
Lecture 7: Temporal-Difference Learning.
More on dynamic programming



Administrative items

❐ Assignment-1 is due tomorrow 
 

❐ Assignment-2 will be released tomorrow and the deadline 
is in two weeks from the release time (Feb 4th, 2026)
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Recall: Markovian assumption
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• The way we got to some specific situation is not relevant for 
the future!

• All that matters is our current observation 

• Alternatively, if we should have remembered something, we will 
consider it part of 

• Eg remembering previous image frames or words

• We will call such an observation state

Xt

Xt



Recall: Markov Property

❐ Next state and reward depend only on the previous state and 
action, and nothing else that happened in the past

❐ The assumption is useful to develop, analyze and 
understand algorithms

❐ It does NOT mean it has to always hold
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p(St+1 = s′ , Rt+1 = r |St = s, At = a) = p(St+1 = s′ , Rt+1 = r |St = s, At = a, τt), ∀τt



Agent and environment interact at discrete time steps:  t = 0, 1, 2,K
     Agent observes state at step t:    St ∈
     produces action at step t :   At ∈ (St )
     gets resulting reward:    Rt+1 ∈

     and resulting next state:  St+1 ∈

Agent

Environment

action
At

reward
Rt

state
St

Rt+1

St+1
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The Agent-Environment InterfaceSUMMARY OF NOTATION xiii

Summary of Notation

Capital letters are used for random variables and major algorithm variables.
Lower case letters are used for the values of random variables and for scalar
functions. Quantities that are required to be real-valued vectors are written
in bold and in lower case (even if random variables).

s state
a action
S set of all nonterminal states
S+ set of all states, including the terminal state
A(s) set of actions possible in state s

t discrete time step
T final time step of an episode
St state at t
At action at t
Rt reward at t, dependent, like St, on At�1 and St�1

Gt return (cumulative discounted reward) following t

G(n)
t n-step return (Section 7.1)

G�
t �-return (Section 7.2)

⇡ policy, decision-making rule
⇡(s) action taken in state s under deterministic policy ⇡
⇡(a|s) probability of taking action a in state s under stochastic policy ⇡
p(s0|s, a) probability of transition from state s to state s0 under action a
r(s, a, s0) expected immediate reward on transition from s to s0 under action a

v⇡(s) value of state s under policy ⇡ (expected return)
v⇤(s) value of state s under the optimal policy
q⇡(s, a) value of taking action a in state s under policy ⇡
q⇤(s, a) value of taking action a in state s under the optimal policy
Vt estimate (a random variable) of v⇡ or v⇤
Qt estimate (a random variable) of q⇡ or q⇤

v̂(s,w) approximate value of state s given a vector of weights w
q̂(s, a,w) approximate value of state–action pair s, a given weights w
w,wt vector of (possibly learned) weights underlying an approximate value function
x(s) vector of features visible when in state s
w>x inner product of vectors, w>x =

P
i wixi; e.g., v̂(s,w) = w>x(s)
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R

! = s0, a0, s1, a1, . . .

The other random variables are a function of this sequence. The transitional
target rt+1 is a function of st, at, and st+1. The termination condition �t,
terminal target zt, and prediction yt, are functions of st alone.

R(n)
t = rt+1 + �t+1zt+1 + (1� �t+1)R

(n�1)
t+1

R(0)
t = yt

R�
t = (1� �)

1X

n=1

�n�1R(n)
t

⇢t =
⇡(st, at)

b(st, at)

�wo↵(!) = �won(!)
1Y

i=1

⇢i

�wt = ↵t(CtR
�
t � yt)rwyt

�wt = ↵t(R̄
�
t � yt)rwyt
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Figure 3.1: The agent–environment interaction in reinforcement learning.

gives rise to rewards, special numerical values that the agent tries to maximize
over time. A complete specification of an environment defines a task , one
instance of the reinforcement learning problem.

More specifically, the agent and environment interact at each of a sequence
of discrete time steps, t = 0, 1, 2, 3, . . ..2 At each time step t, the agent receives
some representation of the environment’s state, St 2 S, where S is the set of
possible states, and on that basis selects an action, At 2 A(St), where A(St)
is the set of actions available in state St. One time step later, in part as a
consequence of its action, the agent receives a numerical reward , Rt+1 2 R, and
finds itself in a new state, St+1.3 Figure 3.1 diagrams the agent–environment
interaction.

At each time step, the agent implements a mapping from states to prob-
abilities of selecting each possible action. This mapping is called the agent’s
policy and is denoted ⇡t, where ⇡t(a|s) is the probability that At = a if St = s.
Reinforcement learning methods specify how the agent changes its policy as
a result of its experience. The agent’s goal, roughly speaking, is to maximize
the total amount of reward it receives over the long run.

This framework is abstract and flexible and can be applied to many di↵erent
problems in many di↵erent ways. For example, the time steps need not refer
to fixed intervals of real time; they can refer to arbitrary successive stages of
decision-making and acting. The actions can be low-level controls, such as the
voltages applied to the motors of a robot arm, or high-level decisions, such
as whether or not to have lunch or to go to graduate school. Similarly, the
states can take a wide variety of forms. They can be completely determined by

wider audience.
2
We restrict attention to discrete time to keep things as simple as possible, even though

many of the ideas can be extended to the continuous-time case (e.g., see Bertsekas and

Tsitsiklis, 1996; Werbos, 1992; Doya, 1996).
3
We use Rt+1 instead of Rt to denote the immediate reward due to the action taken

at time t because it emphasizes that the next reward and the next state, St+1, are jointly

determined.
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❐ Goal of the agent is to maximize its expected returns



Generalized Policy Iteration

6

evaluation

improvement

⇡  greedy(V )

V⇡

V  v⇡

v⇤⇡⇤

❐ Policy evaluation or Prediction: 
Estimate the value function of a 
policy .π
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Recall: Markov Decision Processes

❐ If a reinforcement learning task has the Markov Property, it is 
called a Markov Decision Process (MDP).

❐ If state and action sets are finite, it is a finite MDP. 
❐ To define a finite MDP, you need to give:

 state and action sets
 one-step “dynamics” 

 there is also:

58 CHAPTER 3. THE REINFORCEMENT LEARNING PROBLEM

A particular finite MDP is defined by its state and action sets and by the
one-step dynamics of the environment. Given any state and action s and a,
the probability of each possible pair of next state and reward, s

0
, r, is denoted

p(s0
, r|s, a) = Pr{St+1 =s

0
, Rt+1 = r | St =s, At =a}. (3.6)

These quantities completely specify the dynamics of a finite MDP. Most of the
theory we present in the rest of this book implicitly assumes the environment
is a finite MDP.

Given the dynamics as specified by (3.6), one can compute anything else
one might want to know about the environment, such as the expected rewards
for state–action pairs,

r(s, a) = E[Rt+1 | St =s, At =a] =
X

r2R

r

X

s02S

p(s0
, r|s, a), (3.7)

the state-transition probabilities,

p(s0|s, a) = Pr{St+1 =s
0 | St =s, At =a} =

X

r2R

p(s0
, r|s, a), (3.8)

and the expected rewards for state–action–next-state triples,

r(s, a, s
0) = E[Rt+1 | St =s, At =a, St+1 = s

0] =

P
r2R rp(s0

, r|s, a)

p(s0|s, a)
. (3.9)

In the first edition of this book, the dynamics were expressed exclusively in
terms of the latter two quantities, which were denote Pa

ss0 and Ra

ss0 respectively.
One weakness of that notation is that it still did not fully characterize the
dynamics of the rewards, giving only their expectations. Another weakness is
the excess of subscripts and superscripts. In this edition we will predominantly
use the explicit notation of (3.6), while sometimes referring directly to the
transition probabilities (3.8).

Example 3.7: Recycling Robot MDP The recycling robot (Example
3.3) can be turned into a simple example of an MDP by simplifying it and
providing some more details. (Our aim is to produce a simple example, not
a particularly realistic one.) Recall that the agent makes a decision at times
determined by external events (or by other parts of the robot’s control system).
At each such time the robot decides whether it should (1) actively search for
a can, (2) remain stationary and wait for someone to bring it a can, or (3) go
back to home base to recharge its battery. Suppose the environment works
as follows. The best way to find cans is to actively search for them, but this
runs down the robot’s battery, whereas waiting does not. Whenever the robot
is searching, the possibility exists that its battery will become depleted. In
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❐ The value of a state is the expected return starting from 
that state; depends on the agent’s policy:

❐ The value of an action (in a state) is the expected return 
starting after taking that action from that state; depends on 
the agent’s policy:
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Recall: Value Functions

State - value function for policy π :

vπ (s) = Eπ Gt St = s{ } = Eπ γ kRt+k+1 St = s
k=0

∞

∑
%
&
'

(
)
*

Action - value function for policy π :

qπ (s,a) = Eπ Gt St = s,At = a{ } = Eπ γ kRt+k+1 St = s,At = a
k=0

∞

∑
%
&
'

(
)
*



Recall: Asynchronous DP Policy Evaluation

T

T T TT
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T

TT

T

T

T

V (St )← Eπ Rt+1 + γV (St+1)[ ]
St

=
X

a

⇡(a|St)
X

s0,r

p(s0, r|St, a)[r + �V (s0)]

r
a
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From Planning to Learning

❐ DP requires a probability model (as opposed to a 
generative or simulation model)

❐ We can interact with the world, learning a model (rewards 
and transitions) and then do DP

❐ This approach is called model-based RL
❐ Full probability model may be hard to learn though
❐ Direct learning of the value function from interaction
❐ Still focusing on evaluating a fixed policy



Recall: Simple Monte Carlo

T T T TT

T T T T T

T T

T T

TT T

T TT

V (St )←V (St )+α Gt −V (St )[ ]

St



Temporal-Difference Learning: Between 
MC and DP!

T T T TT

T T T T TTTTTT

T T T T T

V (St )←V (St )+α Rt+1 + γV (St+1)−V (St )[ ]
St

Rt+1St+1



Temporal-Difference (TD) Prediction

Policy Evaluation (the prediction problem): 
         for a given policy π, compute the state-value function vπ 

Simple every-visit Monte Carlo method:

target: the actual return after time t

target: an estimate of the return

Chapter 6

Temporal-Di↵erence Learning

If one had to identify one idea as central and novel to reinforcement learning, it would
undoubtedly be temporal-di↵erence (TD) learning. TD learning is a combination
of Monte Carlo ideas and dynamic programming (DP) ideas. Like Monte Carlo
methods, TD methods can learn directly from raw experience without a model of
the environment’s dynamics. Like DP, TD methods update estimates based in part
on other learned estimates, without waiting for a final outcome (they bootstrap).
The relationship between TD, DP, and Monte Carlo methods is a recurring theme in
the theory of reinforcement learning. This chapter is the beginning of our exploration
of it. Before we are done, we will see that these ideas and methods blend into each
other and can be combined in many ways. In particular, in Chapter 7 we introduce
the TD(�) algorithm, which seamlessly integrates TD and Monte Carlo methods.

As usual, we start by focusing on the policy evaluation or prediction problem, that
of estimating the value function v⇡ for a given policy ⇡. For the control problem
(finding an optimal policy), DP, TD, and Monte Carlo methods all use some variation
of generalized policy iteration (GPI). The di↵erences in the methods are primarily
di↵erences in their approaches to the prediction problem.

6.1 TD Prediction

Both TD and Monte Carlo methods use experience to solve the prediction problem.
Given some experience following a policy ⇡, both methods update their estimate v
of v⇡ for the nonterminal states St occurring in that experience. Roughly speaking,
Monte Carlo methods wait until the return following the visit is known, then use
that return as a target for V (St). A simple every-visit Monte Carlo method suitable
for nonstationary environments is

V (St) V (St) + ↵
h
Gt � V (St)

i
, (6.1)

where Gt is the actual return following time t, and ↵ is a constant step-size parameter
(c.f., Equation 2.4). Let us call this method constant-↵ MC. Whereas Monte Carlo
methods must wait until the end of the episode to determine the increment to V (St)
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The simplest temporal-difference method TD(0):

128 CHAPTER 6. TEMPORAL-DIFFERENCE LEARNING

(only then is Gt known), TD methods need wait only until the next time step. At
time t + 1 they immediately form a target and make a useful update using the
observed reward Rt+1 and the estimate V (St+1). The simplest TD method, known
as TD(0), is

V (St) V (St) + ↵
h
Rt+1 + �V (St+1)� V (St)

i
. (6.2)

In e↵ect, the target for the Monte Carlo update is Gt, whereas the target for the TD
update is Rt+1 + �V (St+1).

Because the TD method bases its update in part on an existing estimate, we say
that it is a bootstrapping method, like DP. We know from Chapter 3 that

v⇡(s)
.
= E⇡[Gt | St =s] (6.3)

= E⇡
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= E⇡

"
Rt+1 + �
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k=0

�kRt+k+2

����� St =s
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= E⇡[Rt+1 + �v⇡(St+1) | St =s] . (6.4)

Roughly speaking, Monte Carlo methods use an estimate of (6.3) as a target, whereas
DP methods use an estimate of (6.4) as a target. The Monte Carlo target is an
estimate because the expected value in (6.3) is not known; a sample return is used
in place of the real expected return. The DP target is an estimate not because of
the expected values, which are assumed to be completely provided by a model of the
environment, but because v⇡(St+1) is not known and the current estimate, V (St+1),
is used instead. The TD target is an estimate for both reasons: it samples the
expected values in (6.4) and it uses the current estimate V instead of the true v⇡.
Thus, TD methods combine the sampling of Monte Carlo with the bootstrapping of
DP. As we shall see, with care and imagination this can take us a long way toward
obtaining the advantages of both Monte Carlo and DP methods.

Figure 6.1 specifies TD(0) completely in procedural form.

Input: the policy ⇡ to be evaluated
Initialize V (s) arbitrarily (e.g., V (s) = 0, 8s 2 S+)
Repeat (for each episode):

Initialize S
Repeat (for each step of episode):

A action given by ⇡ for S
Take action A; observe reward, R, and next state, S0

V (S) V (S) + ↵
⇥
R + �V (S0)� V (S)

⇤

S  S0

until S is terminal

Figure 6.1: Tabular TD(0) for estimating v⇡.
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Example: Driving Home

6.1. TD PREDICTION 129

TD(0)

The diagram to the right is the backup diagram for tabular TD(0). The
value estimate for the state node at the top of the backup diagram is up-
dated on the basis of the one sample transition from it to the immediately
following state. We refer to TD and Monte Carlo updates as sample back-
ups because they involve looking ahead to a sample successor state (or
state–action pair), using the value of the successor and the reward along
the way to compute a backed-up value, and then changing the value of the
original state (or state–action pair) accordingly. Sample backups di↵er from the full
backups of DP methods in that they are based on a single sample successor rather
than on a complete distribution of all possible successors.

Example 6.1: Driving Home Each day as you drive home from work, you try to
predict how long it will take to get home. When you leave your o�ce, you note the
time, the day of week, and anything else that might be relevant. Say on this Friday
you are leaving at exactly 6 o’clock, and you estimate that it will take 30 minutes
to get home. As you reach your car it is 6:05, and you notice it is starting to rain.
Tra�c is often slower in the rain, so you reestimate that it will take 35 minutes from
then, or a total of 40 minutes. Fifteen minutes later you have completed the highway
portion of your journey in good time. As you exit onto a secondary road you cut
your estimate of total travel time to 35 minutes. Unfortunately, at this point you get
stuck behind a slow truck, and the road is too narrow to pass. You end up having
to follow the truck until you turn onto the side street where you live at 6:40. Three
minutes later you are home. The sequence of states, times, and predictions is thus
as follows:

Elapsed Time Predicted Predicted
State (minutes) Time to Go Total Time
leaving o�ce, friday at 6 0 30 30
reach car, raining 5 35 40
exiting highway 20 15 35
2ndary road, behind truck 30 10 40
entering home street 40 3 43
arrive home 43 0 43

The rewards in this example are the elapsed times on each leg of the journey.1 We
are not discounting (� = 1), and thus the return for each state is the actual time to
go from that state. The value of each state is the expected time to go. The second
column of numbers gives the current estimated value for each state encountered.

A simple way to view the operation of Monte Carlo methods is to plot the predicted
total time (the last column) over the sequence, as in Figure 6.2 (left). The arrows
show the changes in predictions recommended by the constant-↵ MC method (6.1),
for ↵ = 1. These are exactly the errors between the estimated value (predicted time
to go) in each state and the actual return (actual time to go). For example, when
you exited the highway you thought it would take only 15 minutes more to get home,

1
If this were a control problem with the objective of minimizing travel time, then we would of

course make the rewards the negative of the elapsed time. But since we are concerned here only

with prediction (policy evaluation), we can keep things simple by using positive numbers.
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Driving Home

Changes recommended by 
Monte Carlo methods (α=1)

Changes recommended
by TD methods (α=1)
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TD methods bootstrap and sample

Bootstrapping: update involves an estimate
MC does not bootstrap
DP bootstraps
TD bootstraps

Sampling: update does not involve an 
expected value

MC samples
DP does not sample
TD samples
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Advantages of TD Learning

TD methods do not require a model of the environment, 
only experience
 TD, but not MC, methods can be fully incremental

You can learn before knowing the final outcome
Less memory
Less peak computation

You can learn without the final outcome
From incomplete sequences

Both MC and TD converge (under certain assumptions to 
be detailed later), but which is faster?



Random Walk Example

Values learned by TD after
various numbers of episodes
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(only then is Gt known), TD methods need wait only until the next time step. At
time t + 1 they immediately form a target and make a useful update using the
observed reward Rt+1 and the estimate V (St+1). The simplest TD method, known
as TD(0), is

V (St) V (St) + ↵
h
Rt+1 + �V (St+1)� V (St)

i
. (6.2)

In e↵ect, the target for the Monte Carlo update is Gt, whereas the target for the TD
update is Rt+1 + �V (St+1).

Because the TD method bases its update in part on an existing estimate, we say
that it is a bootstrapping method, like DP. We know from Chapter 3 that

v⇡(s)
.
= E⇡[Gt | St =s] (6.3)
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= E⇡[Rt+1 + �v⇡(St+1) | St =s] . (6.4)

Roughly speaking, Monte Carlo methods use an estimate of (6.3) as a target, whereas
DP methods use an estimate of (6.4) as a target. The Monte Carlo target is an
estimate because the expected value in (6.3) is not known; a sample return is used
in place of the real expected return. The DP target is an estimate not because of
the expected values, which are assumed to be completely provided by a model of the
environment, but because v⇡(St+1) is not known and the current estimate, V (St+1),
is used instead. The TD target is an estimate for both reasons: it samples the
expected values in (6.4) and it uses the current estimate V instead of the true v⇡.
Thus, TD methods combine the sampling of Monte Carlo with the bootstrapping of
DP. As we shall see, with care and imagination this can take us a long way toward
obtaining the advantages of both Monte Carlo and DP methods.

Figure 6.1 specifies TD(0) completely in procedural form.

Input: the policy ⇡ to be evaluated
Initialize V (s) arbitrarily (e.g., V (s) = 0, 8s 2 S+)
Repeat (for each episode):

Initialize S
Repeat (for each step of episode):

A action given by ⇡ for S
Take action A; observe reward, R, and next state, S0

V (S) V (S) + ↵
⇥
R + �V (S0)� V (S)

⇤

S  S0

until S is terminal

Figure 6.1: Tabular TD(0) for estimating v⇡.



TD and MC on the Random Walk

Data averaged over
100 sequences of episodes



Batch Updating in TD and MC methods

Batch Updating: train completely on a finite amount of data,
      e.g., train repeatedly on 10 episodes until convergence.

      Compute updates according to TD or MC, but only update
      estimates after each complete pass through the data.  

For any finite Markov prediction task, under batch updating,
TD converges for sufficiently small α.

Constant-α MC also converges under these conditions, but to
a different answer! 



Random Walk under Batch Updating

After each new episode, all previous episodes were treated as a batch, 
and algorithm was trained until convergence. All repeated 100 times.



You are the Predictor

Suppose you observe the following 8 episodes:

A, 0, B, 0
B, 1
B, 1
B, 1
B, 1
B, 1
B, 1
B, 0

V(B)?
V(A)?

Assume Markov states, no discounting (𝜸 = 1)



You are the Predictor

V(A)?



You are the Predictor

The prediction that best matches the training data is V(A)=0
This minimizes the mean-square-error on the training set
This is what a batch Monte Carlo method gets

If we consider the sequentiality of the problem, then we 
would set V(A)=.75

This is correct for the maximum likelihood estimate of a 
Markov model generating the data 
i.e, if we do a best fit Markov model, and assume it is 
exactly correct, and then compute what it predicts (how?)
This is called the certainty-equivalence estimate
This is what TD gets



Recall: Value function approximation

St v̂(St,✓)

Targett

✓



Recall: SGD for learning

✓  ✓ � ↵r✓ Error2t

 ✓ � ↵r✓ [Targett � v̂(St,✓)]
2

 ✓ � 2↵ [Targett � v̂(St,✓)]r✓ [Targett � v̂(St,✓)]

 ✓ + ↵ [Targett � v̂(St,✓)]r✓ v̂(St,✓)

 ✓ + ↵ [Targett � v̂(St,✓)]�(St)

General SGD:
For VFA:

Chain rule:
Semi-gradient:

Linear case:

✓  ✓ + ↵ [Targett � q̂(St, At,✓)]�(St, At)Action-value form:
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Semi-gradient TD(0) for estimating v̂ ⇡ v⇡

Input: the policy ⇡ to be evaluated
Input: a di↵erentiable function v̂ : S+ ⇥ Rn ! R such that v̂(terminal,·) = 0

Initialize value-function weights ✓ arbitrarily (e.g., ✓ = 0)
Repeat (for each episode):

Initialize S
Repeat (for each step of episode):

Choose A ⇠ ⇡(·|S)
Take action A, observe R, S0

✓  ✓ + ↵
⇥
R + �v̂(S0,✓)� v̂(S,✓)

⇤
rv̂(S,✓)

S  S0

until S0 is terminal

Example 9.1: State Aggregation on the 1000-state Random Walk State
aggregation is a simple form of generalizing function approximation in which states
are grouped together, with one estimated value (one component of the weight vector
✓) for each group. The value of a state is estimated as its group’s component, and
when the state is updated, that component alone is updated. State aggregation is
a special case of SGD (9.7) in which the gradient, rv̂(St,✓t), is 1 for St’s group’s
component and 0 for the other components.

Consider a 1000-state version of the random walk task (Examples 6.2 and 7.1).
The states are numbered from 1 to 1000, left to right, and all episodes begin near the
center, in state 500. State transitions are from the current state to one of the 100
neighboring states to its left, or to one of the 100 neighboring states to its right, all
with equal probability. Of course, if the current state is near an edge, then there may
be fewer than 100 neighbors on that side of it. In this case, all the probability that
would have gone into those missing neighbors goes into the probability of terminating
on that side (thus, state 1 has a 0.5 chance of terminating on the left, and state 950
has a 0.25 chance of terminating on the right). As usual, termination on the left
produces a reward of �1, and termination on the right produces a reward of +1.
All other transitions have a reward of zero. We use this task as a running example
throughout this section.

Figure 9.1 shows the true value function v⇡ for this task. It is nearly a straight
line, but tilted slightly toward the horizontal and curving further in this direction for
the last 100 states at each end. Also shown is the final approximate value function
learned by the gradient Monte-Carlo algorithm with state aggregation after 100,000
episodes with a step size of ↵ = 2⇥ 10�5. For the state aggregation, the 1000 states
were partitioned into 10 groups of 100 states each (i.e., states 1–100 were one group,
states 101-200 were another, and so on). The staircase e↵ect shown in the figure is
typical of state aggregation; within each group, the approximate value is constant,
and it changes abruptly from one group to the next. These approximate values are



Recall: State aggregation example

+1-1

state 1 state 500 state 1000

trajectory of 11 jumps

( ( ( ( ( ( ( ( ( (group 1 group 2 group 3 group 4 group 5 group 6 group 7 group 8 group 9 group 10

The whole value function over 1000 states will be approximated 
with 10 numbers!



Recall: Gradient MC results
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0

State

Value
scale

    True 
value v⇡

    Approximate 
MC value v̂

    State distribution         d
0.0017

0.0137

Distribution
scale

10001

0

-1

1

Figure 9.1: Function approximation by state aggregation on the 1000-state random walk
task, using the gradient Monte Carlo algorithm (page 194).

close to the global minimum of the MSVE (9.1).

Some of the details of the approximate values are best appreciated by reference to
the state distribution d for this task, shown in the lower portion of the figure with
a right-side scale. State 500, in the center, is the first state of every episode, but
it is rarely visited again. On average, about 1.37% of the time steps are spent in
the start state. The states reachable in one step from the start state are the second
most visited, with about 0.17% of the time steps being spent in each of them. From
there d falls o↵ almost linearly, reaching about 0.0147% at the extreme states 1 and
1000. The most visible e↵ect of the distribution is on the leftmost groups, whose
values are clearly shifted higher than the unweighted average of the true values of
states within the group, and on the rightmost groups, whose values are clearly shifted
lower. This is due to the states in these areas having the greatest asymmetry in their
weightings by d. For example, in the leftmost group, state 99 is weighted more
than 3 times more strongly than state 0. Thus the estimate for the group is biased
toward the true value of state 99, which is higher than the true value of state 0.

9.4 Linear Methods

One of the most important special cases of function approximation is that in which
the approximate function, v̂(·,✓), is a linear function of the weight vector, ✓. Corre-
sponding to every state s, there is a real-valued vector of features �(s)

.
= (�1(s), �2(s), . . . , �n(s))>,

with the same number of components as ✓. The features may be constructed from
the states in many di↵erent ways; we cover a few possibilities in the next sections.
However the features are constructed, the approximate state-value function is given

• 10 groups of 100 states 

• after 100,000 episodes 

• α = 2 x 10-5 

• state distribution affects 
accuracy



Gradient TD is less accurate than MC  
on the 1000-state random walk using state aggregation
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p(s0, r|St, a)[r + �v̂(s0,✓t)]) with backups according to the on-policy distribution will
also converge to the TD fixpoint. One-step semi-gradient action-value methods,
such as semi-gradient Sarsa(0) covered in the next chapter converge to an analogous
fixpoint and an analogous bound. For episodic tasks, there is a slightly di↵erent but
related bound (see Bertsekas and Tsitsiklis, 1996). There are also a few technical
conditions on the rewards, features, and decrease in the step-size parameter, which
we have omitted here. The full details can be found in the original paper (Tsitsiklis
and Van Roy, 1997).

Critical to the these convergence results is that states are backed up according to
the on-policy distribution. For other backup distributions, bootstrapping methods
using function approximation may actually diverge to infinity. Examples of this and
a discussion of possible solution methods are given in Chapter 11.

Example 9.2: Bootstrapping on the 1000-state Random Walk State aggre-
gation is a special case of linear function approximation, so let’s return to the 1000-
state random walk to illustrate some of the observations made in this chapter. The
left panel of Figure 9.2 shows the final value function learned by the semi-gradient
TD(0) algorithm (page 195) using the same state aggregation as in Example 9.1.
We see that the near-asymptotic TD approximation is indeed farther from the true
values than the Monte Carlo approximation shown in Figure 9.1.

Nevertheless, TD methods retain large potential advantages in learning rate, and
generalize MC methods, as we investigated fully with the multi-step TD methods
of Chapter 7. The right panel of Figure 9.2 shows results with an n-step semi-
gradient TD method using state aggregation and the 1000-state random walk that are
strikingly similar to those we obtained earlier with tabular methods and the 19-state
random walk. To obtain such quantitatively similar results we switched the state
aggregation to 20 groups of 50 states each. The 20 groups are then quantitatively
close to the 19 states of the tabular problem. In particular, the state transitions

↵

Average
RMS error

over 1000 states
and first 10 
episodes

n=1

n=2
n=4n=8

n=16

n=32
n=64

128
512

256

State

    True 
value v⇡

    Approximate 
TD value v̂
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0

-1

1
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Figure 9.2: Bootstrapping with state aggregation on the 1000-state random walk task.
Left: Asymptotic values of semi-gradient TD are worse than the asymptotic MC values
in Figure 9.1. Right: Performance of n-step methods with state-aggregation are strikingly
similar to those with tabular representations (cf. Figure 7.2).

• 10 groups of 100 states 

• after 100,000 episodes 

• α = 2 x 10-5

Relative values are 
still pretty accurate
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