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Temporal-Difference (TD) Prediction

Policy Evaluation (the prediction problem): 
         for a given policy π, compute the state-value function vπ 

Simple every-visit Monte Carlo method:

target: the actual return after time t

target: an estimate of the return

Chapter 6

Temporal-Di↵erence Learning

If one had to identify one idea as central and novel to reinforcement learning, it would
undoubtedly be temporal-di↵erence (TD) learning. TD learning is a combination
of Monte Carlo ideas and dynamic programming (DP) ideas. Like Monte Carlo
methods, TD methods can learn directly from raw experience without a model of
the environment’s dynamics. Like DP, TD methods update estimates based in part
on other learned estimates, without waiting for a final outcome (they bootstrap).
The relationship between TD, DP, and Monte Carlo methods is a recurring theme in
the theory of reinforcement learning. This chapter is the beginning of our exploration
of it. Before we are done, we will see that these ideas and methods blend into each
other and can be combined in many ways. In particular, in Chapter 7 we introduce
the TD(�) algorithm, which seamlessly integrates TD and Monte Carlo methods.

As usual, we start by focusing on the policy evaluation or prediction problem, that
of estimating the value function v⇡ for a given policy ⇡. For the control problem
(finding an optimal policy), DP, TD, and Monte Carlo methods all use some variation
of generalized policy iteration (GPI). The di↵erences in the methods are primarily
di↵erences in their approaches to the prediction problem.

6.1 TD Prediction

Both TD and Monte Carlo methods use experience to solve the prediction problem.
Given some experience following a policy ⇡, both methods update their estimate v
of v⇡ for the nonterminal states St occurring in that experience. Roughly speaking,
Monte Carlo methods wait until the return following the visit is known, then use
that return as a target for V (St). A simple every-visit Monte Carlo method suitable
for nonstationary environments is

V (St) V (St) + ↵
h
Gt � V (St)

i
, (6.1)

where Gt is the actual return following time t, and ↵ is a constant step-size parameter
(c.f., Equation 2.4). Let us call this method constant-↵ MC. Whereas Monte Carlo
methods must wait until the end of the episode to determine the increment to V (St)
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The simplest temporal-difference method TD(0):
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(only then is Gt known), TD methods need wait only until the next time step. At
time t + 1 they immediately form a target and make a useful update using the
observed reward Rt+1 and the estimate V (St+1). The simplest TD method, known
as TD(0), is

V (St) V (St) + ↵
h
Rt+1 + �V (St+1)� V (St)

i
. (6.2)

In e↵ect, the target for the Monte Carlo update is Gt, whereas the target for the TD
update is Rt+1 + �V (St+1).

Because the TD method bases its update in part on an existing estimate, we say
that it is a bootstrapping method, like DP. We know from Chapter 3 that

v⇡(s)
.
= E⇡[Gt | St =s] (6.3)
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= E⇡[Rt+1 + �v⇡(St+1) | St =s] . (6.4)

Roughly speaking, Monte Carlo methods use an estimate of (6.3) as a target, whereas
DP methods use an estimate of (6.4) as a target. The Monte Carlo target is an
estimate because the expected value in (6.3) is not known; a sample return is used
in place of the real expected return. The DP target is an estimate not because of
the expected values, which are assumed to be completely provided by a model of the
environment, but because v⇡(St+1) is not known and the current estimate, V (St+1),
is used instead. The TD target is an estimate for both reasons: it samples the
expected values in (6.4) and it uses the current estimate V instead of the true v⇡.
Thus, TD methods combine the sampling of Monte Carlo with the bootstrapping of
DP. As we shall see, with care and imagination this can take us a long way toward
obtaining the advantages of both Monte Carlo and DP methods.

Figure 6.1 specifies TD(0) completely in procedural form.

Input: the policy ⇡ to be evaluated
Initialize V (s) arbitrarily (e.g., V (s) = 0, 8s 2 S+)
Repeat (for each episode):

Initialize S
Repeat (for each step of episode):

A action given by ⇡ for S
Take action A; observe reward, R, and next state, S0

V (S) V (S) + ↵
⇥
R + �V (S0)� V (S)

⇤

S  S0

until S is terminal

Figure 6.1: Tabular TD(0) for estimating v⇡.
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More formally, consider the backup applied to state St as a result of the state–
reward sequence, St, Rt+1, St+1, Rt+2, . . . , RT , ST (omitting the actions for simplic-
ity). We know that in Monte Carlo backups the estimate of v⇡(St) is updated in the
direction of the complete return:

Gt

.
= Rt+1 + �Rt+2 + �2Rt+3 + · · · + �T�t�1RT ,

where T is the last time step of the episode. Let us call this quantity the target of
the backup. Whereas in Monte Carlo backups the target is the return, in one-step
backups the target is the first reward plus the discounted estimated value of the next
state, which we call the one-step return:

G(1)
t

.
= Rt+1 + �Vt(St+1),

where Vt : S ! R here is the estimate at time t of v⇡, in which case it makes sense
that �Vt(St+1) should take the place of the remaining terms �Rt+2 + �2Rt+3 + · · · +
�T�t�1RT , as we discussed in the previous chapter. Our point now is that this idea
makes just as much sense after two steps as it does after one. The target for a
two-step target is the two-step return:

G(2)
t

.
= Rt+1 + �Rt+2 + �2Vt(St+2),

where now �2Vt(St+2) corrects for the absence of the terms �2Rt+3 + �3Rt+4 + · · · +
�T�t�1RT . Similarly, the target for an arbitrary n-step backup is the n-step return:

G(n)
t

.
= Rt+1 + �Rt+2 + �2 + · · · + �n�1Rt+n + �nVt(St+n), 8n � 1. (7.1)

All the n-step returns can be considered approximations to the full return, truncated
after n steps and then corrected for the remaining missing terms by Vt(St+n).

The time t + n is called the horizon of the n-step return. If the episode ends
before the horizon is reached, then the truncation in an n-step return e↵ectively
occurs at the episode’s end, resulting in the conventional complete return. In other

words, if t+n � T , then G(n)
t

= Gt. Thus, the last n n-step returns of an episode are
always complete returns, and an infinite-step return is always a complete return. This
definition enables us to treat Monte Carlo methods as the special case of infinite-step
targets. All of this is consistent with the tricks for treating episodic and continuing
tasks equivalently that we introduced in Section 3.4. There we chose to treat the
terminal state as a state that always transitions to itself with zero reward. Under
this trick, all n-step returns that last up to or past termination have the same value
as the complete return.

An n-step backup is defined to be a backup toward the n-step return. In the tab-
ular, state-value case, the n-step backup at time t produces the following increment
�t(St) in the estimated value Vt(St):

�t(St)
.
= ↵

h
G(n)

t
� Vt(St)

i
, (7.2)
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G(1)
t

.
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�T�t�1RT , as we discussed in the previous chapter. Our point now is that this idea
makes just as much sense after two steps as it does after one. The target for a
two-step target is the two-step return:

G(2)
t

.
= Rt+1 + �Rt+2 + �2Vt+1(St+2),

where now �2Vt+1(St+2) corrects for the absence of the terms �2Rt+3 + �3Rt+4 +
· · · + �T�t�1RT . Similarly, the target for an arbitrary n-step backup is the n-step
return:

G(n)
t

.
= Rt+1+�Rt+2+· · ·+�n�1Rt+n+�nVt+n�1(St+n), n � 1, 0  t < T �n. (7.1)

All the n-step returns can be considered approximations to the full return, truncated
after n steps and then corrected for the remaining missing terms by Vt+n�1(St+n).
If t + n � T (if the n-step return extends to or beyond termination), then all the
missing terms are taken as zero and the n-step return defined to be equal to the

ordinary full return (G(n)
t

.
= Gt if t + n � T ).

Note that n-step returns for n > 1 involve future rewards and value functions that
are not available at the time of transition from t to t + 1. No real algorithm can use
the n-step return until after it had seen Rt+n and computed Vt+n�1. The first time
these are available to be used is t+n. The natural algorithm for using n-step returns
is thus

Vt+n(St)
.
= Vt+n�1(St) + ↵

h
G(n)

t
� Vt+n�1(St)

i
, 0  t < T, (7.2)

while the values of all other states remain unchanged, Vt+n(s) = Vt+n�1(s), 8s 6= St.
We call this algorithm n-step TD. Note that no changes at all are made during the
first n � 1 steps of each episode. To make up for that, an equal number of addition
updates are made at the end of the episode, after termination and before starting
the next episode. Complete pseudocode is given in the box on the next page.

The n-step return uses the value function Vt+n�1 to correct for the missing rewards
beyond Rt+n. An important property of n-step returns is that their expectation is
guaranteed to be a better estimate of v⇡ than Vt+n�1 is, in a worst-state sense. That
is, the worst error of the expected n-step return is guaranteed to be less than or
equal to �n times the worst error under Vt+n�1:

max
s

���E⇡

h
G(n)

t

���St =s
i

� v⇡(s)
���  �n max

s

���Vt+n�1(s) � v⇡(s)
���, (7.3)

for all n � 1. This is called the error reduction property of n-step returns. Because
of the error reduction property, one can show formally that all n-step TD methods
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Figure 7.6: Performance of the o↵-line �-return algorithm on a 19-state random
walk task.

way of mixing n-step backups is that there is a simple algorithm—TD(�)—for
achieving it. This is a mechanism issue rather than a theoretical one. In the
next few sections we develop the mechanistic, or backward, view of eligibility
traces as used in TD(�).

Example 7.2: �-return on the Random Walk Task Figure 7.6 shows
the performance of the o↵-line �-return algorithm on the 19-state random walk
task used with the n-step methods in Example 7.1. The experiment was just
as in the n-step case except that here we varied � instead of n. Note that we
get best performance with an intermediate value of �.

Exercise 7.4 The parameter � characterizes how fast the exponential weight-
ing in Figure 7.4 falls o↵, and thus how far into the future the �-return algo-
rithm looks in determining its backup. But a rate factor such as � is sometimes
an awkward way of characterizing the speed of the decay. For some purposes it
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n-step TD

Recall the n-step return:

Of course, this is not available until time t+n

The natural algorithm is thus to wait until then:

, with FA

This is called n-step TD

wt+1 ← wt + α(G(n)
t − Vw(St))∇wVw(St)
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i
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G(n)
t

.
= Rt+1+�Rt+2+· · ·+�n�1Rt+n+�nVt+n�1(St+n), n � 1, 0  t < T �n. (7.1)

All the n-step returns can be considered approximations to the full return, truncated
after n steps and then corrected for the remaining missing terms by Vt+n�1(St+n).
If t + n � T (if the n-step return extends to or beyond termination), then all the
missing terms are taken as zero and the n-step return defined to be equal to the

ordinary full return (G(n)
t

.
= Gt if t + n � T ).

Note that n-step returns for n > 1 involve future rewards and value functions that
are not available at the time of transition from t to t + 1. No real algorithm can use
the n-step return until after it had seen Rt+n and computed Vt+n�1. The first time
these are available to be used is t+n. The natural algorithm for using n-step returns
is thus

Vt+n(St)
.
= Vt+n�1(St) + ↵

h
G(n)

t
� Vt+n�1(St)

i
, 0  t < T, (7.2)

while the values of all other states remain unchanged, Vt+n(s) = Vt+n�1(s), 8s 6= St.
We call this algorithm n-step TD. Note that no changes at all are made during the
first n � 1 steps of each episode. To make up for that, an equal number of addition
updates are made at the end of the episode, after termination and before starting
the next episode. Complete pseudocode is given in the box on the next page.

The n-step return uses the value function Vt+n�1 to correct for the missing rewards
beyond Rt+n. An important property of n-step returns is that their expectation is
guaranteed to be a better estimate of v⇡ than Vt+n�1 is, in a worst-state sense. That
is, the worst error of the expected n-step return is guaranteed to be less than or
equal to �n times the worst error under Vt+n�1:

max
s

���E⇡

h
G(n)

t

���St =s
i

� v⇡(s)
���  �n max

s

���Vt+n�1(s) � v⇡(s)
���, (7.3)

for all n � 1. This is called the error reduction property of n-step returns. Because
of the error reduction property, one can show formally that all n-step TD methods



9

Random Walk Examples

Suppose the trajectory is 
How does 2-step TD work here?
How about 3-step TD?

C → D → E → T
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A B C D E
100000

start

Figure 6.5: A small Markov process for generating random walks.

other words, which method learns faster? Which makes the more e�cient use
of limited data? At the current time this is an open question in the sense
that no one has been able to prove mathematically that one method converges
faster than the other. In fact, it is not even clear what is the most appro-
priate formal way to phrase this question! In practice, however, TD methods
have usually been found to converge faster than constant-↵ MC methods on
stochastic tasks, as illustrated in the following example.

Example 6.2: Random Walk In this example we empirically compare the
prediction abilities of TD(0) and constant-↵ MC applied to the small Markov
process shown in Figure 6.5. All episodes start in the center state, C, and
proceed either left or right by one state on each step, with equal probabil-
ity. This behavior is presumably due to the combined e↵ect of a fixed policy
and an environment’s state-transition probabilities, but we do not care which;
we are concerned only with predicting returns however they are generated.
Episodes terminate either on the extreme left or the extreme right. When an
episode terminates on the right a reward of +1 occurs; all other rewards are
zero. For example, a typical walk might consist of the following state-and-
reward sequence: C, 0,B, 0,C, 0,D, 0,E, 1. Because this task is undiscounted
and episodic, the true value of each state is the probability of terminating
on the right if starting from that state. Thus, the true value of the cen-
ter state is v⇡(C) = 0.5. The true values of all the states, A through E, are
1
6 ,

2
6 ,

3
6 ,

4
6 , and 5

6 . Figure 6.6 shows the values learned by TD(0) approaching the
true values as more episodes are experienced. Averaging over many episode
sequences, Figure 6.7 shows the average error in the predictions found by
TD(0) and constant-↵ MC, for a variety of values of ↵, as a function of num-
ber of episodes. In all cases the approximate value function was initialized
to the intermediate value V (s) = 0.5, for all s. The TD method is consis-
tently better than the MC method on this task over this number of episodes.

Exercise 6.1 This is an exercise to help develop your intuition about why
TD methods are often more e�cient than Monte Carlo methods. Consider
the driving home example and how it is addressed by TD and Monte Carlo
methods. Can you imagine a scenario in which a TD update would be better on
average than an Monte Carlo update? Give an example scenario—a description
of past experience and a current state—in which you would expect the TD
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n-step TD for estimating V ⇡ v⇡

Initialize V (s) arbitrarily, s 2 S

Parameters: step size ↵ 2 (0, 1], a positive integer n
All store and access operations (for St and Rt) can take their index mod n

Repeat (for each episode):
Initialize and store S0 6= terminal
T  1
For t = 0, 1, 2, . . . :
| If t < T , then:
| Take an action according to ⇡(·|St)
| Observe and store the next reward as Rt+1 and the next state as St+1

| If St+1 is terminal, then T  t + 1
| ⌧  t� n + 1 (⌧ is the time whose state’s estimate is being updated)
| If ⌧ � 0:

| G 
Pmin(⌧+n,T )

i=⌧+1 �i�⌧�1Ri

| If ⌧ + n < T , then: G G + �nV (S⌧+n) (G(n)
⌧ )

| V (S⌧ ) V (S⌧ ) + ↵ [G� V (S⌧ )]
Until ⌧ = T � 1

converge to the correct predictions under appropriate technical conditions. The n-
step TD methods thus form a family of sound methods, with one-step TD methods
and Monte Carlo methods as extreme members.

Example 7.1: n-step TD Methods on the Random Walk Consider using
n-step TD methods on the random walk task described in Example 6.2 and shown
in Figure 6.2. Suppose the first episode progressed directly from the center state,
C, to the right, through D and E, and then terminated on the right with a return
of 1. Recall that the estimated values of all the states started at an intermediate
value, V (s) = 0.5. As a result of this experience, a one-step method would change
only the estimate for the last state, V (E), which would be incremented toward 1, the
observed return. A two-step method, on the other hand, would increment the values
of the two states preceding termination: V (D) and V (E) both would be incremented
toward 1. A three-step method, or any n-step method for n > 2, would increment
the values of all three of the visited states toward 1, all by the same amount.

Which value of n is better? Figure 7.2 shows the results of a simple empirical test
for a larger random walk process, with 19 states (and with a �1 outcome on the
left, all values initialized to 0), which we use as a running example in this chapter.
Results are shown for n-step TD methods with a range of values for n and ↵. The
performance measure for each parameter setting, shown on the vertical axis, is the
square-root of the average squared error between the predictions at the end of the
episode for the 19 states and their true values, then averaged over the first 10 episodes
and 100 repetitions of the whole experiment (the same sets of walks were used for all



11

A Larger Example – 19-state Random Walk
7.2. N -STEP SARSA 157

↵

Average
RMS error

over 19 states
and first 10 
episodes n=1

n=2
n=4

n=8

n=16

n=32

n=32n=64128512
256

Figure 7.2: Performance of n-step TD methods as a function of ↵, for various values of n,
on a 19-state random walk task (Example 7.1).

parameter settings). Note that methods with an intermediate value of n worked best.
This illustrates how the generalization of TD and Monte Carlo methods to n-step
methods can potentially perform better than either of the two extreme methods.

Exercise 7.1 Why do you think a larger random walk task (19 states instead of
5) was used in the examples of this chapter? Would a smaller walk have shifted the
advantage to a di↵erent value of n? How about the change in left-side outcome from
0 to �1 made in the larger walk? Do you think that made any di↵erence in the best
value of n?

7.2 n-step Sarsa

How can n-step methods be used not just for prediction, but for control? In this
section we show how n-step methods can be combined with Sarsa in a straightforward
way to produce an on-policy TD control method. The n-step version of Sarsa we call
n-step Sarsa, and the original version presented in the previous chapter we henceforth
call one-step Sarsa, or Sarsa(0).

The main idea is to simply switch states for actions (state–action pairs) and then
use an "-greedy policy. The backup diagrams for n-step Sarsa, shown in Figure 7.3
are like those of n-step TD (Figure 7.1), strings of alternating states and actions,
except that the Sarsa ones all start and end with an action rather a state. We redefine
n-step returns in terms of estimated action values:

G(n)
t

, Rt+1+�Rt+2+· · ·+�n�1Rt+n+�nQt+n�1(St+n, At+n), n � 1, 0  t < T �n,

(7.4)

n-step TD
results

An intermediate α is best
An intermediate n is best
Do you think there is an optimal n?  for every task?



Recall: RL with function approximation
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✓  ✓ � ↵r✓ Error2t

 ✓ � ↵r✓ [Targett � v̂(St,✓)]
2

 ✓ � 2↵ [Targett � v̂(St,✓)]r✓ [Targett � v̂(St,✓)]

 ✓ + ↵ [Targett � v̂(St,✓)]r✓ v̂(St,✓)

 ✓ + ↵ [Targett � v̂(St,✓)]�(St)

General SGD:
For VFA:

Chain rule:
Semi-gradient:

Linear case:

✓  ✓ + ↵ [Targett � q̂(St, At,✓)]�(St, At)Action-value form:
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Monte Carlo:

TD:
Use Vt to estimate remaining return

n-step TD:
2 step return:

n-step return:

Different algorithms: Different Targets!

7.1. N -STEP TD PREDICTION 153

More formally, consider the backup applied to state St as a result of the state–
reward sequence, St, Rt+1, St+1, Rt+2, . . . , RT , ST (omitting the actions for simplic-
ity). We know that in Monte Carlo backups the estimate of v⇡(St) is updated in the
direction of the complete return:

Gt

.
= Rt+1 + �Rt+2 + �2Rt+3 + · · · + �T�t�1RT ,

where T is the last time step of the episode. Let us call this quantity the target of
the backup. Whereas in Monte Carlo backups the target is the return, in one-step
backups the target is the first reward plus the discounted estimated value of the next
state, which we call the one-step return:

G(1)
t

.
= Rt+1 + �Vt(St+1),

where Vt : S ! R here is the estimate at time t of v⇡, in which case it makes sense
that �Vt(St+1) should take the place of the remaining terms �Rt+2 + �2Rt+3 + · · · +
�T�t�1RT , as we discussed in the previous chapter. Our point now is that this idea
makes just as much sense after two steps as it does after one. The target for a
two-step target is the two-step return:

G(2)
t

.
= Rt+1 + �Rt+2 + �2Vt(St+2),

where now �2Vt(St+2) corrects for the absence of the terms �2Rt+3 + �3Rt+4 + · · · +
�T�t�1RT . Similarly, the target for an arbitrary n-step backup is the n-step return:

G(n)
t

.
= Rt+1 + �Rt+2 + �2 + · · · + �n�1Rt+n + �nVt(St+n), 8n � 1. (7.1)

All the n-step returns can be considered approximations to the full return, truncated
after n steps and then corrected for the remaining missing terms by Vt(St+n).

The time t + n is called the horizon of the n-step return. If the episode ends
before the horizon is reached, then the truncation in an n-step return e↵ectively
occurs at the episode’s end, resulting in the conventional complete return. In other

words, if t+n � T , then G(n)
t

= Gt. Thus, the last n n-step returns of an episode are
always complete returns, and an infinite-step return is always a complete return. This
definition enables us to treat Monte Carlo methods as the special case of infinite-step
targets. All of this is consistent with the tricks for treating episodic and continuing
tasks equivalently that we introduced in Section 3.4. There we chose to treat the
terminal state as a state that always transitions to itself with zero reward. Under
this trick, all n-step returns that last up to or past termination have the same value
as the complete return.

An n-step backup is defined to be a backup toward the n-step return. In the tab-
ular, state-value case, the n-step backup at time t produces the following increment
�t(St) in the estimated value Vt(St):

�t(St)
.
= ↵

h
G(n)

t
� Vt(St)

i
, (7.2)
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state, which we call the one-step return:
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All the n-step returns can be considered approximations to the full return, truncated
after n steps and then corrected for the remaining missing terms by Vt+n�1(St+n).
If t + n � T (if the n-step return extends to or beyond termination), then all the
missing terms are taken as zero and the n-step return defined to be equal to the

ordinary full return (G(n)
t

.
= Gt if t + n � T ).

Note that n-step returns for n > 1 involve future rewards and value functions that
are not available at the time of transition from t to t + 1. No real algorithm can use
the n-step return until after it had seen Rt+n and computed Vt+n�1. The first time
these are available to be used is t+n. The natural algorithm for using n-step returns
is thus

Vt+n(St)
.
= Vt+n�1(St) + ↵

h
G(n)

t
� Vt+n�1(St)

i
, 0  t < T, (7.2)

while the values of all other states remain unchanged, Vt+n(s) = Vt+n�1(s), 8s 6= St.
We call this algorithm n-step TD. Note that no changes at all are made during the
first n � 1 steps of each episode. To make up for that, an equal number of addition
updates are made at the end of the episode, after termination and before starting
the next episode. Complete pseudocode is given in the box on the next page.

The n-step return uses the value function Vt+n�1 to correct for the missing rewards
beyond Rt+n. An important property of n-step returns is that their expectation is
guaranteed to be a better estimate of v⇡ than Vt+n�1 is, in a worst-state sense. That
is, the worst error of the expected n-step return is guaranteed to be less than or
equal to �n times the worst error under Vt+n�1:

max
s

���E⇡

h
G(n)

t

���St =s
i

� v⇡(s)
���  �n max

s

���Vt+n�1(s) � v⇡(s)
���, (7.3)

for all n � 1. This is called the error reduction property of n-step returns. Because
of the error reduction property, one can show formally that all n-step TD methods
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p(s0, r|St, a)[r + �v̂(s0,✓t)]) with backups according to the on-policy distribution will
also converge to the TD fixpoint. One-step semi-gradient action-value methods,
such as semi-gradient Sarsa(0) covered in the next chapter converge to an analogous
fixpoint and an analogous bound. For episodic tasks, there is a slightly di↵erent but
related bound (see Bertsekas and Tsitsiklis, 1996). There are also a few technical
conditions on the rewards, features, and decrease in the step-size parameter, which
we have omitted here. The full details can be found in the original paper (Tsitsiklis
and Van Roy, 1997).

Critical to the these convergence results is that states are backed up according to
the on-policy distribution. For other backup distributions, bootstrapping methods
using function approximation may actually diverge to infinity. Examples of this and
a discussion of possible solution methods are given in Chapter 11.

Example 9.2: Bootstrapping on the 1000-state Random Walk State aggre-
gation is a special case of linear function approximation, so let’s return to the 1000-
state random walk to illustrate some of the observations made in this chapter. The
left panel of Figure 9.2 shows the final value function learned by the semi-gradient
TD(0) algorithm (page 195) using the same state aggregation as in Example 9.1.
We see that the near-asymptotic TD approximation is indeed farther from the true
values than the Monte Carlo approximation shown in Figure 9.1.

Nevertheless, TD methods retain large potential advantages in learning rate, and
generalize MC methods, as we investigated fully with the multi-step TD methods
of Chapter 7. The right panel of Figure 9.2 shows results with an n-step semi-
gradient TD method using state aggregation and the 1000-state random walk that are
strikingly similar to those we obtained earlier with tabular methods and the 19-state
random walk. To obtain such quantitatively similar results we switched the state
aggregation to 20 groups of 50 states each. The 20 groups are then quantitatively
close to the 19 states of the tabular problem. In particular, the state transitions
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Figure 9.2: Bootstrapping with state aggregation on the 1000-state random walk task.
Left: Asymptotic values of semi-gradient TD are worse than the asymptotic MC values
in Figure 9.1. Right: Performance of n-step methods with state-aggregation are strikingly
similar to those with tabular representations (cf. Figure 7.2).
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Figure 7.2: Performance of n-step TD methods as a function of ↵, for various values of n,
on a 19-state random walk task (Example 7.1).

parameter settings). Note that methods with an intermediate value of n worked best.
This illustrates how the generalization of TD and Monte Carlo methods to n-step
methods can potentially perform better than either of the two extreme methods.

Exercise 7.1 Why do you think a larger random walk task (19 states instead of
5) was used in the examples of this chapter? Would a smaller walk have shifted the
advantage to a di↵erent value of n? How about the change in left-side outcome from
0 to �1 made in the larger walk? Do you think that made any di↵erence in the best
value of n?

7.2 n-step Sarsa

How can n-step methods be used not just for prediction, but for control? In this
section we show how n-step methods can be combined with Sarsa in a straightforward
way to produce an on-policy TD control method. The n-step version of Sarsa we
call n-step Sarsa(�), and the original version presented in the previous chapter we
henceforth call one-step Sarsa, or Sarsa(0).

The main idea is to simply switch states for actions (state–action pairs) and then
use an "-greedy policy. The backup diagrams for n-step Sarsa, shown in Figure 7.3
are like those of n-step TD (Figure 7.1), strings of alternating states and actions,
except that the Sarsa ones all start and end with an action rather a state. We redefine
n-step returns in terms of estimated action values:

G(n)
t

.
= Rt+1+�Rt+2+· · ·+�n�1Rt+n+�nQt+n�1(St+n, At+n), n � 1, 0  t < T �n,

(7.4)

19 states tabular
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Conclusions Regarding n-step Methods (so far)
Generalize Temporal-Difference and Monte Carlo learning 
methods, sliding from one to the other as n increases

n = 1 is TD(0) n = ∞ is MC
an intermediate n is often much better than either extreme
applicable to both continuing and episodic problems

There is some cost in computation
need to remember the last n states
learning is delayed by n steps
per-step computation is small and uniform, like TD



Eligibility Traces

Another way of interpolating between MC and TD 
methods
A way of implementing compound λ-return targets
A basic mechanistic idea — a short-term, fading memory
A new style of algorithm development/analysis

the forward-view ⇔ backward-view transformation

Forward view: 
conceptually simple — good for theory, intuition
Backward view: 
computationally congenial implementation of the f. 
view

17



Any set of update targets can be averaged 
to produce new compound update targets

For example, half a 2-step plus half a 4-step

Called a compound backup
Draw each component
Label with the weights for that component

A compound backup
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⇤Exercise 7.3 In the lower part of Figure 7.2, notice that the plot for n = 3 is
di↵erent from the others, dropping to low performance at a much lower value of
↵ than similar methods. In fact, the same was observed for n = 5, n = 7, and
n = 9. Can you explain why this might have been so? In fact, we are not sure
ourselves. See http://www.cs.utexas.edu/~ikarpov/Classes/RL/RandomWalk/
for an attempt at a thorough answer by Igor Karpov.

7.2 The Forward View of TD(�)

Backups can be done not just toward any n-step return, but toward any average
of n-step returns. For example, a backup can be done toward a return that
is half of a two-step return and half of a four-step return: Gave

t = 1
2G

(2)
t +

1
2G

(4)
t . Any set of returns can be averaged in this way, even an infinite set,

as long as the weights on the component returns are positive and sum to
1. The overall return possesses an error reduction property similar to that of
individual n-step returns (7.2) and thus can be used to construct backups with
guaranteed convergence properties. Averaging produces a substantial new
range of algorithms. For example, one could average one-step and infinite-
step backups to obtain another way of interrelating TD and Monte Carlo
methods. In principle, one could even average experience-based backups with
DP backups to get a simple combination of experience-based and model-based
methods (see Chapter 8).

A backup that averages simpler component backups in this way is called
a complex backup. The backup diagram for a complex backup consists of the
backup diagrams for each of the component backups with a horizontal line
above them and the weighting fractions below. For example, the complex
backup mentioned above, mixing half of a two-step backup and half of a four-
step backup, has the diagram:

1
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1

2

Ut =
1

2
G(2)

t +
1

2
G(4)
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The λ-return is a compound update target

The λ-return a target that  
averages all n-step targets 
Each weighted by λn−1



Relation to TD(0) and MC

The λ-return can be rewritten as:

If λ = 1, you get the MC target:

If λ = 0, you get the TD(0) target:

20

Until termination After termination
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Figure 7.3: The backup digram for TD(�). If � = 0, then the overall backup
reduces to its first component, the one-step TD backup, whereas if � = 1, then
the overall backup reduces to its last component, the Monte Carlo backup.

The TD(�) algorithm can be understood as one particular way of averaging
n-step backups. This average contains all the n-step backups, each weighted
proportional to �n�1, where 0  �  1 (Figure 7.3). A normalization factor
of 1 � � ensures that the weights sum to 1. The resulting backup is toward a
return, called the �-return, defined by

G�
t = (1 � �)

1X

n=1

�n�1G(n)
t .

Figure 7.4 illustrates this weighting sequence. The one-step return is given
the largest weight, 1 � �; the two-step return is given the next largest weight,
(1 � �)�; the three-step return is given the weight (1 � �)�2; and so on. The
weight fades by � with each additional step. After a terminal state has been
reached, all subsequent n-step returns are equal to Gt. If we want, we can
separate these terms from the main sum, yielding

G�
t = (1 � �)

T�t�1X

n=1

�n�1G(n)
t + �T�t�1Gt. (7.3)

This equation makes it clearer what happens when � = 1. In this case the
main sum goes to zero, and the remaining term reduces to the conventional
return, Gt. Thus, for � = 1, backing up according to the �-return is the
same as the Monte Carlo algorithm that we called constant-↵ MC (6.1) in

G�
t = (1� �)

T�t�1X

n=1

�n�1G(n)
t + �T�t�1Gt (1)

G�
t = (1� 1)

T�t�1X

n=1

1n�1G(n)
t + 1T�t�1Gt = Gt (2)

G�
t = (1� 0)

T�t�1X

n=1

0n�1G(n)
t + 0T�t�1Gt = G(1)

t (3)
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The other random variables are a function of this sequence. The transitional
target rt+1 is a function of st, at, and st+1. The termination condition �t,
terminal target zt, and prediction yt, are functions of st alone.
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The off-line λ-return “algorithm”

Wait until the end of the episode (offline)
Then go back over the time steps, updating

21

wt+1 ← wt + α(Gn
t − Vw(St))∇wVw(St)



The λ-return alg performs similarly to n-
step on the 19-state random walk (Tabular)

22
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Figure 12.3: 19-state Random walk results (Example 7.1): Performance of the o✏ine �-
return algorithm alongside that of the n-step TD methods. In both case, intermediate values
of the bootstrapping parameter (� or n) performed best. The results with the o↵-line �-return
algorithm are slighly better at the best values of ↵ and �, and at high ↵.

just as described earlier except that for the �-return algorithm we varied � instead of
n. The performance measure used is the estimated root-mean-squared error between
the correct and estimated values of each state measured at the end of the episode,
averaged over the first 10 episodes and the 19 states. Note that overall performance
of the o↵-line �-return algorithms is comparable to that of the n-step algorithms. In
both cases we get best performance with an intermediate value of the bootstrapping
parameter, n for n-step methods and � for the o✏ine �-return algorithm.

The approach that we have been taking so far is what we call the theoretical, or
forward, view of a learning algorithm. For each state visited, we look forward in time
to all the future rewards and decide how best to combine them. We might imagine
ourselves riding the stream of states, looking forward from each state to determine
its update, as suggested by Figure 12.4. After looking forward from and updating
one state, we move on to the next and never have to work with the preceding state
again. Future states, on the other hand, are viewed and processed repeatedly, once
from each vantage point preceding them.
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Figure 12.4: The forward view. We decide how to update each state by looking forward to
future rewards and states.

Intermediate λ is best (just like intermediate n is best)
λ-return slightly better than n-step



The forward view

Look forward from each state to determine update from 
future states and rewards:
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Figure 7.5: The forward or theoretical view. We decide how to update each
state by looking forward to future rewards and states.
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Figure 7.6: Performance of the o↵-line �-return algorithm on a 19-state random
walk task.

way of mixing n-step backups is that there is a simple algorithm—TD(�)—for
achieving it. This is a mechanism issue rather than a theoretical one. In the
next few sections we develop the mechanistic, or backward, view of eligibility
traces as used in TD(�).

Example 7.2: �-return on the Random Walk Task Figure 7.6 shows
the performance of the o↵-line �-return algorithm on the 19-state random walk
task used with the n-step methods in Example 7.1. The experiment was just
as in the n-step case except that here we varied � instead of n. Note that we
get best performance with an intermediate value of �.

Exercise 7.4 The parameter � characterizes how fast the exponential weight-
ing in Figure 7.4 falls o↵, and thus how far into the future the �-return algo-
rithm looks in determining its backup. But a rate factor such as � is sometimes
an awkward way of characterizing the speed of the decay. For some purposes it



The backward view

Shout the TD error backwards
The traces fade with temporal distance by γλ
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Semi-gradient TD(�) for estimating v̂ ⇡ v⇡

Input: the policy ⇡ to be evaluated
Input: a di↵erentiable function v̂ : S+ ⇥ Rn ! R such that v̂(terminal,·) = 0

Initialize value-function weights ✓ arbitrarily (e.g., ✓ = 0)
Repeat (for each episode):

Initialize S
e 0 (An n-dimensional vector)
Repeat (for each step of episode):
. Choose A ⇠ ⇡(·|S)
. Take action A, observe R, S0

. e ��e +rv̂(S,✓)

. �  R + �v̂(S0,✓)� v̂(S,✓)

. ✓  ✓ + ↵�e

. S  S0

until S0 is terminal

riding along the stream of states, computing TD errors, and shouting them back to
the previously visited states, as suggested by Figure 12.5. Where the TD error and
traces come together, we get the update given by (12.7).

To better understand the backward view, consider what happens at various values
of �. If � = 0, then by (12.5) the trace at t is exactly the value gradient corresponding
to St. Thus the TD(�) update (12.7) reduces to the one-step semi-gradient TD
update treated in Chapter 9 (and, in the tabular case, to the simple TD rule (6.2)).
This is why that algorithm was called TD(0). In terms of Figure 12.5, TD(0) is
the case in which only the one state preceding the current one is changed by the
TD error. For larger values of �, but still � < 1, more of the preceding states
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Figure 12.5: The backward or mechanistic view. Each update depends on the current TD
error combined with eligibility traces of past events.



Eligibility traces (mechanism)

The forward view was for theory
The backward view is for mechanism

New memory vector called eligibility trace
On each step, decay each component by γλ and 
increment the trace for the current state by 1
Accumulating trace

Replacing trace: trace becomes 1 when state is 
visited
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is better to specify a time constant, or half-life. What is the equation relating
� and the half-life, ⌧�, the time by which the weighting sequence will have
fallen to half of its initial value?

7.3 The Backward View of TD(�)

In the previous section we presented the forward or theoretical view of the tab-
ular TD(�) algorithm as a way of mixing backups that parametrically shifts
from a TD method to a Monte Carlo method. In this section we instead define
TD(�) mechanistically, and in the next section we show that this mechanism
correctly implements the forward view. The mechanistic, or backward , view
of TD(�) is useful because it is simple conceptually and computationally. In
particular, the forward view itself is not directly implementable because it is
acausal, using at each step knowledge of what will happen many steps later.
The backward view provides a causal, incremental mechanism for approximat-
ing the forward view and, in the o↵-line case, for achieving it exactly.

In the backward view of TD(�), there is an additional memory variable
associated with each state, its eligibility trace. The eligibility trace for state
s at time t is a random variable denoted Zt(s) 2 R+. On each step, the
eligibility traces for all states decay by ��, and the eligibility trace for the one
state visited on the step is incremented by 1:

Zt(s) =

⇢
��Zt�1(s) if s 6=St;
��Zt�1(s) + 1 if s=St,

(7.5)

for all nonterminal states s, where � is the discount rate and � is the parameter
introduced in the previous section. Henceforth we refer to � as the trace-decay
parameter. This kind of eligibility trace is called an accumulating trace because
it accumulates each time the state is visited, then fades away gradually when
the state is not visited, as illustrated below:

accumulating eligibility trace

times of visits to a state

At any time, the traces record which states have recently been visited,
where “recently” is defined in terms of ��. The traces are said to indicate the
degree to which each state is eligible for undergoing learning changes should
a reinforcing event occur. The reinforcing events we are concerned with are
the moment-by-moment one-step TD errors. For example, the TD error for

et 2 Rn � 0
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12.2 TD(�)

TD(�) is one of the oldest and most widely used algorithms in reinforcement learning.
It was the first algorithm for which a formal relationship was shown between a more
theoretical forward view and a more computational congenial backward view using
eligibility traces. Here we will show empirically that it approximates the o↵-line
�-return algorithm presented in the previous section.

TD(�) improves over the o↵-line �-return algorithm in three ways. First it updates
the weight vector on every step of an episode rather than only at the end, and thus
its estimates may be better sooner. Second, its computations are equally distributed
in time rather that all at the end of the episode. And third, it can be applied to
continuing problems rather than just episodic problems. In this section we present
the semi-gradient version of TD(�) with function approximation.

With function approximation, the eligibility trace is a vector et 2 Rn with the
same number of components as the weight vector ✓t. Whereas the weight vector is a
long-term memory, accumulating over the lifetime of the system, the eligibility trace
is a short-term memory, typically lasting less time than the length of an episode.
Eligibility traces assist in the learning process; their only consequence is that they
a↵ect the weight vector, and then the weight vector determines the estimated value.

In TD(�), the eligibility trace vector is initialized to zero at the beginning of the
episode, is incremented on each time step by the value gradient, and then fades away
by ��:

e0
.
= 0,

et

.
= rv̂(St,✓t) + ��et�1,

(12.5)

where � is the discount rate and � is the parameter introduced in the previous
section. The eligibility trace keeps track of which components of the weight vector
have contributed, positively or negatively, to recent state valuations, where “recent”
is defined in terms ��. The trace is said to indicate the eligibility of each component
of the weight vector for undergoing learning changes should a reinforcing event occur.
The reinforcing events we are concerned with are the moment-by-moment one-step
TD errors. The TD error for state-value prediction is

�t

.
= Rt+1 + �v̂(St+1,✓t) � v̂(St,✓t). (12.6)

In TD(�), the weight vector is updated on each step proportional to the scalar TD
error and the vector eligibility trace:

✓t+1
.
= ✓t + ↵�tet, (12.7)

On the next page, complete pseudocode for TD(�) is given in the box, and a picture
of its operation is suggested by Figure 12.5.

TD(�) is oriented backward in time. At each moment we look at the current TD
error and assign it backward to each prior state according to how much that state
contributed to the current eligibility trace at that time. We might imagine ourselves

same shape as 𝜽



The Semi-gradient TD(λ) algorithm
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contributed to the current eligibility trace at that time. We might imagine ourselves
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12.2 TD(�)

TD(�) is one of the oldest and most widely used algorithms in reinforcement learning.
It was the first algorithm for which a formal relationship was shown between a more
theoretical forward view and a more computational congenial backward view using
eligibility traces. Here we will show empirically that it approximates the o↵-line
�-return algorithm presented in the previous section.

TD(�) improves over the o↵-line �-return algorithm in three ways. First it updates
the weight vector on every step of an episode rather than only at the end, and thus
its estimates may be better sooner. Second, its computations are equally distributed
in time rather that all at the end of the episode. And third, it can be applied to
continuing problems rather than just episodic problems. In this section we present
the semi-gradient version of TD(�) with function approximation.

With function approximation, the eligibility trace is a vector et 2 Rn with the
same number of components as the weight vector ✓t. Whereas the weight vector is a
long-term memory, accumulating over the lifetime of the system, the eligibility trace
is a short-term memory, typically lasting less time than the length of an episode.
Eligibility traces assist in the learning process; their only consequence is that they
a↵ect the weight vector, and then the weight vector determines the estimated value.

In TD(�), the eligibility trace vector is initialized to zero at the beginning of the
episode, is incremented on each time step by the value gradient, and then fades away
by ��:

e0
.
= 0,

et

.
= rv̂(St,✓t) + ��et�1,

(12.5)

where � is the discount rate and � is the parameter introduced in the previous
section. The eligibility trace keeps track of which components of the weight vector
have contributed, positively or negatively, to recent state valuations, where “recent”
is defined in terms ��. The trace is said to indicate the eligibility of each component
of the weight vector for undergoing learning changes should a reinforcing event occur.
The reinforcing events we are concerned with are the moment-by-moment one-step
TD errors. The TD error for state-value prediction is
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In TD(�), the weight vector is updated on each step proportional to the scalar TD
error and the vector eligibility trace:

✓t+1
.
= ✓t + ↵�tet, (12.7)

On the next page, complete pseudocode for TD(�) is given in the box, and a picture
of its operation is suggested by Figure 12.5.

TD(�) is oriented backward in time. At each moment we look at the current TD
error and assign it backward to each prior state according to how much that state
contributed to the current eligibility trace at that time. We might imagine ourselves



Online TD(λ)
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TD(λ) performs similarly to offline λ-return
but slightly worse, particularly at high α
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are changed, but each more temporally distant state is changed less because the
corresponding eligibility trace is smaller, as suggested by the figure. We say that the
earlier states are given less credit for the TD error.

If � = 1, then the credit given to earlier states falls only by � per step. This
turns out to be just the right thing to do to achieve Monte Carlo behavior. For
example, remember that the TD error, �t, includes an undiscounted term of Rt+1.
In passing this back k steps it needs to be discounted, like any reward in a return,
by �k, which is just what the falling eligibility trace achieves. If � = 1 and � = 1,
then the eligibility traces do not decay at all with time. In this case the method
behaves like a Monte Carlo method for an undiscounted, episodic task. If � = 1, the
algorithm is also known as TD(1).

TD(1) is a way of implementing Monte Carlo algorithms that is more general than
those presented earlier and that significantly increases their range of applicability.
Whereas the earlier Monte Carlo methods were limited to episodic tasks, TD(1)
can be applied to discounted continuing tasks as well. Moreover, TD(1) can be
performed incrementally and on-line. One disadvantage of Monte Carlo methods is
that they learn nothing from an episode until it is over. For example, if a Monte
Carlo control method takes an action that produces a very poor reward but does not
end the episode, then the agent’s tendency to repeat the action will be undiminished
during the episode. On-line TD(1), on the other hand, learns in an n-step TD way
from the incomplete ongoing episode, where the n steps are all the way up to the
current step. If something unusually good or bad happens during an episode, control
methods based on TD(1) can learn immediately and alter their behavior on that
same episode.

It is revealing to revisit the 19-state random walk example (Example 7.1) to see
how well TD(�) does in approximating the o↵-line �-return algorithm. The results
for both algorithms are shown in Figure 12.6. For each � value, if ↵ is selected

Off-line λ-return algorithm
(from the previous section)

↵

λ=0

λ=.4
λ=.8

λ=.9

λ=.95

λ=.975
λ=.99

λ=1

λ=.95

λ=0

λ=.4

λ=.8
λ=.9

λ=.95.975.991

TD(λ)

↵

λ=.8
λ=.9

RMS error
at the end 

of the episode
over the first
10 episodes

Figure 12.6: 19-state Random walk results (Example 7.1): Performance of TD(�) alongside
that of the o↵-line �-return algorithm. The two algorithms performed virtually identically
at low (less than optimal) ↵ values, but TD(�) was worse at high ↵ values.TD(λ) allows online updating!!

Tabular 19-state random walk task



Summary: TD-family for policy evaluation

The TD family of methods is between MC and DP
Interpolating in terms of credit assignment length!
With bootstrapping (TD), we don’t get true gradient 
descent methods with function approximation

this complicates the analysis
but learning is can be much faster
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