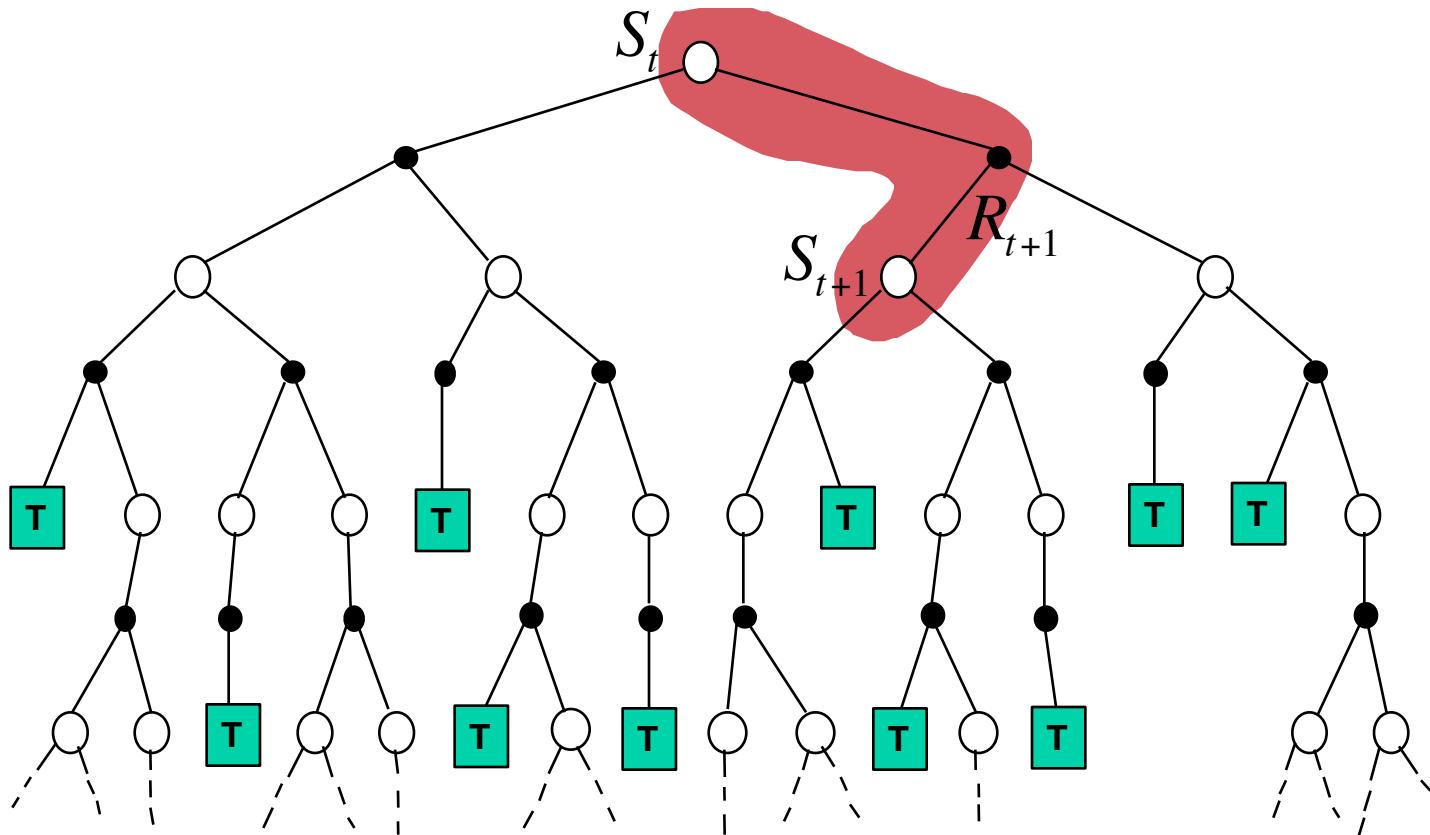


Lecture 8: More on Temporal-Difference Learning. Eligibility traces.

Recall: Temporal-Difference Learning: Between MC and DP!

$$V(S_t) \leftarrow V(S_t) + \alpha [R_{t+1} + \gamma V(S_{t+1}) - V(S_t)]$$



Temporal-Difference (TD) Prediction

Policy Evaluation (the prediction problem):

for a given policy π , compute the state-value function v_π

Simple every-visit Monte Carlo method:

$$V(S_t) \leftarrow V(S_t) + \alpha [G_t - V(S_t)]$$

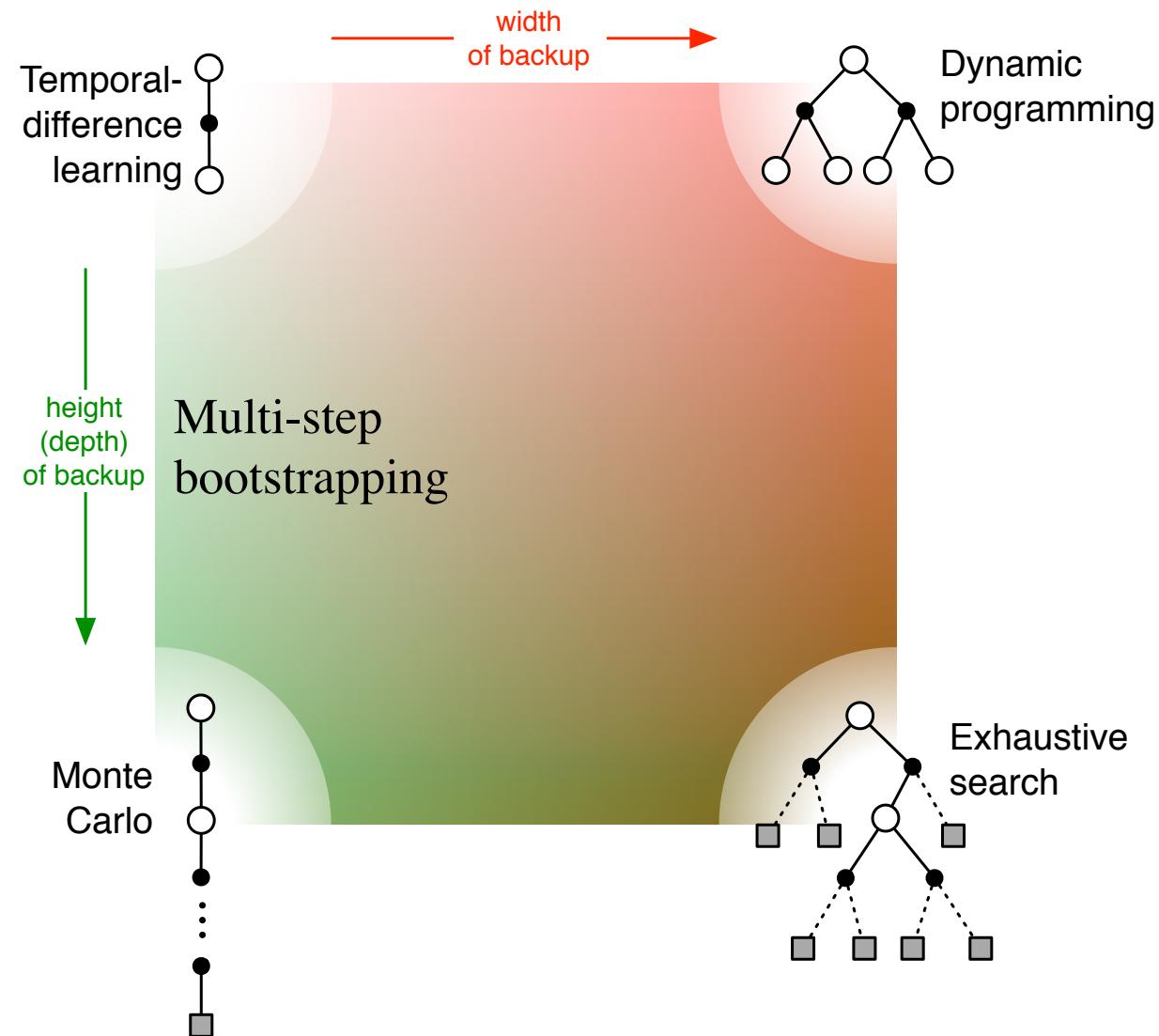
target: the actual return after time t

The simplest temporal-difference method TD(0):

$$V(S_t) \leftarrow V(S_t) + \alpha [R_{t+1} + \gamma V(S_{t+1}) - V(S_t)]$$

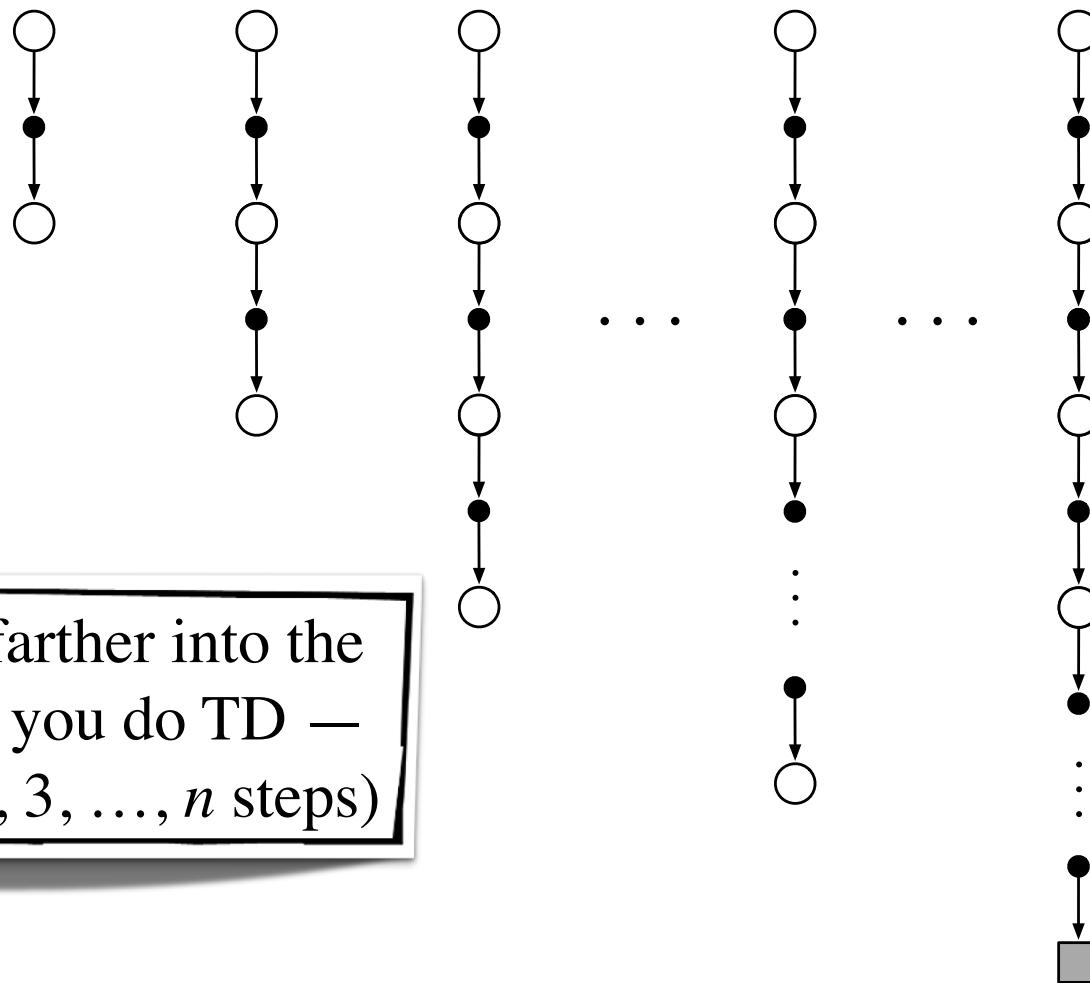
target: an estimate of the return

Unified View



n-step TD Prediction

1-step TD
and TD(0) 2-step TD 3-step TD n -step TD ∞ -step TD
and Monte Carlo



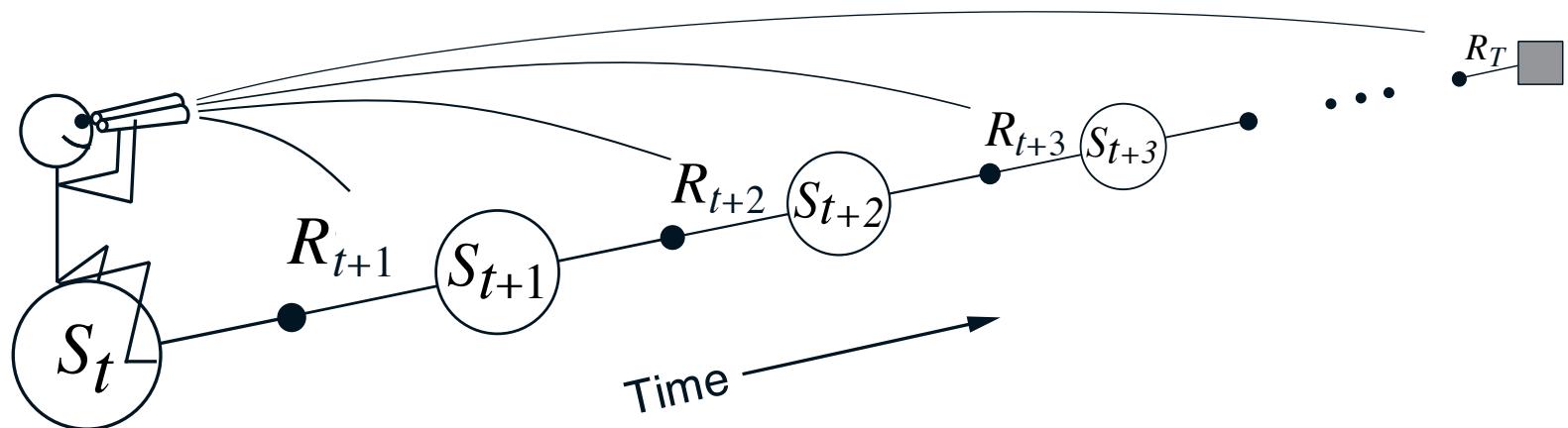
Idea: Look farther into the future when you do TD — backup (1, 2, 3, ..., n steps)

Mathematics of n -step TD Returns/Targets

- Monte Carlo: $G_t \doteq R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \cdots + \gamma^{T-t-1} R_T$
- TD:
 - Use V_t to estimate remaining return
- n -step TD:
 - 2 step return: $G_t^{(2)} \doteq R_{t+1} + \gamma R_{t+2} + \gamma^2 V_t(S_{t+2})$
 - n -step return: $G_t^{(n)} \doteq R_{t+1} + \gamma R_{t+2} + \gamma^2 + \cdots + \gamma^{n-1} R_{t+n} + \gamma^n V_t(S_{t+n})$
with $G_t^{(n)} \doteq G_t$ if $t + n \geq T$

Forward View

- Look forward from each state to determine update from future states and rewards:



***n*-step TD**

- Recall the *n*-step return:

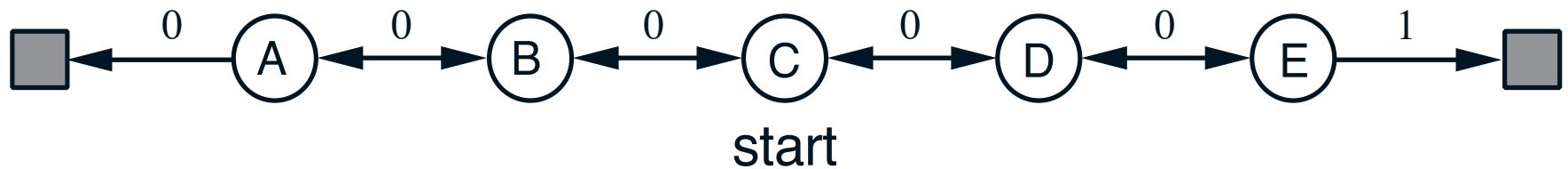
$$G_t^{(n)} \doteq R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{n-1} R_{t+n} + \gamma^n V_{t+n-1}(S_{t+n}), \quad n \geq 1, 0 \leq t < T-n$$

- Of course, this is not available until time *t+n*
- The natural algorithm is thus to **wait** until then:

$$V_{t+n}(S_t) \doteq V_{t+n-1}(S_t) + \alpha \left[G_t^{(n)} - V_{t+n-1}(S_t) \right], \quad 0 \leq t < T,$$

- $w_{t+1} \leftarrow w_t + \alpha(G_t^{(n)} - V_w(S_t)) \nabla_w V_w(S_t)$, with FA
- This is called ***n*-step TD**

Random Walk Examples



- Suppose the trajectory is $C \rightarrow D \rightarrow E \rightarrow T$
- How does 2-step TD work here?
- How about 3-step TD?

***n*-step TD for estimating $V \approx v_\pi$**

Initialize $V(s)$ arbitrarily, $s \in \mathcal{S}$

Parameters: step size $\alpha \in (0, 1]$, a positive integer n

All store and access operations (for S_t and R_t) can take their index mod n

Repeat (for each episode):

Initialize and store $S_0 \neq \text{terminal}$

$$T \leftarrow \infty$$

For $t = 0, 1, 2, \dots$:

If $t < T$, then:

Take an action according to $\pi(\cdot | S_t)$

Observe and store the next reward as R_{t+1} and the next state as S_{t+1}

If S_{t+1} is terminal, then $T \leftarrow t + 1$

$\tau \leftarrow t - n + 1$ (τ is the time whose state's estimate is being updated)

If $\tau \geq 0$:

$$G \leftarrow \sum_{i=\tau+1}^{\min(\tau+n, T)} \gamma^{i-\tau-1} R_i$$

If $\tau + n < T$, then: $G \leftarrow G + \gamma^n V(S_{\tau+n})$

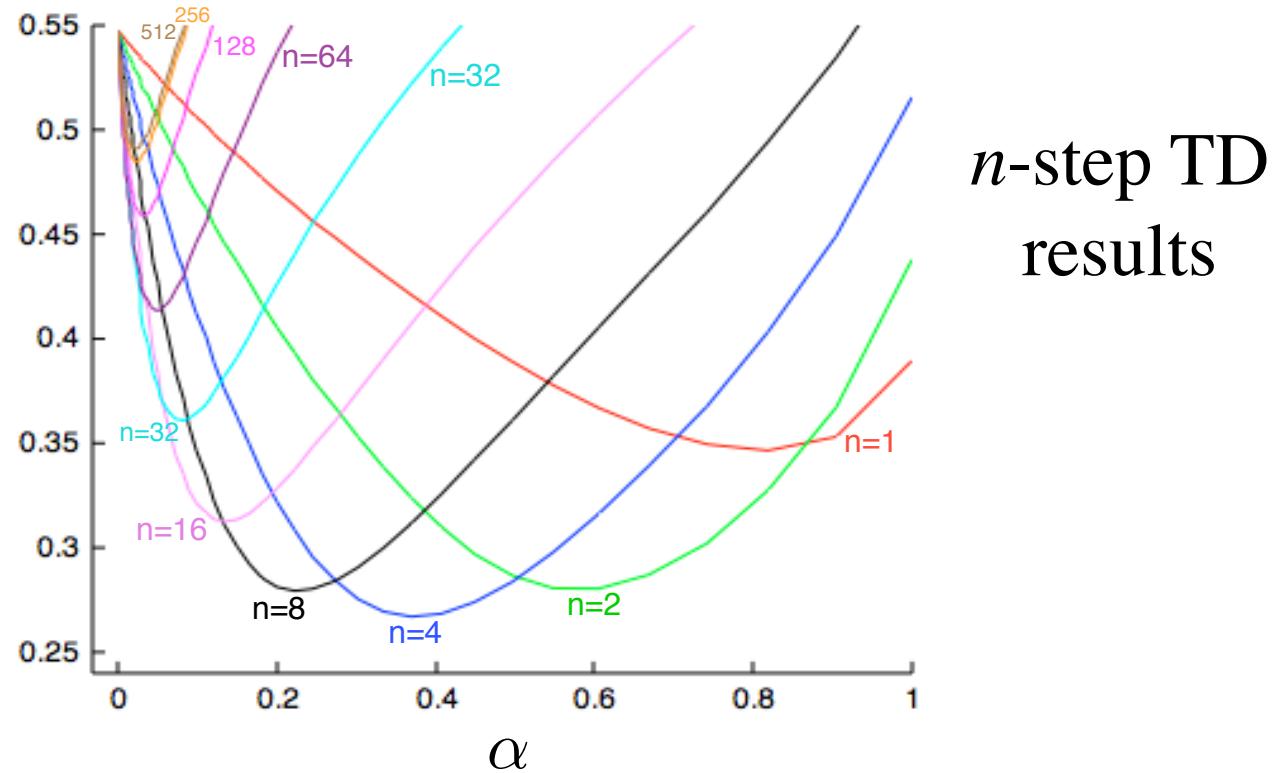
$$(G_\tau^{(n)})$$

$$V(S_\tau) \leftarrow V(S_\tau) + \alpha [G - V(S_\tau)]$$

Until $\tau = T - 1$

A Larger Example – 19-state Random Walk

Average RMS error over 19 states and first 10 episodes



- An intermediate α is best
- An intermediate n is best
- Do you think there is an optimal n ? for every task?

Recall: RL with function approximation

General SGD: $\theta \leftarrow \theta - \alpha \nabla_{\theta} Error_t^2$

For VFA: $\leftarrow \theta - \alpha \nabla_{\theta} [Target_t - \hat{v}(S_t, \theta)]^2$

Chain rule: $\leftarrow \theta - 2\alpha [Target_t - \hat{v}(S_t, \theta)] \nabla_{\theta} [Target_t - \hat{v}(S_t, \theta)]$

Semi-gradient: $\leftarrow \theta + \alpha [Target_t - \hat{v}(S_t, \theta)] \nabla_{\theta} \hat{v}(S_t, \theta)$

Linear case: $\leftarrow \theta + \alpha [Target_t - \hat{v}(S_t, \theta)] \phi(S_t)$

Action-value form: $\theta \leftarrow \theta + \alpha [Target_t - \hat{q}(S_t, A_t, \theta)] \phi(S_t, A_t)$

Different algorithms: Different Targets!

- Monte Carlo:

$$G_t \doteq R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \cdots + \gamma^{T-t-1} R_T$$

- TD:

$$G_t^{(1)} \doteq R_{t+1} + \gamma V_t(S_{t+1})$$

- Use V_t to estimate remaining return

- n -step TD:

- 2 step return:

$$G_t^{(2)} \doteq R_{t+1} + \gamma R_{t+2} + \gamma^2 V_t(S_{t+2})$$

- n -step return:

$$G_t^{(n)} \doteq R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \cdots + \gamma^{n-1} R_{t+n} + \gamma^n V_t(S_{t+n})$$
$$G_t^{(n)} \doteq G_t \text{ if } t+n \geq T$$

***n*-step semi-gradient TD for estimating $\hat{v} \approx v_\pi$**

Input: the policy π to be evaluated

Input: a differentiable function $\hat{v} : \mathcal{S}^+ \times \mathbb{R}^d \rightarrow \mathbb{R}$ such that $\hat{v}(\text{terminal}, \cdot) = 0$

Algorithm parameters: step size $\alpha > 0$, a positive integer n

Initialize value-function weights \mathbf{w} arbitrarily (e.g., $\mathbf{w} = \mathbf{0}$)

All store and access operations (S_t and R_t) can take their index mod $n + 1$

Loop for each episode:

Initialize and store $S_0 \neq \text{terminal}$

$$T \leftarrow \infty$$

Loop for $t = 0, 1, 2, \dots :$

| If $t < T$, then:

Take an action according to $\pi(\cdot | S_t)$

Observe and store the next reward as R_{t+1} and the next state as S_{t+1}

If S_{t+1} is terminal, then $T \leftarrow t + 1$

$\tau \leftarrow t - n + 1$ (τ is the time whose state's estimate is being updated)

If $\tau \geq 0$:

$$G \leftarrow \sum_{i=\tau+1}^{\min(\tau+n, T)} \gamma^{i-\tau-1} R_i$$

If $\tau + n < T$, then: $G \leftarrow G + \gamma^n \hat{v}(S_{\tau+n}, \mathbf{w})$

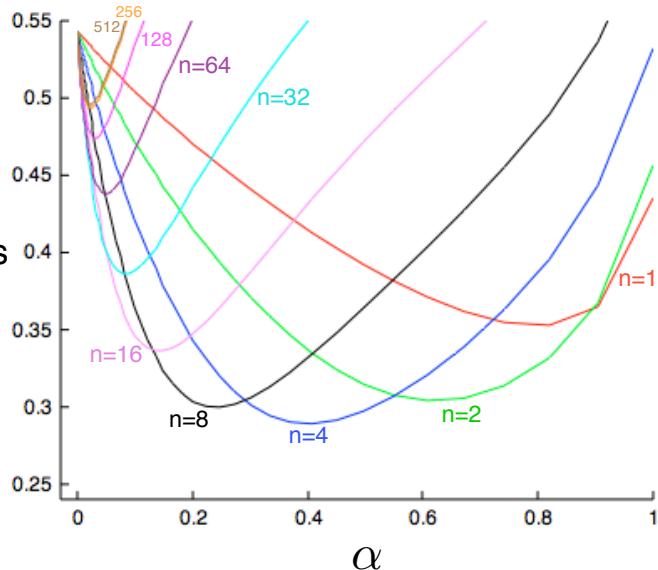
$$(G_{\tau:\tau+n})$$

$$\mathbf{w} \leftarrow \mathbf{w} + \alpha [G - \hat{v}(S_\tau, \mathbf{w})] \nabla \hat{v}(S_\tau, \mathbf{w})$$

Until $\tau = T - 1$

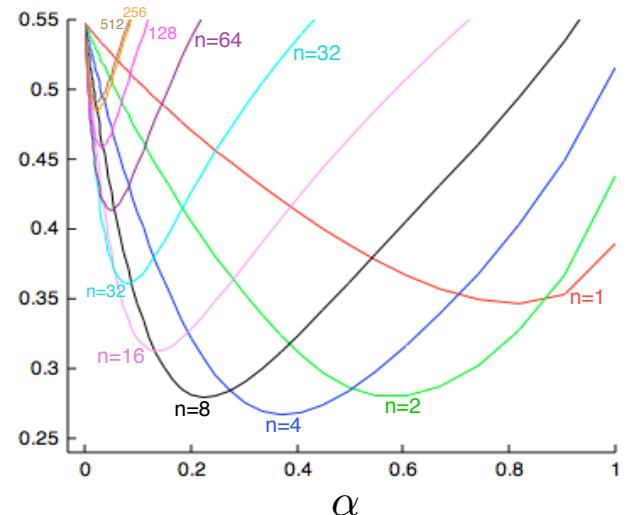
Bootstrapping also speeds learning with FA

Average RMS error
over 1000 states
and first 10
episodes



1000 states aggregated
into 20 groups of 50

Average RMS error
over 19 states
and first 10
episodes



19 states tabular

Conclusions Regarding n -step Methods (so far)

- Generalize Temporal-Difference and Monte Carlo learning methods, sliding from one to the other as n increases
 - $n = 1$ is TD(0) $n = \infty$ is MC
 - an intermediate n is often much better than either extreme
 - applicable to both continuing and episodic problems
- There is some cost in computation
 - need to remember the last n states
 - learning is delayed by n steps
 - per-step computation is small and uniform, like TD

Eligibility Traces

- Another way of interpolating between MC and TD methods
- A way of implementing *compound λ -return* targets
- A basic mechanistic idea — a short-term, fading memory
- A new style of algorithm development/analysis
 - the forward-view \Leftrightarrow backward-view transformation
 - Forward view:
conceptually simple — good for theory, intuition
 - Backward view:
computationally congenial implementation of the f. view

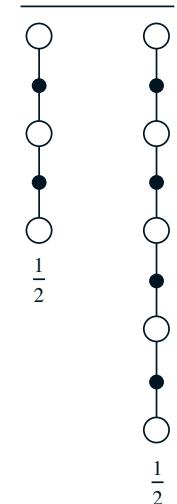
Any set of update targets can be *averaged* to produce new *compound* update targets

- For example, half a 2-step plus half a 4-step

$$U_t = \frac{1}{2}G_t^{(2)} + \frac{1}{2}G_t^{(4)}$$

- Called a compound backup
 - Draw each component
 - Label with the weights for that component

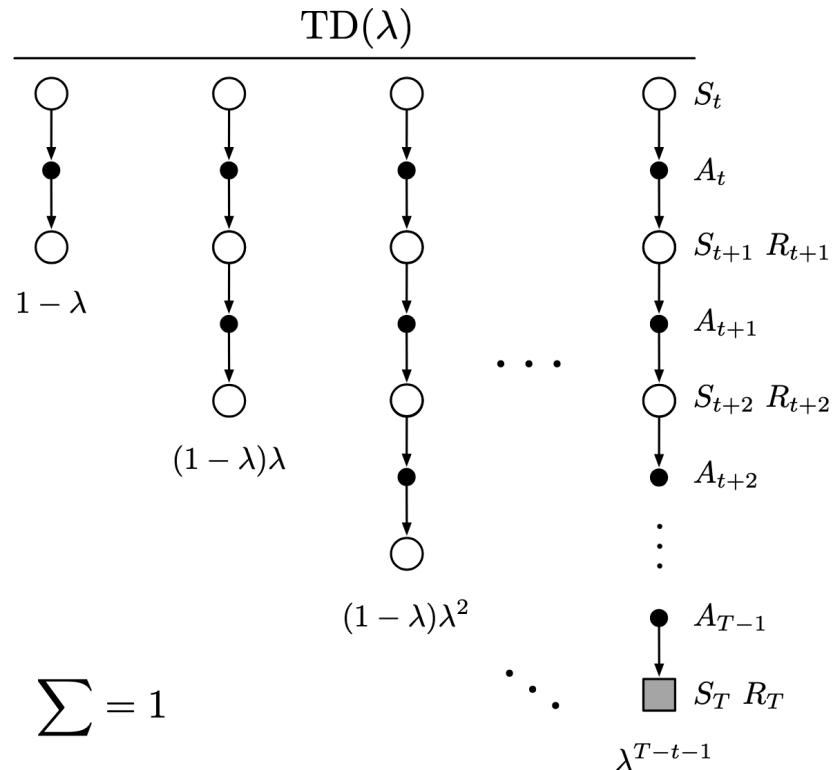
A *compound* backup



The λ -return is a compound update target

- The λ -return a target that averages all n -step targets
- Each weighted by λ^{n-1}

$$G_t^\lambda = (1 - \lambda) \sum_{n=1}^{T-t-1} \lambda^{n-1} G_{t:t+n} + \lambda^{T-t-1} G_t,$$



Relation to TD(0) and MC

- The λ -return can be rewritten as:

$$G_t^\lambda = \underbrace{(1 - \lambda) \sum_{n=1}^{T-t-1} \lambda^{n-1} G_t^{(n)}}_{\text{Until termination}} + \underbrace{\lambda^{T-t-1} G_t}_{\text{After termination}}$$

- If $\lambda = 1$, you get the MC target:

$$G_t^\lambda = (1 - 1) \sum_{n=1}^{T-t-1} 1^{n-1} G_t^{(n)} + 1^{T-t-1} G_t = G_t$$

- If $\lambda = 0$, you get the TD(0) target:

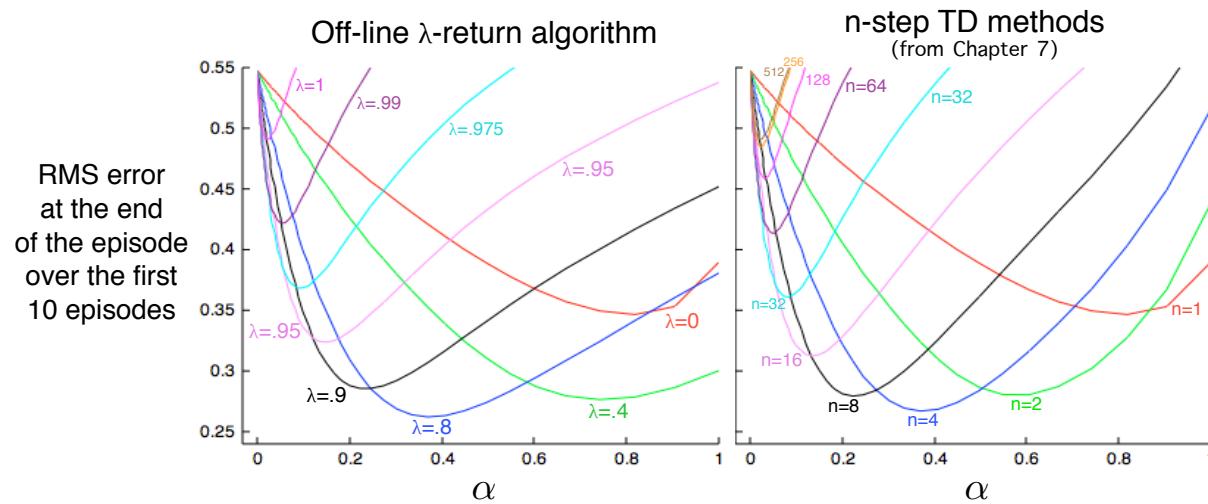
$$G_t^\lambda = (1 - 0) \sum_{n=1}^{T-t-1} 0^{n-1} G_t^{(n)} + 0^{T-t-1} G_t = G_t^{(1)}$$

The off-line λ -return “algorithm”

- Wait until the end of the episode (offline)
- Then go back over the time steps, updating

$$w_{t+1} \leftarrow w_t + \alpha(G_t^n - V_w(S_t)) \nabla_w V_w(S_t)$$

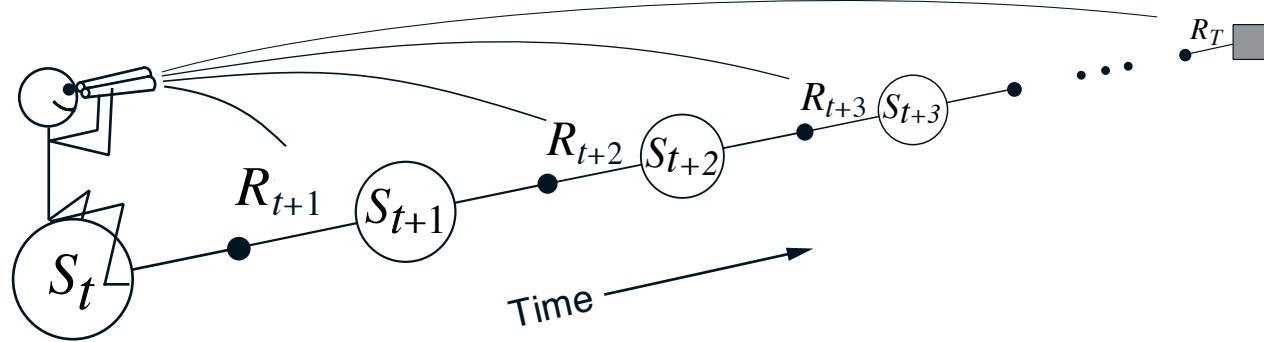
The λ -return alg performs similarly to n -step on the 19-state random walk (Tabular)



Intermediate λ is best (just like intermediate n is best)
 λ -return slightly better than n -step

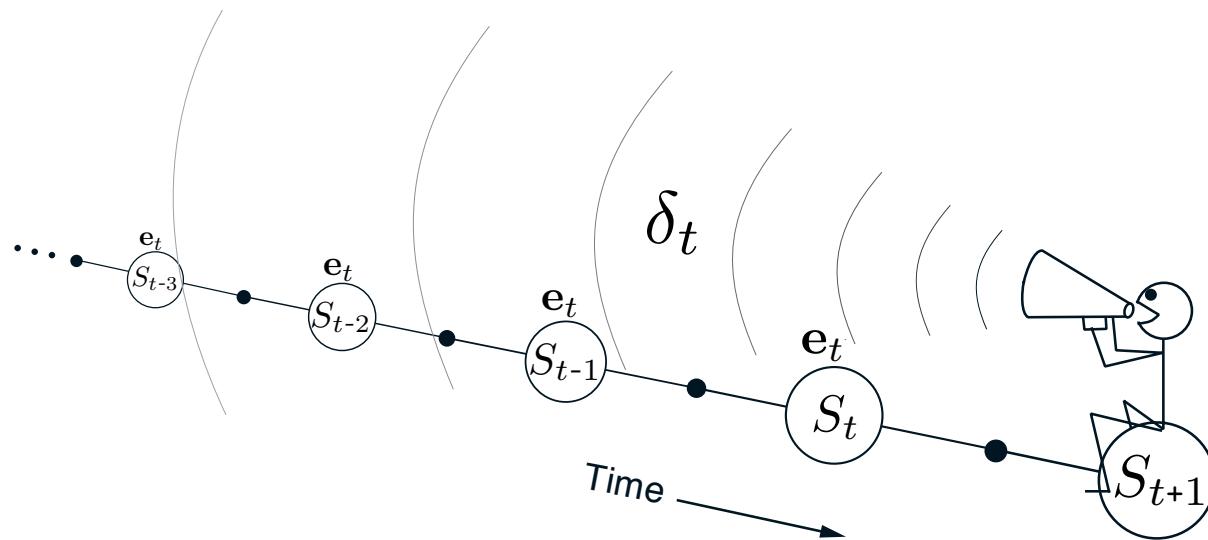
The forward view

- Look forward from each state to determine update from future states and rewards:



The backward view

- Shout the TD error backwards
- The traces fade with temporal distance by $\gamma\lambda$



Eligibility traces (mechanism)

- The forward view was for theory
- The backward view is for *mechanism*
- New memory vector called *eligibility trace* $\mathbf{e}_t \in \mathbb{R}^n \geq \mathbf{0}$
 - On each step, decay each component by $\gamma\lambda$ and increment the trace for the current state by 1
 - *Accumulating trace*
$$\mathbf{e}_0 \doteq \mathbf{0},$$
$$\mathbf{e}_t \doteq \nabla \hat{v}(S_t, \theta_t) + \gamma\lambda \mathbf{e}_{t-1}$$
- *Replacing trace*: trace becomes 1 when state is visited

The Semi-gradient TD(λ) algorithm

$$\boldsymbol{\theta}_{t+1} \doteq \boldsymbol{\theta}_t + \alpha \delta_t \mathbf{e}_t$$

$$\delta_t \doteq R_{t+1} + \gamma \hat{v}(S_{t+1}, \boldsymbol{\theta}_t) - \hat{v}(S_t, \boldsymbol{\theta}_t)$$

$$\mathbf{e}_0 \doteq \mathbf{0},$$

$$\mathbf{e}_t \doteq \nabla \hat{v}(S_t, \boldsymbol{\theta}_t) + \gamma \lambda \mathbf{e}_{t-1}$$

Online TD(λ)

Semi-gradient TD(λ) for estimating $\hat{v} \approx v_\pi$

Input: the policy π to be evaluated

Input: a differentiable function $\hat{v} : \mathcal{S}^+ \times \mathbb{R}^d \rightarrow \mathbb{R}$ such that $\hat{v}(\text{terminal}, \cdot) = 0$

Algorithm parameters: step size $\alpha > 0$, trace decay rate $\lambda \in [0, 1]$

Initialize value-function weights \mathbf{w} arbitrarily (e.g., $\mathbf{w} = \mathbf{0}$)

Loop for each episode:

Initialize S

$z \leftarrow 0$

(a d -dimensional vector)

Loop for each step of episode:

Choose $A \sim \pi(\cdot|S)$

Take action A , observe R, S'

$$\mathbf{z} \leftarrow \gamma \lambda \mathbf{z} + \nabla \hat{v}(S, \mathbf{w})$$

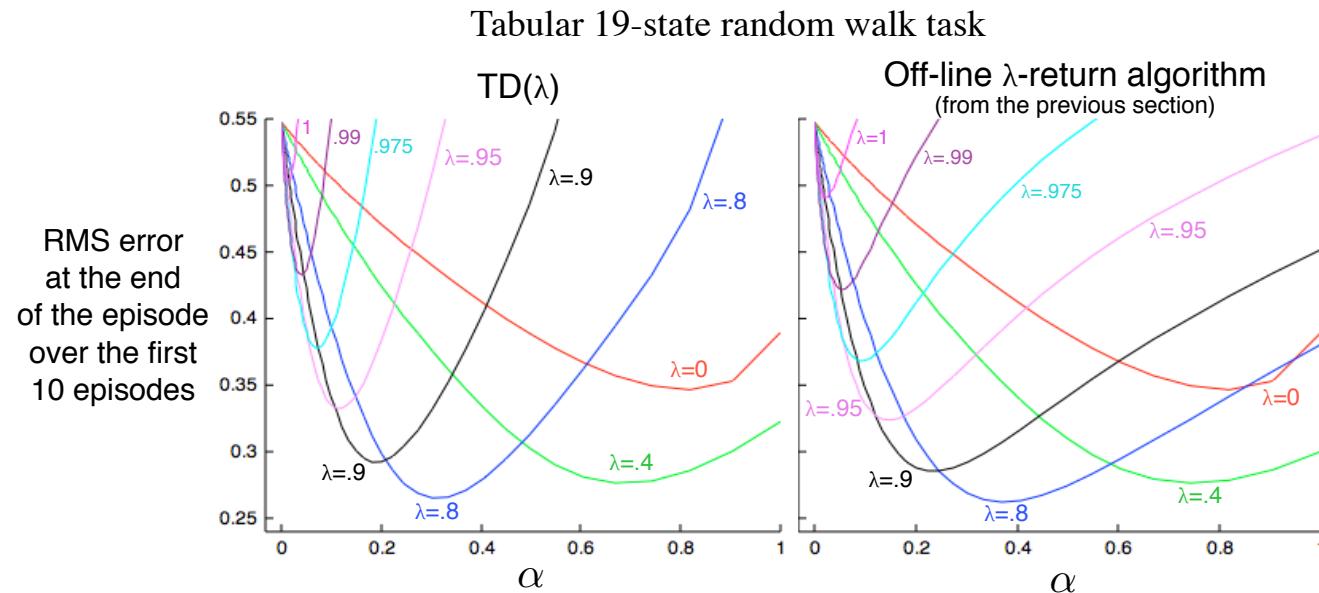
$$\delta \leftarrow R + \gamma \hat{v}(S', \mathbf{w}) - \hat{v}(S, \mathbf{w})$$

$$\mathbf{w} \leftarrow \mathbf{w} + \alpha \delta \mathbf{z}$$

$$S \leftarrow S'$$

until S' is terminal

TD(λ) performs similarly to offline λ -return but slightly worse, particularly at high α



TD(λ) allows online updating!!

Summary: TD-family for policy evaluation

- The TD family of methods is between MC and DP
- Interpolating in terms of credit assignment length!
- With bootstrapping (TD), we don't get true gradient descent methods with function approximation
 - this complicates the analysis
 - but learning is can be *much faster*