Lecture 7: Temporal-Difference Learning.
More on dynamic programming

Administrative items

1 Assignment-1 is due tomorrow

1 Assignment-2 will be released tomorrow and the deadline
1s 1n two weeks from the release time (Feb 4th, 2026)

Recall: Markovian assumption

The way we got to some specific situation is not relevant for
the future!

All that matters is our current observation X,

Alternatively, if we should have remembered something, we will
consider it part of X,

Eg remembering previous image frames or words

We will call such an observation state

Recall: Markov Property

1 Next state and reward depend only on the previous state and
action, and nothing else that happened 1n the past

pPS =8 Ry =r|S,=s,A=a)=pS,; =5 R =r|S,=sA=a,r),Vr,

1 The assumption is useful to develop, analyze and
understand algorithms

1 It does NOT mean it has to always hold

The Agent-Environment Interface

'_I Agent J
state reward action

St Rt At
Rt+1 (
S.. | Environment]4

\.

Agent and environment interact at discrete time steps: #=10,1,2,3,...

Agent observes state at stept: S, €8
produces action at step 7 : A, € A(S,)
gets resulting reward: R, € R C R

and resulting next state: §,,, € §*

r+1

1 Goal of the agent is to maximize its expected returns

Generalized Policy Iteration

evaluation
m
1 Policy evaluation or Prediction:
T V Estimate the value function of a

policy 7.
7~ greedy (V)

improvement

Recall: Markov Decision Processes

1 If a reinforcement learning task has the Markov Property, it is
called a Markov Decision Process (MDP).

1 If state and action sets are finite, it is a finite MDP.
1 To define a finite MDP, you need to give:
= state and action sets

" one-step “dynamics”

p(s',rls,a) =Pr{S;1=5,Ri1=7r|Si=s, Ai=a}

p(s'|s,a) = Pr{Sip1=5"| Si=s,4y=a} = Zp(s',r|s,a)

reR

T(S,CL) =]E’[Rt—l—l ‘ StzsaAt:a] — y:ry:p(slaﬂsaa)

rcR s'ES§

Recall: Value Functions

1 The value of a state is the expected return starting from
that state; depends on the agent’s policy:
S, = s}

1 The value of an action (in a state) is the expected return
starting after taking that action from that state; depends on
the agent’s policy:

State - value function for policy 7 :

Vn(S) = Eyr {Gt | St = S} = En {iykRHkH
k=0

Action - value function for policy 7 :

QJ'[(S’a) = En {Gt | St = S’At = CZ} = En {iykRHkH

k=0

S =5,A = a}

Recall: Asynchronous DP Policy Evaluation

V(S) < E,[R,, +7V(S,)] =D m@l$) > p(s', 1S, a)lr + 4V ()]

/

o o o
O O ‘< ./
balindbe A}

\

\

N\

/
/

From Planning to Learning

1 DP requires a probability model (as opposed to a
generative or simulation model)

1 We can interact with the world, learning a model (rewards
and transitions) and then do DP

1 This approach is called model-based RL
1 Full probability model may be hard to learn though
1 Direct learning of the value function from interaction

1 Still focusing on evaluating a fixed policy

24

Recall: Simple Monte Carlo

V(S,) < V(S)+a|G, - V(S,))]

Temporal-Difference Learning: Between
MC and DP!

V(S,) < V(S)+a|R

r+1

+yV(S,,)-V(S)]

SO

m b dmd b m

{oahminmrm dh

/ \

Temporal-Difference (TD) Prediction

Policy Evaluation (the prediction problem):
for a given policy m, compute the state-value function vy

Simple every-visit Monte Carlo method:

V(S1) « V(S) + |G = V(Sy)]

target: the actual return after time ¢

The simplest temporal-difference method TD(0):

V(Sy) 4 V(S:) | Rt +7V (Seva) = V(S)
|

target: an estimate of the return

Example: Driving Home

FElapsed Time Predicted Predicted

State (minutes) Time to Go Total Time
leaving office, friday at 6 0 30 30
reach car, raining 5 35 40
exiting highway 20 15 35
2ndary road, behind truck 30 10 40
entering home street 40 3 43

arrive home 43 0 43

R.S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 14

Driving Home

Changes recommended by
Monte Carlo methods (a=1)

45 -
___actual outcome
\
_ 40 -
Predicted
total
travel 35 -
time
30

T T T T T T
leaving reach exiting 2ndary home arrive
office car highway road street home

Situation

R.S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

_ 4
Predicted

total
travel
time

Changes recommended
by TD methods (a=1)

actual
outcome

leaving reach exiting 2ndary home arrive
office car highway road street home

Situation

15

TD methods bootstrap and sample

@ Bootstrapping: update involves an estimate
@ MC does not bootstrap
@ DP bootstraps
@ TD bootstraps
@ Sampling: update does not involve an
expected value
@ MC samples
@ DP does not sample
@ TD samples

R.S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 16

Advantages of TD Learning

@ TD methods do not require a model of the environment,
only experience

@ TD, but not MC, methods can be fully incremental
@ You can learn before knowing the final outcome
@ Less memory
@ Less peak computation
@ You can learn without the final outcome
@ From incomplete sequences

@ Both MC and TD converge (under certain assumptions to
be detailed later), but which 1s faster?

R.S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 17

Random Walk Example

0001|:|

start
0.8 - Estimated
value
0.6 -
1 |
0.4 -
True
values
Values learned by TD after 02-
various numbers of episodes
0 | | I | I
A B C D E

V(S1) ¢ V(i) + | Ryt + 3V (Sa1) = V(Sy)]

TD and MC on the Random Walk

0.25 - Empirical RMS error,
N averaged over states
0.2 - \\. Se=
0.15-
0.1-
0.05 -
TD ' a=.05
0 I I I I
0 25 50 75 100
Walks / Episodes

Data averaged over
100 sequences of episodes

Batch Updating in TD and MC methods

Batch Updating: train completely on a finite amount of data,
e.g., train repeatedly on 10 episodes until convergence.

Compute updates according to TD or MC, but only update
estimates after each complete pass through the data.

For any finite Markov prediction task, under batch updating,
TD converges for sufficiently small a.

Constant-oo MC also converges under these conditions, but to
a different answer!

Random Walk under Batch Updating

BATCH TRAINING

RMS error, .15
averaged
over states .14

D

.0 I I I]
0 25 50 75 100

Walks / Episodes

After each new episode, all previous episodes were treated as a batch,
and algorithm was trained until convergence. All repeated 100 times.

You are the Predictor

Suppose you observe the following 8 episodes:

A,0,B,0
B, 1

, A

vviivvilivvilvvilive

, A

B,0

V(B)?
V(A)?

Assume Markov states, no discounting (y = 1)

You are the Predictor

V(A)?

You are the Predictor

@ The prediction that best matches the training data is V(A)=0
@ This minimizes the mean-square-error on the training set
@ This 1s what a batch Monte Carlo method gets

@ If we consider the sequentiality of the problem, then we
would set V(A)=.75

@ This 1s correct for the maximum likelihood estimate of a
Markov model generating the data

@ 1i.e,1f we do a best fit Markov model, and assume it is
exactly correct, and then compute what it predicts (how?)

@ This is called the certainty-equivalence estimate
@ This 1s what TD gets

Recall: Value function approximation

S, =y %) (5, 6)

Recall: SGD for learning

General SGD: 0+ 6 —aVs Error}
For VFA: — 0 — aVy [Target; — (S, 9)]2
Chain rule: — 0 —2a[Target; — v(St, 0)] Vo [Target; — v(St, 0)]
Semi-gradient: + 6+ «a[Target, — (5S¢, 0)] Vot (S, 0)
Linear case: « 0+ a[Target, — 0(S, 0)] $(St)

Action-value form: 6 <« 0+ «a[Target; — §(St, As, 0)] d(St, Ar)

Semi-gradient TD(0) for estimating v ~ v,

Input: the policy 7 to be evaluated
Input: a differentiable function ¢ : 87 x R™ — R such that 9(terminal,-) = 0

Initialize value-function weights @ arbitrarily (e.g., @ = 0)
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A ~ 7(-|.S)
Take action A, observe R, S’
0 < 0+ a|R+~(5,0) — 0(5,0)|Vi(S,0)
S+ 5

until S’ is terminal

Recall: State aggregation example

trajectory of 11 jumps

-1
—
—— | ‘;&ab—/%/—/
| group1 group2 group3 group4 group 5 ‘ group 6 up 7 oup 8 group 9 group 10
|
| |
state 1 state 500 state 1000

The whole value function over 1000 states will be approximated
with 10 numbers!

Recall: Gradient MC results

10 groups of 100 states

1 True ~10.0137
after 100,000 episodes value v =
o =2x105 l;—

Value ?/Fl)groﬁ'mate } Distribution

scale value v * scale
state distribution affects /
accuracy)

10.0017
1 -0

Gradient TD is less accurate than MC

on the 1000-state random walk using state aggregation

e 10 groups of 100 states
e after 100,000 episodes
e o0 =2x10°

Relative values are
still pretty accurate

True
value U, ~a

™ P

Approximate g

| TDvalue U~ [

1

State 1000

Unified View

width
of backup i
Temporal- Dynamic |
difference programming
learning

Exhaustive

Monte .. search

Carlo

21

