡
.

F
or

an
y

va
lu

e
fu

n
ct

io
n

v
:
S

!
R

n
ot

eq
u
al

to
v
⇡
,
th

er
e

w
il
l

al
w

ay
s

b
e

at
le

as
t

on
e

st
at

e
s

at
w

h
ic

h
v
(s

)
6=

(B
⇡
v
)(

s
).

T
h
e

d
is

cr
ep

an
cy

b
et

w
ee

n
th

e
tw

o
si

d
es

of
th

e
B

el
lm

an
eq

u
at

io
n
,
v
⇡

�
B

⇡
v
⇡
,
is

an
er

ro
r

ve
ct

or
,
an

d
re

d
u
ci

n
g

it
is

th
e

b
as

is
fo

r
ou

r
se

co
n
d

an
d

th
ir

d
go

al
s

fo
r

ap
p
ro

xi
m

at
io

n
.

T
h
e

se
co

n
d

go
al

is
to

m
in

im
iz

e
th

e
er

ro
r

ve
ct

or
’s

le
n
gt

h
in

th
e

d
-m

et
ri

c.
T

h
at

is
,
to

m
in

im
iz

e
th

e
m

ea
n
-s

qu
ar

ed
B
e
ll
m

a
n

e
r
r
o
r
:

B
E

(✓
)

=
X s2

S
d
(s

)⇥ (B
⇡
v
✓
)(

s
)
�

v
✓
(s

)⇤ 2
.

(9
)

N
ot

e
th

at
if

v
⇡

is
n
ot

re
p
re

se
nt

ab
le

,
th

en
it

is
n
ot

b
e

p
os

si
b
le

to
re

d
u
ce

th
e

B
el

lm
an

er
ro

r
to

ze
ro

.
F
or

an
y

v
✓
,
th

e
co

rr
es

p
on

d
in

g
B

⇡
v
✓

w
il
l
ge

n
er

al
ly

n
ot

b
e

re
p
re

se
nt

ab
le

;
it

w
il
l
li
e

ou
ts

id
e

th
e

sp
ac

e
of

re
p
re

se
nt

ab
le

fu
n
ct

io
n
s,

as
su

gg
es

te
d

by
th

e
fi
gu

re
..
.

F
in

al
ly

,
in

ou
r

th
ir

d
go

al
of

ap
p
ro

xi
m

at
io

n
,
w

e
fi
rs

t
p
ro

je
ct

th
e

B
el

lm
an

er
ro

r
an

d
th

en
m

in
im

iz
e

it
s

le
n
gt

h
.

T
h
at

is
,
w

e
m

in
im

iz
e

th
e

er
ro

r
n
ot

in
th

e
B

el
lm

an
eq

u
at

io
n

(7
)

b
u
t

in
it

s
p
ro

je
ct

ed
fo

rm
:

v
✓

=
⇧

B
⇡
v
✓
,

(1
0)

U
n
li
ke

th
e

or
ig

in
al

B
el

lm
an

eq
u
at

io
n
,

fo
r

m
os

t
fu

n
ct

io
n

ap
p
ro

xi
m

at
or

s
(e

.g
.,

li
n
ea

r
on

es
)

th
e

p
ro

je
ct

ed
B

el
lm

an
eq

u
at

io
n

ca
n

b
e

so
lv

ed
ex

ac
tl

y.
If

it
ca

n
’t

b
e

so
lv

ed
ex

ac
tl

y,
yo

u
ca

n
m

in
im

iz
e

th
e

m
ea

n
-s

qu
ar

ed
p
r
o
je

c
te

d
B
e
ll
m

a
n

e
r
r
o
r
:

P
B

E
(✓

)
=

X s2
S

d
(s

)⇥ (⇧
(B

⇡
v
✓
�

v
✓
))

(s
)⇤ 2

.
(1

1)

T
h
e

m
in

im
u
m

is
ac

h
ie

ve
d

at
th

e
p
r
o
je

c
ti
o
n

fi
x
p
o
in

t,
at

w
h
ic

h

X s2
S

d
(s

)⇥ (B
⇡
v
✓
)(

s
)
�

v
✓
(s

)⇤ r
✓
v
✓
(s

)
=

~ 0
.

(1
2)

P
B

E
=

0
m

in
B

E
✓
1

✓
2

⇧
v
⇡

(m
in

V
E

)
⇧

v
⇡

⌘
m

in
V

E

N
ow

w
e

m
u
st

fi
n
is

h
th

is
se

ct
io

n
by

d
is

cu
ss

in
g

th
e

re
la

ti
ve

m
er

it
s

of
th

e
se

co
n
d

an
d

th
ir

d
go

al
s.

T
h
is

co
m

es
d
ow

n
to

tw
o

co
u
nt

er
ex

am
p
le

s
u
si

n
g

P
O

M
D

P
s.

O
n
e

sh
ow

s
th

at
th

e
B

E
is

n
ot

w
el

l
d
efi

n
ed

fo
r

P
O

M
D

P
d
at

a,
th

e
ot

h
er

sh
ow

s
th

at
th

e
m

in
im

u
m

is
n
ot

5

F
ig

u
re

2:
T

h
e

ge
om

et
ry

of
va

lu
e-

fu
n
ct

io
n

ap
p
ro

xi
m

at
io

n
.

S
h
ow

n
as

a
p
la

n
e

h
er

e
is

th
e

su
b
sp

ac
e

of
al

l
fu

n
ct

io
n
s

re
p
re

se
nt

ab
le

by
th

e
fu

n
ct

io
n

ap
p
ro

xi
m

at
or

.
T

h
e

th
re

e-
d
im

en
si

on
al

sp
ac

e
ab

ov
e

it
is

th
e

m
u
ch

la
rg

er
sp

ac
e

of
al

l
va

lu
e

fu
n
ct

io
n
s

(f
u
n
ct

io
n
s

fr
om

S
to

R
).

T
h
e

tr
u
e

va
lu

e
fu

n
ct

io
n

v
⇡

is
in

th
is

la
rg

er
sp

ac
e

an
d

p
ro

je
ct

s
d
ow

n
to

it
s
b
es

t
ap

p
ro

xi
m

at
io

n
in

th
e

va
lu

e
er

ro
r

(V
E

)
se

n
se

.
T

h
e

b
es

t
ap

p
ro

xi
m

at
or

s
in

th
e

B
E

an
d

P
B

E
se

n
se

s
ar

e
d
i↵

er
en

t
an

d
ar

e
al

so
sh

ow
n

in
th

e
lo

w
er

ri
gh

t.
T

h
e

B
el

lm
an

op
er

at
or

ta
ke

s
a

va
lu

e
fu

n
ct

io
n

in
th

e
p
la

n
e

to
on

e
ou

ts
id

e,
w

h
ic

h
ca

n
th

en
b
e

p
ro

je
ct

ed
b
ac

k.
If

yo
u

co
u
ld

it
er

at
iv

el
y

ap
p
ly

th
e

B
el

lm
an

op
er

at
or

ou
ts

id
e

th
e

sp
ac

e
(s

h
ow

n
in

gr
ay

ab
ov

e)
yo

u
w

ou
ld

re
ac

h
th

e
tr

u
e

va
lu

e
fu

n
ct

io
n
,
as

in
co

nv
en

ti
on

al
D

P
.

2
.1

V
a
lu
e
e
r
r
o
r

T
h
e

m
os

t
ob

vi
ou

s
go

al
fo

r
ap

p
ro

xi
m

at
io

n
is

si
m

p
ly

to
m

in
im

iz
e

th
e

d
is

ta
n
ce

b
et

w
ee

n
th

e
tr

u
e

an
d

ap
p
ro

xi
m

at
e

va
lu

e
fu

n
ct

io
n
s,

w
h
ic

h
w

e
ca

ll
th

e
v
a
lu

e
e
r
r
o
r
:

V
E

(✓
)

=
||v

⇡
�

v
✓
||.

(7
)

T
h
e

va
lu

e
fu

n
ct

io
n

th
at

m
in

im
iz

es
th

is
d
is

ta
n
ce

is
,

of
co

u
rs

e,
⇧

v
⇡
,

th
e

p
ro

je
ct

io
n

of
th

e
tr

u
e

va
lu

e
fu

n
ct

io
n

in
to

th
e

su
b
sp

ac
e

of
re

p
re

se
nt

ab
le

fu
n
ct

io
n
s,

as
sh

ow
n

in
F
ig

u
re

1.

T
o

ou
r

kn
ow

le
d
ge

,
th

er
e

is
n
o

p
ra

ct
ic

al
d
et

er
m

in
is

ti
c

al
go

ri
th

m
fo

r
ac

h
ie

vi
n
g

th
is

go
al

.
T

h
e

b
es

t
m

et
h
od

s
ar

e
b
as

ed
on

av
er

ag
in

g
ov

er
sa

m
p
le

tr
a
je

ct
or

ie
s

(a
.k

.a
.
ro

ll
ou

ts
)

st
ar

te
d

ac
co

rd
in

g
to

d
an

d
ev

ol
vi

n
g

ac
co

rd
in

g
to

⇡
an

d
th

e
M

D
P

(w
h
ic

h
gi

ve
s

u
nb

ia
se

d
sa

m
p
le

s
of

v
⇡
(s

))
.

T
D

L
al

go
ri

th
m

s
ac

h
ie

ve
th

is
go

al
in

es
se

nt
ia

ll
y

th
e

sa
m

e
w

ay
w

h
en

th
ey

u
se

m
ax

im
al

ly
-l
on

g
el

ig
ib

il
it
y

tr
ac

es
(�

=
1)

.
A

ll
su

ch
M

on
te

C
ar

lo
m

et
h
od

s
ca

n
b
e

e�
ci

en
t

if
va

lu
e

es
ti

m
at

es
ar

e
n
ee

d
ed

fo
r

on
ly

a
sm

al
l

p
ar

t
of

th
e

st
at

e
sp

ac
e

(i
.e

.,
if

d
is

ve
ry

co
n
ce

nt
ra

te
d
)

b
u
t

te
n
d

to
b
e

in
e�

ci
en

t
(h

ig
h

va
ri

an
ce

)
if

th
e

va
lu

e
fu

n
ct

io
n

n
ee

d
s

to
b
e

ac
cu

ra
te

ly
ap

p
ro

xi
m

at
ed

ov
er

a
la

rg
e

p
or

ti
on

of
th

e
st

at
e

sp
ac

e.
B

ey
on

d
th

es
e

p
ra

ct
ic

al
co

n
si

d
er

at
io

n
s,

it
re

m
ai

n
s

u
n
cl

ea
r

w
h
et

h
er

ac
h
ie

vi
n
g

th
is

go
al

w
ou

ld
b
e

b
et

te
r

or
w

or
se

th
an

ac
h
ie

vi
n
g

on
e

of
th

e
ot

h
er

tw
o

go
al

s.
W

e
w

il
l

n
ot

co
n
si

d
er

th
is

go
al

fu
rt

h
er

in
th

is
p
ap

er
.

7

2.2 Bellman error

The second goal for approximation is to approximately solve the Bellman equation
:

v⇡ = B⇡v⇡,

(8)

where B⇡ : R|S| ! R|S| is the Bellman operator
for policy ⇡, defined by

(B⇡v)(s) =
X

a2A

⇡(s, a)

"
r(s, a) + �

X

s02S

p(s0 |s, a)v(s0)

#
, 8s 2 S, 8v : S ! R. (9)

(If the state and action spaces are continuous, then the sums are replaced by integrals and

the function p(·|s, a) is taken to be a probability density.) The true value function v⇡ is

the unique solution to the Bellman equation, and in this sense the Bellman equation can

be viewed as an alternate way of defining v⇡. For any value function v✓ not equal to v⇡, we

can ask the Bellman equation to hold approximately, v✓ ⇡ B⇡v✓. That is, we can minimize

the Bellman error : BE(✓) = ||v✓ � B⇡v✓||,
(10)

though we cannot expect to drive it to zero if v⇡ is outside the representable subspace.

Figure 1 shows the geometric relationships; note that the Bellman operator is shown as

taking value functions inside the subspace outside to something that is not representable,

and that the point of minimum BE is in general di↵erent from that of minimum VE.

The BE was first proposed as an objective function for DP by Schweitzer and Seidmann

(1985). Baird (1995, 1999) extended it to TDL based on stochastic gradient descent, and

Engel, Mannor, and Meir (2003) extended it to least squares (O(n2)) methods known as

Gaussian Process TDL. In the literature, BE minimization is often referred to as Bellman

residual minimization.

2.3 Projecte
d Bellman error

The third goal for approximation is to approximately solve the projected
Bellman equation:

v✓ = ⇧B⇡v✓.

(11)

Unlike the original Bellman equation, for most function approximators (e.g., linear ones) the

projected Bellman equation can be solved exactly. The original TDL methods (Sutton 1988,

Dayan 1992) converge to this solution, as does least-squares TDL (Bradke & Barto 1996,

Boyan 1999). The goal of achieving (11) exactly is common; less common is to consider

approximating it as an objective. The early work on gradient-TD (e.g., Sutton et al. 2009)

appears to be first to have explicitly proposed minimizing the d-weighted norm of the error

in (11), which we here call the projected
Bellman error :

PBE(✓) = ||v✓ � ⇧B⇡v✓||.
(12)

This objective is best understood by looking at the left side of Figure 1. Starting at v✓,

the Bellman operator takes us outside the subspace, and the projection operator takes us

back into it. The distance between where we end up and where we started is the PBE. The

distance is minimal (zero) when the trip up and back leaves us in the same place.

8

�

(If the state and action spaces are continuous, then the sums are replaced by integrals and
the function p(·|s, a) is taken to be a probability density.) The true value function v⇡ is
the unique solution to the Bellman equation, and in this sense the Bellman equation can
be viewed as an alternate way of defining v⇡. For any value function v✓ not equal to v⇡,
we can ask the Bellman equation to hold approximately, v✓ ⇡ B⇡v✓. The error between the
two sides of this equation we define as the Bellman error (BE):

�̄✓
.
= B⇡v✓ � v✓. (15)

The Bellman error objective is to minimize the norm of this vector:

JBE(✓)
.
=

���̄✓

�� , (16)

Note that we cannot expect to drive �̄✓ to zero if v⇡ is outside the representable subspace.
Figure 2 shows the geometric relationships; note that the Bellman operator is shown as
taking value functions inside the subspace outside to something that is not representable,
and that the that minimizes BE is in general di↵erent from that which minimizes VE.

The BE was first proposed as an objective function for DP by Schweitzer and Seidmann
(1985). Baird (1995, 1999) extended it to TDL based on stochastic gradient descent, and
Engel, Mannor, and Meir (2003) extended it to least squares (O(n2)) methods known as
Gaussian Process TDL. In the literature, BE minimization is often referred to as Bellman
residual minimization.

3.3 Projected Bellman error

The third goal for approximation is to approximately solve the projected Bellman equation:

v✓ = ⇧B⇡v✓. (17)

Unlike the original Bellman equation, the projected Bellman equation can be solved exactly
for linear function approximators. The original TDL methods (Sutton 1988, Dayan 1992)
converge to this solution, as does least-squares TDL (Bradke & Barto 1996, Boyan 1999).
The goal of achieving (17) exactly is common; less common is to consider approximating
it as an objective. The early work on gradient-TD (e.g., Sutton et al. 2009) appears to be
first to have explicitly proposed minimizing the d-weighted norm of the error in (17), which
we here call the projected Bellman error (PBE) objective:

JPBE(✓)
.
= kv✓ � ⇧B⇡v✓k =

��⇧�̄✓

�� . (18)

This objective is best understood by looking at the left side of Figure 2. Starting at v✓, the
Bellman operator takes us outside the subspace, and the projection operator takes us back
into it. The distance between where we end up and where we started is the PBE.

JPBE = 0 min JBE ✓1 ✓2 ⇧v⇡ (min JVE) ⇧v⇡ ⌘ min JVE

⌘ min kVEk min kBEk ✓1 ✓2 ⇧v⇡ (min JVE) ⇧v⇡ ⌘ min JVE

9

(If the state and action spaces are continuous, then the sums are replaced by integrals and
the function p(·|s, a) is taken to be a probability density.) The true value function v⇡ is
the unique solution to the Bellman equation, and in this sense the Bellman equation can
be viewed as an alternate way of defining v⇡. For any value function v✓ not equal to v⇡,
we can ask the Bellman equation to hold approximately, v✓ ⇡ B⇡v✓. The error between the
two sides of this equation we define as the Bellman error (BE):

�̄✓
.
= B⇡v✓ � v✓. (15)

The Bellman error objective is to minimize the norm of this vector:

JBE(✓)
.
=

���̄✓

�� , (16)

Note that we cannot expect to drive �̄✓ to zero if v⇡ is outside the representable subspace.
Figure 2 shows the geometric relationships; note that the Bellman operator is shown as
taking value functions inside the subspace outside to something that is not representable,
and that the that minimizes BE is in general di↵erent from that which minimizes VE.

The BE was first proposed as an objective function for DP by Schweitzer and Seidmann
(1985). Baird (1995, 1999) extended it to TDL based on stochastic gradient descent, and
Engel, Mannor, and Meir (2003) extended it to least squares (O(n2)) methods known as
Gaussian Process TDL. In the literature, BE minimization is often referred to as Bellman
residual minimization.

3.3 Projected Bellman error

The third goal for approximation is to approximately solve the projected Bellman equation:

v✓ = ⇧B⇡v✓. (17)

Unlike the original Bellman equation, the projected Bellman equation can be solved exactly
for linear function approximators. The original TDL methods (Sutton 1988, Dayan 1992)
converge to this solution, as does least-squares TDL (Bradke & Barto 1996, Boyan 1999).
The goal of achieving (17) exactly is common; less common is to consider approximating
it as an objective. The early work on gradient-TD (e.g., Sutton et al. 2009) appears to be
first to have explicitly proposed minimizing the d-weighted norm of the error in (17), which
we here call the projected Bellman error (PBE) objective:

JPBE(✓)
.
= kv✓ � ⇧B⇡v✓k =

��⇧�̄✓

�� . (18)

This objective is best understood by looking at the left side of Figure 2. Starting at v✓, the
Bellman operator takes us outside the subspace, and the projection operator takes us back
into it. The distance between where we end up and where we started is the PBE.

JPBE = 0 min JBE ✓1 ✓2 ⇧v⇡ (min JVE) ⇧v⇡ ⌘ min JVE

⌘ min kVEk min kBEk ✓1 ✓2 ⇧v⇡ (min JVE) ⇧v⇡ ⌘ min JVE

9

where B⇡ : R|S| ! R|S| is the Bellman operator for policy ⇡, defined by

(B⇡v)(s)
.
=

X

a2A
⇡(s, a)

"
r(s, a) + �

X

s02S
p(s0|s, a)v(s0)

#
, 8s 2 S, 8v : S ! R, (14)

which can also be written,

B⇡v = r⇡ + �P⇡v, 8v : S ! R, (15)

where r⇡ 2 R|S| is a vector whose entries give the expected immediate reward from each
state under ⇡, [r⇡]s =

P
a2A ⇡(s, a)r(s, a), and P⇡ 2 R|S| ⇥ R|S| is a state-transition matrix

for policy ⇡, with entries [P⇡]ji =
P

a2A ⇡(i, a)p(j|i, a). The true value function v⇡ is the
unique solution to the Bellman equation, and in this sense the Bellman equation can be
viewed as an alternate way of defining v⇡. For any value function v✓ not equal to v⇡, we
can ask the Bellman equation to hold approximately, v✓ ⇡ B⇡v✓. The error between the
two sides of this equation we define as the Bellman error (BE):

�̄✓
.
= B⇡v✓ � v✓. (16)

The Bellman error objective is to minimize the norm of this vector:

JBE(✓)
.
=

���̄✓

�� , (17)

Note that we cannot expect to drive �̄✓ to zero if v⇡ is outside the representable subspace.
Figure 2 shows the geometric relationships; note that the Bellman operator is shown as
taking value functions inside the subspace outside to something that is not representable,
and that the ✓ that minimizes BE is in general di↵erent from that which minimizes VE.

The BE was first proposed as an objective function for DP by Schweitzer and Seidmann
(1985). Baird (1995, 1999) extended it to TDL based on stochastic gradient descent, and
Engel, Mannor, and Meir (2003) extended it to least squares (O(n2)) methods known as
Gaussian Process TDL. In the literature, BE minimization is often referred to as Bellman
residual minimization.

3.3 Projected Bellman error

The third goal for approximation is to approximately solve the projected Bellman equation:

v✓ = ⇧(B⇡v✓). (18)

Unlike the original Bellman equation, the projected Bellman equation can be solved exactly
for linear function approximators. The original TDL methods (Sutton 1988, Dayan 1992)
converge to this solution, as does least-squares TDL (Bradke & Barto 1996, Boyan 1999).
The goal of achieving (18) exactly is common; less common is to consider approximating it
as an objective. Early work on gradient-TD (e.g., Sutton et al. 2009) appears to have been
the first to explicitly propose minimizing the d-weighted norm of the error in (18), which
we here call the projected Bellman error (PBE) objective:

JPBE(✓)
.
=

��⇧�̄✓

�� . (19)

9

v✓
.
= v̂(·,✓) as a giant vector 2 R|S|

Va
lu

e
Er

ro
r

TD converges to a fixed point a biased but
interesting answer

21

9.4. LINEAR METHODS 197

by the inner product between ✓ and �(s):

v̂(s,✓)
.
= ✓>�(s)

.
=

nX

i=1

✓i�i(s). (9.8)

In this case the approximate value function is said to be linear in the weights, or
simply linear. The individual functions �i : S ! R are called basis functions because
they form a linear basis for the set of approximate functions of this form. Construct-
ing n-dimensional feature vectors to represent states is the same as selecting a set of
n basis functions.

It is natural to use SGD updates with linear function approximation. The gradient
of the approximate value function with respect to ✓ in this case is

rv̂(s,✓) = �(s).

Thus, the general SGD update (9.7) reduces to a particularly simple form in the
linear case.

Because it is so simple, the linear SGD case is one of the most favorable for
mathematical analysis. Almost all useful convergence results for learning systems of
all kinds are for linear (or simpler) function approximation methods.

In particular, in the linear case there is only one optimum (or, in degenerate cases,
one set of equally good optima), and thus any method that is guaranteed to converge
to or near a local optimum is automatically guaranteed to converge to or near the
global optimum. For example, the gradient Monte Carlo algorithm presented in the
previous section converges to the global optimum of the MSVE under linear function
approximation if ↵ is reduced over time according to the usual conditions.

The semi-gradient TD(0) algorithm presented in the previous section also con-
verges under linear function approximation, but this does not follow from general
results on SGD; a separate theorem is necessary. The weight vector converged to is
also not the global optimum, but rather a point near the local optimum. It is useful
to consider this important case in more detail, specifically for the continuing case.
The update at each time t is

✓t+1
.
= ✓t + ↵

⇣
Rt+1 + �✓>

t �t+1 � ✓>
t �t

⌘
�t (9.9)

= ✓t + ↵
⇣
Rt+1�t � �t

�
�t � ��t+1

�>
✓t

⌘
,

where here we have used the notational shorthand �t = �(St). Once the system
has reached steady state, for any given ✓t, the expected next weight vector can be
written

E[✓t+1|✓t] = ✓t + ↵(b � A✓t), (9.10)

where

b
.
= E[Rt+1�t] 2 Rn and A

.
= E

h
�t

�
�t � ��t+1

�>
i

2 Rn ⇥ Rn (9.11)

9.4. LINEAR METHODS 197

by the inner product between ✓ and �(s):

v̂(s,✓)
.
= ✓>�(s)

.
=

nX

i=1

✓i�i(s). (9.8)

In this case the approximate value function is said to be linear in the weights, or
simply linear. The individual functions �i : S ! R are called basis functions because
they form a linear basis for the set of approximate functions of this form. Construct-
ing n-dimensional feature vectors to represent states is the same as selecting a set of
n basis functions.

It is natural to use SGD updates with linear function approximation. The gradient
of the approximate value function with respect to ✓ in this case is

rv̂(s,✓) = �(s).

Thus, the general SGD update (9.7) reduces to a particularly simple form in the
linear case.

Because it is so simple, the linear SGD case is one of the most favorable for
mathematical analysis. Almost all useful convergence results for learning systems of
all kinds are for linear (or simpler) function approximation methods.

In particular, in the linear case there is only one optimum (or, in degenerate cases,
one set of equally good optima), and thus any method that is guaranteed to converge
to or near a local optimum is automatically guaranteed to converge to or near the
global optimum. For example, the gradient Monte Carlo algorithm presented in the
previous section converges to the global optimum of the MSVE under linear function
approximation if ↵ is reduced over time according to the usual conditions.

The semi-gradient TD(0) algorithm presented in the previous section also con-
verges under linear function approximation, but this does not follow from general
results on SGD; a separate theorem is necessary. The weight vector converged to is
also not the global optimum, but rather a point near the local optimum. It is useful
to consider this important case in more detail, specifically for the continuing case.
The update at each time t is

✓t+1
.
= ✓t + ↵

⇣
Rt+1 + �✓>

t �t+1 � ✓>
t �t

⌘
�t (9.9)

= ✓t + ↵
⇣
Rt+1�t � �t

�
�t � ��t+1

�>
✓t

⌘
,

where here we have used the notational shorthand �t = �(St). Once the system
has reached steady state, for any given ✓t, the expected next weight vector can be
written

E[✓t+1|✓t] = ✓t + ↵(b � A✓t), (9.10)

where

b
.
= E[Rt+1�t] 2 Rn and A

.
= E

h
�t

�
�t � ��t+1

�>
i

2 Rn ⇥ Rn (9.11)

198 CHAPTER 9. ON-POLICY PREDICTION WITH APPROXIMATION

From (9.10) it is clear that, if the system converges, it must converge to the weight
vector ✓TD at which

b � A✓TD = 0

) b = A✓TD

) ✓TD

.
= A�1b. (9.12)

This quantity is called the TD fixpoint. In fact linear semi-gradient TD(0) converges
to this point. Some of the theory proving its convergence, and the existence of the
inverse above, is given in the box.

Proof of Convergence of Linear TD(0)

What properties assure convergence of the linear TD(0) algorithm (9.9)? Some
insight can be gained by rewriting (9.10) as

E[✓t+1|✓t] = (I � ↵A)✓t + ↵b. (9.13)

Note that the matrix A multiplies the weight vector ✓t and not b; only A is
important to convergence. To develop intuition, consider the special case in
which A is a diagonal matrix. If any of the diagonal elements are negative,
then the corresponding diagonal element of I � ↵A will be greater than one,
and the corresponding component of ✓t will be amplified, which will lead to
divergence if continued. On the other hand, if the diagonal elements of A
are all positive, then ↵ can be chosen smaller than one over the largest of
them, such that I � ↵A is diagonal with all diagonal elements between 0 and
1. In this case the first term of the update tends to shrink ✓t, and stability
is assured. In general case, ✓t will be reduced toward zero whenever A is
positive definite, meaning y>Ay > 0 for real vector y. Positive definiteness
also ensures that the inverse A�1 exists.

For linear TD(0), in the continuing case with � < 1, the A matrix (9.11)
can be written

A =
X

s

d(s)
X

a

⇡(a|s)
X

r,s0

p(r, s0|s, a)�(s)
�
�(s) � ��(s0)

�>

=
X

s

d(s)
X

s0

p(s0|s)�(s)
�
�(s) � ��(s0)

�>

=
X

s

d(s)�(s)

✓
�(s) � �

X

s0

p(s0|s)�(s0)

◆>

= �>D(I � �P)�,

where d(s) is the stationary distribution under ⇡, p(s0|s) is the probability
of transition from s to s0 under policy ⇡, P is the |S| ⇥ |S| matrix of these
probabilities, D is the |S| ⇥ |S| diagonal matrix with the d(s) on its diagonal,
and � is the |S| ⇥ n matrix with �(s) as its rows. From here it is clear that

TD(0) update:

In expectation:

Fixed-point analysis:

9.4. LINEAR METHODS 199

the inner matrix D(I � �P) is key to determining the positive definiteness of
A.

For a key matrix of this type, positive definiteness is assured if all of its
columns sum to a nonnegative number. This was shown by Sutton (1988, p. 27)
based on two previously established theorems. One theorem says that any
matrix M is positive definite if and only if the symmetric matrix S = M+M>

is positive definite (Sutton 1988, appendix). The second theorem says that
any symmetric real matrix S is positive definite if all of its diagonal entries
are positive and greater than the sum of the corresponding o↵-diagonal entries
(Varga 1962, p. 23). For our key matrix, D(I � �P), the diagonal entries are
positive and the o↵-diagonal entries are negative, so all we have to show is
that each row sum plus the corresponding column sum is positive. The row
sums are all positive because P is a stochastic matrix and � < 1. Thus it only
remains to show that the column sums are nonnegative. Note that the row
vector of the column sums of any matrix M can be written as 1>M, where 1 is
the column vector with all components equal to 1. Let d denote the |S|-vector
of the d(s), where d = P>d by virtue of d being the stationary distribution.
The column sums of our key matrix, then, are:

1>D(I � �P) = d>(I � �P)

= d> � �d>P

= d> � �d> (because d is the stationary distribution)

= (1 � �)d,

all components of which are positive. Thus, the key matrix and its A matrix
are positive definite, and on-policy TD(0) is stable. (Additional conditions
and a schedule for reducing ↵ over time are needed to prove convergence with
probability one.)

At the TD fixpoint, it has also been proven (in the continuing case) that the MSVE
is within a bounded expansion of the lowest possible error:

MSVE(✓TD)  1

1 � �
min
✓

MSVE(✓). (9.14)

That is, the asymptotic error of the TD method is no more than 1
1��

times the small-
est possible error, that attained in the limit by the Monte Carlo method. Because
� is often near one, this expansion factor can be quite large, so there is substantial
potential loss in asymptotic performance with the TD method. On the other hand,
recall that the TD methods are often of vastly reduced variance compared to Monte
Carlo methods, and thus faster, as we saw in Chapters 6 and 7. Which method will
be best depends on the nature of the approximation and problem, and on how long
learning contiunues.

A bound analogous to (9.14) applies to other on-policy bootstrapping methods
as well. For example, linear semi-gradient DP (Eq. 9.7 with Ut

.
=

P
a
⇡(a|St)

P
s0,r

Guarantee:

Example: TD updates

22

 updatesTD(λ)

23

Comments

For n-step TD and , the parameters control how far
the updates end up from the optimal projection

Convergence happens if the Markov chain (resulting from
the MDP plus the policy) is ergodic (ie we can get from
any state to any other state with non-zero probability, not
necessarily right away)

MC always converges to the best L2 approximation of
on the plane defined by the features

TD(λ)

vπ

24

What about non-linear function
approximation?

It’s a mess!

We don’t have a nice plane on which to project, but rather
some curved manifold

Bootstrapping can be problematic in theory (more on this
later)

25

What about action-value functions?

They have a very strong relationship to

(Or)

All contraction arguments still apply

vπ

vπ = πqπ
vπ(s) = ∑

a
π(a |s)qπ(s, a)

qπ = r + γPvπ = r + γPπqπ

26

