Lecture 9:Why do policy evaluation
algorithms work?! Control



Recall: TD-family for policy evaluation

@ The TD family of methods is between MC and DP
@ Interpolating in terms of credit assignment length!

@ With bootstrapping (TD), we don’t get true gradient
descent methods with function approximation

@ this complicates the analysis

@ but learning is can be much faster



Recall: Unified View
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Recall: Different Targets

@ Monte Carlo: Gy = Riy1 +YRit2 +V?Rips+ -+ 1Ry

e 1D: Gﬁl) = Riv1 +vVi(Sia1)

@ Use V; to estimate remaining return

@ n-step TD:
@ 2 step return: G\* = Ry 1 + YRiys + 72 Vi(Sis2)

@ n-step return: G\ = Ry 1 +YRiyo + 42 + - + 9" Risn + 7" Vi(Sitn)

with G =G, ift+n>T



Do policy evaluation methods converge?

@ If so, under what circumstances? To what solution?
@ DP policy evaluation in the tabular case
@ TD methods in the tabular case
@ TD methods with function approximation

@ MC with function approximation



Setup: Finite MDPs

Recall in general expected reward is a function r(s, a)

This can be represented as a matrix: r € RISIXIA

Transitions P(s’| s, a) can be represented as a matrix:
P e RISIXIAIX|S]

@ Suppose we have a fixed policy

Policy can be represented as a matrix containing, for every
state, a row containing z(a|s): 7 € RISIXIA]

(Reason for this coming soon)

@ Value function can be represented as a vector of size

number of states: v, € RI®!






Bellman equation in vector form

Let P, = np.einsum(’sa, sax — sx', z, P) be a
| S| X | §|matrix of probabilities of transitions between
states under policy

Let r, = np.einsum(’sa, sa — s, w, r) be asize | S|
column vector representing the expected immediate reward
from every state

The Bellman equation for policy evaluation can then be re-
written as: v, = r, +yP_v_
As discussed before, is we know the model (7, P,), this is

a linear system of equations

This system of equations has a unique solution:
~1

v, =U—yP,) 1,

The inverse exists because P_ 1s a stochastic matrix (rows



DP for policy evaluation

@ The algorithm we had before can be summarized as:
VO — O

Repeat: v, ., =1, + 7P, v,

@ Does the value function end up approximating the true
unique value function v_?



Example: Bellman update




CO=-Norm

If we have two vectors u and v, we can define their
distance as the largest absolute difference in corresponding

values: | [u — v||_ = max |u(s) — v(s) |
s€|S]|

@ Very useful for analyzing stability of algorithms!

If the max difference is decreasing as we consider vectors
obtained through iteration, then all other differences are
also decreasing

So we will have convergence!
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DP policy evaluation convergence

We know v, =r_+ yP

ﬂvﬂ'
Subtract from this the DP update: v, | = r, + yP v,
We have:

r]l'-l_yP]Z'vﬂ_rﬂ'_yPﬂ'vkl |oo
yPﬂ'(vﬂ'_ Vk)l |OO
<P Ve =il | T

S yl |V77;_Vk| |OO
So the co-norm of the error at each iteration decreases by at
least a factor of y!

This 1s called a contraction
By induction, at iteration k: | [v, — v, || < al [V, —=Vvoll,
So the error becomes 0 in the limit! And decreases fast
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What about TD?

Every time you are in state s you update with a sample
target: R + yV(s’)

What is the expected value of the target’
E, [R + yV(s) | S] =r,(s"|s) + }/Z P_(s'| s)V(s)
S/

So the expected target 1s the same as for DP!

Therefore, contraction argument applies for the expected
TD update!

Footnote: to show convergence of the incremental
algorithm we also need to show that updates have finite
variance, and impose Robins-Monroe conditions on the
learning rate
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What about 2-step TD?

@ For 2-step, the expected target is: 7, + yP,r, + y*P2V

@ Is this a contraction? If so with what factor?

15



What about n-step TD?

Expected update: r, + yP,r, + ... + y" ' P lr_+ y"P'V

So as we increase n, the influence of V (aka bias)
decreases!

@ And variance from the reward terms potentially increases

@ In the limit of n — oo, we get MC! No bias from using V

to bootstrap, but potentially high variance

All of the n-step algorithms converge because of the same
contraction argument
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Recall: Eligibility traces (forward view)

@ The A-return can be rewritten as:

T—t-1
GY = (1-N Y AE + AT,
Yn:l
Until termination After termination

e If A =1, you get the MC target:

T—t—1
Gy = 1-1 Y 1"ie + 1TG = Gy

n=1

e If A =0, you get the TD(0) target:

T—-t—1
G = (1-0) ) oG 4+ o7 lg, = G

n=1
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Convergence of TD(/)

@ This 1s a convex combination of n-step targets

The expected value of each of those 1s a contraction with at
least factor y

So the convex combination is also a contraction!

Therefore in the tabular case we have convergence for all
values of A to v,

Footnote on variance and learning rates remains
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Linear FA

@ Features define the plane and the quality of solutions!

@ Example: Tile coding, Fourier basis
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Geometric intuition

ve = 0(-,0) as a giant vector € R!®!

(Brv)(s) = Z (s, a) [r(s, a) + 7y Z p(s']s,a)v(s)
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TD converges to a fixed point a biased but
interesting answer

TD(0) update: Fixed-point analysis:
011 =0 + Oé(Rt+1 + 70, pry1 — Othbt) (0N b—Af0;p =0
b= A0
=0; + Oé(Rt+1</5t — ¢y — 7¢t+1)T9t> ~ . _:er
= O0rp =A"b
In eXpeCtation: Guarantee:
E[0t+1’0t] = et + Oé(b - AOt), 1 .
<
MSVE(07p) < - min MSVE(0)

where

= J ) N —
b =E[Ri11¢:] € R" and A= E[qbt (¢ — th)T] eR"xR" VE(We) < G- minVE(w)
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TD(A) updates




Comments

@ For n-step TD and T'D(4), the parameters control how far
the updates end up from the optimal projection

@ Convergence happens if the Markov chain (resulting from
the MDP plus the policy) 1s ergodic (ie we can get from
any state to any other state with non-zero probability, not
necessarily right away)

@ MC always converges to the best L2 approximation of v_
on the plane defined by the features
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What about non-linear function
approximation?

@ It’s a mess!

@ We don’t have a nice plane on which to project, but rather
some curved manifold

@ Bootstrapping can be problematic in theory (more on this
later)
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What about action-value functions?

They have a very strong relationship to v,

vV, =74,

(Orv,(s) = )" m(al] $)q,(s, a))

q,=r+yPv_=r+yPrq,

All contraction arguments still apply
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