Lecture 8: More on Temporal-Difference
Learning.
Eligibility traces.

Recall: Temporal-Difference Learning:
Between MC and DP!

V(S,) < V(S)+a|R

r+1

+yV(S,,)-V(S)]

SO

m b dmd b m

{oahminmrm dh

/ \

Temporal-Difference (TD) Prediction

Policy Evaluation (the prediction problem):
for a given policy m, compute the state-value function vy

Simple every-visit Monte Carlo method:

V(S1) « V(S) + |G = V(Sy)]

target: the actual return after time ¢

The simplest temporal-difference method TD(0):

V(Sy) 4 V(S:) | Rt +7V (Seva) = V(S)
|

target: an estimate of the return

Unified View

width
of backup i
Temporal- Dynamic |
difference programming
learning

Exhaustive

Monte .. search

Carlo

n-step TD Prediction

1-step TD co-step TD
and TD(0) 2-stepTD 3-step TD n-step TD and Monte Carlo

I 7 7T 17 7
1] I
[[
! !
!

O—eo+—D—eo+—)—o
v @+ —eo+——eo+—)—e

Idea: Look farther into the
future when you do TD — I
backup (1, 2, 3, ...,nsteps)l O

e

O -

Mathematics of n-step TD Returns/Targets

@ Monte Carlo: Gy = Ryy1 +yRiyo + v Res+ -+~ 1Ry

@ I'D: Gﬁl) = Riy1 +vVi(Se+1)

@ Use V; to estimate remaining return

@ n-step TD:
@ 2 step return: G\ = Ry1 +YRis2 +7*Vi(Siy2)

@ n-step return: G\ = Ry 1 +YRiyo + 42 + - + 9" Risn + 7" Vi(Sitn)

with G =G, ift+n>T

Forward View

@ Look forward from each state to determine update from
future states and rewards:

o

n-step TD

@ Recall the n-step return:

G,gn) = Rip1+7Riqpo+-- -+7"_1Rt+n+7”‘/§5+n_1(St+n), n>1,0<t<T—n

@ Of course, this 1s not available until time 7+n

@ The natural algorithm 1s thus to wait until then:

Virn(S) = Vign1(8) + o |G = Vi a(80)] . 0<t<T,

® W < w+a(G” -V, (S)V,V,(S,), with FA

@ This 1s called n-step TD

Random Walk Examples

0 0 0 0 0 1
B—®—E—00=—0-——C—0

start

@ Suppose the trajectoryisC - D - E - T
@ How does 2-step TD work here?
@ How about 3-step TD?

n-step TD for estimating V =~ v,

Initialize V (s) arbitrarily, s € §
Parameters: step size a € (0, 1], a positive integer n
All store and access operations (for S; and R;) can take their index mod n

Repeat (for each episode):
Initialize and store Sy # terminal
T < oo
Fort=0,1,2,...:
| Ift < T, then:
| Take an action according to m(+|.S¢)
| Observe and store the next reward as R;1; and the next state as Sy
| If S¢yq is terminal, then T < ¢t + 1
| 7+ t—n+1 (7 is the time whose state’s estimate is being updated)
|
|
|
|

If > 0:
G «— Z;m:-l—:l—i_n 1) i_T_lR@'
If 7+n<T,then: G+ G+ "V (Srin) (ng))

V(S7) < V(S:) + a|G -V (S:)]
Until t=717 -1

A Larger Example — 19-state Random Walk

0.55 ¢~ .
0.5+ W/
n-step TD
Average 0.45 -
RMS error results
over 19 states 04
and first 10
episodes %[

03 F

0'25 - 1 1 1 1 1)
0 0.2 04 06 0.8 1

@ An intermediate « 1s best
@ An intermediate n 1S best

@ Do you think there 1s an optimal n? for every task?
11

Recall: RL with function approximation

General SGD: 6+ 0 — aVp Error}
For VFA: — 0 — aVy [Target; — v(S, 9)]2
Chain rule: < 0 — 2a[Target; — 0(Sy, 0)] Vg [Target, — 9(Sy, 0)]
Semi-gradient: « 8+ a[Target; — 0(S;, 0)] Voi(St, 0)
Linear case: « 0+ «a[Target, — 0(S, 0)] ¢(St)

Action-value form: 6 <+ 0+ «[Target; — G(S, A¢,0)] d(Sy, Ar)

12

Different algorithms: Different Targets!

@ Monte Carlo: . .
Gt = Rt_|_1 + ’YRH_Q + ’72Rt_|_3 + - ’YT t 1RT

® ID: GV = Ry +9Vi(Sen)
@ Use V; to estimate remaining return

@ n-step TD:
@ 2 step return: G = Ryt + vRiso + 72Vi(Seyo)
@ n-step return: G{"” = Rip1 + 7Rz ~* ' " Rypn + 4" Vi(Sign)

G =G ift+n>T
13

n-step semi-gradient TD for estimating 0 =~ v,

Input: the policy 7 to be evaluated

Input: a differentiable function ¥ : 8 x RY — R such that ¥ (terminal,-) = 0
Algorithm parameters: step size a > 0, a positive integer n

Initialize value-function weights w arbitrarily (e.g., w = 0)

All store and access operations (S; and R;) can take their index mod n + 1

Loop for each episode:
Initialize and store Sy # terminal

T ¢+ o
Loop fort =0,1,2,...:
| Ift < T, then:

Take an action according to 7(-|St)
Observe and store the next reward as R;.; and the next state as S;1 1
If S;11 is terminal, then T" < ¢ + 1

|
|
|
| 7+ t—n+1 (7 is the time whose state’s estimate is being updated)
| If 7> 0:

|

|

|

G & Ry,
If 7+ n<T, then: G+ G+ Y"0(Sr4n,W) (Grir4n)
W W+ a |G —0(S,,w)| VO (S,,w)

Until =T -1

Bootstrapping also speeds learning with FA

055+ -,

0.55 5124
05} N
05f ;1"‘».(-‘
Average 045 |

RMS error Average 045
over 1000 states 04+ RMS error
and first 10 over 19 states 04
episodes %% and first 10
P episodes %[
03F
03F
025,) . .) . oss)
0 0.2 04 06 08 1
Y

1000 states aggregated

into 20 groups of 50 19 states tabular

15

Conclusions Regarding n-step Methods (so far)

@ Generalize Temporal-Difference and Monte Carlo learning
methods, sliding from one to the other as n increases

en=11sTD(0) n=o1s MC
@ an intermediate 7 1s often much better than either extreme
@ applicable to both continuing and episodic problems
@ There 1s some cost in computation
@ need to remember the last n states
@ learning is delayed by n steps

@ per-step computation 1s small and uniform, like TD

16

Eligibility Traces

@ Another way of interpolating between MC and TD
methods

@ A way of implementing compound A-return targets
@ A basic mechanistic idea — a short-term, fading memory
@ A new style of algorithm development/analysis

@ the forward-view < backward-view transformation

@ Forward view:
conceptually simple — good for theory, intuition

@ Backward view:
computationally congenial implementation of the f.
view

17

Any set of update targets can be averaged
to produce new compound update targets

@ For example, half a 2-step plus half a 4-step

A compound backup

1 1
Ut — §G§2) + §G,§4)
@ Called a compound backup

@ Draw each component !

@ Label with the weights for that component

The A-return is a compound update target

@ The A-return a target that
averages all n-step target: TD())

® Each weighted by A"~ ?
!

T—t—1 (1—=X2A
G} = (1-X)) N 'Gun + NG,

n=1

Relation to TD(0) and MC

@ The A-return can be rewritten as:

T—t—1

GY = (1-N Y AE + AT,
Yn:l
Until termination After termination

e If A =1, you get the MC target:

T—t—1
Gy = 1-1 Y 1"ie + 1TG = Gy

n=1

e If A =0, you get the TD(0) target:

T—-t—1
G = (1-0)) oG 4+ o7 lg, = G

n=1

20

The off-line A-return “‘algorithm”

@ Wait until the end of the episode (offline)

@ Then go back over the time steps, updating

Wi < w,+a(G'—=V, (S))V,V,.(S)

21

The A-return alg performs similarly to rn-
step on the 19-state random walk (Tabular)

i . i n-step TD methods
Off-line A-return algorithm (frf)’m Chantar

RMS error |
attheend
of the episode o4t
over the first
10 episodes o035t

03}

025,

Intermediate A is best (just like intermediate n is best)
A-return slightly better than n-step

M

The forward view

@ Look forward from each state to determine update from
future states and rewards:

23

The backward view

@ Shout the TD error backwards
@ The traces fade with temporal distance by YA

24

Eligibility traces (mechanism)

@ The forward view was for theory
@ The backward view 1s for mechanism

same shape as 6
@ New memory vector called eligibility trace et/ eR" >0

@ On each step, decay each component by yA and
increment the trace for the current state by 1

@ Accumulating trace

€0 = 07
e; = VU(5;,0;) + yAe—1

@ Replacing trace: trace becomes 1 when state 1s
visited

75

The Semi-gradient TD(A) algorithm

9t—|—1 = 975 + ozétet
0t = Riy1 +y0(St4+1,0¢) — 0(S:,0:)

€0 = 07
e = V0(5:,0:) + e

276

Online TD(2)

Semi-gradient TD()) for estimating 0 =~ v,

Input: the policy 7 to be evaluated

Input: a differentiable function ¢ : 8t x R — R such that ¥(terminal,-) = 0
Algorithm parameters: step size a > 0, trace decay rate A € [0, 1]

Initialize value-function weights w arbitrarily (e.g., w = 0)

Loop for each episode:
Initialize S
z+ 0 (a d-dimensional vector)
Loop for each step of episode:
| Choose A ~ 7(:|5)
| Take action A, observe R, S’
| z <+ Yy z+ Vo(S,w)
|+ R+~0(S",w) — 9(S,w)
| W+ wHadz
| S« 5

until S’ is terminal

27

TD(A) performs similarly to offline A-return
but slightly worse, particularly at high o

Tabular 19-state random walk task

TD()) Off-line A-return algorithm

(from the previous section)

055,
J
) ‘.
05F il

RMS error = sk
at the end
of the episode o4}
over the first
10 episodes ©935[

03}

025 Ly 1 1 ' I ' 1 ' I]
0 0.2 04 0.6 0.8 1 0 0.2 04 0.6 0.8 1

TD(MA) allows online updating!!

7R

Summary: TD-family for policy evaluation

@ The TD family of methods is between MC and DP
@ Interpolating in terms of credit assignment length!

@ With bootstrapping (TD), we don’t get true gradient
descent methods with function approximation

@ this complicates the analysis

@ but learning is can be much faster

20

