Lecture 6: Markov Decision Processes.
Dynamic Programming for policy evaluation

Recall: Sequential decision making

e At time ¢, agent receives an observation from set X and can choose an
action from set A (think finite for now)

e Goal of the agent is to maximize long-term return

®
/NN

L) o
/6%
”& Credd assigproment

s :
t / \\n Ex((o/\atom

S >
* Recall the infinite tree of possible interactions of the agent and
environment - is finite horizon the only assumption we can make?

Finite clustering assumption

Paths do NOT need to finish in a finite amount of time

But, the infinite tree of paths clusters into a finite number of
clusters!

The means similar situations will recur

So we can generalize!

One more step: Markovian assumption

The way we got to some specific situation is not relevant for
the future!

All that matters is our current observation X,

Alternatively, if we should have remembered something, we will
consider it part of X,

Eg remembering previous image frames or words

We will call such an observation state

Markovian State

1 By “the state” at step ¢, the book means whatever information is
available to the agent at step ¢ about its environment.

1 The state can include immediate “sensations,” highly processed
sensations, and structures built up over time from sequences of
sensations.

1 Ideally, a state should summarize past sensations so as to retain
all “essential” information, 1.e., it should have the Markov
Property:

Pr{Rt—l—l =T, St—l-l - S/ ’ SO) A07 R17 R St—17 At—la Rt7 St7 At} =
p(s',rls,a) = Pr{Rp =1, Spp1 = 5" | S, A}

 for all ¢ € $*,r € ®, and all histories Sy, Ao, Ry, ..., Si—1, Ai_1, Ry, Si, Ay

5

Markov Property

1 Next state and reward depend only on the previous state and
action, and noting else that happened in the past

pPS =8 Ry =r|S,=s,A=a)=pS,; =5 R =r|S,=sA=a,r),Vr,

1 The assumption is useful to develop, analyze and
understand algorithms

1 It does NOT mean it has to always hold

The Agent-Environment Interface

'_l Agent J
state reward action

St Rt At
Rt+1 (
S.. | Environment J<

\.

Agent and environment interact at discrete time steps: #=10,1,2,3,...

Agent observes state at stept: S, €8
produces action at step 7 : A, € A(S,)
gets resulting reward: R, € R C R

and resulting next state: §,,, € §*

r+1

Markov Decision Processes

1 If a reinforcement learning task has the Markov Property, it is
called a Markov Decision Process (MDP).

1 If state and action sets are finite, it is a finite MDP.
1 To define a finite MDP, you need to give:
= state and action sets

" one-step “dynamics”

p(s',rls,a) =Pr{S;1=5,Ri1=7r|Si=s, Ai=a}

p(s'|s,a) = Pr{Sip1=5"| Si=s,4y=a} = Zp(s',r|s,a)

reR

T(S,CL) =]E’[Rt—l—l ‘ StzsaAt:a] — y:ry:p(slaﬂsaa)

rcR s'ES§

An Example Finite MDP

Recycling Robot

1 At each step, robot has to decide whether it should (1) actively
search for a can, (2) wait for someone to bring it a can, or (3)
g0 to home base and recharge.

1 Searching is better but runs down the battery; if runs out of
power while searching, has to be rescued (which 1s bad).

1 Decisions made on basis of current energy level: high, low.

1 Reward = number of cans collected

Recycling Robot MDP

S = {high, low} Iearen = €Xpected no. of cans while searching
A(high) = {search, wa j_t} r.... = expected no.of cans while waiting
HAQow) = {search, wait, recharge} Fsearch = Tyait
1, Twait l—ﬁ , -3
B y I'search
wait search
1,0 recharge
® low
search
1, Twai
A, Tsearch l-0, Tsearcn wait

10

Return

Suppose the sequence of rewards after step ¢ 1s:
R ,R._.R

t+1° T 420 T 4390 0

What do we want to maximize?

At least three cases, but in all of them,

we seek to maximize the expected return, £ {Gt } on each step .

e Total reward, G; = sum of all future reward in the episode

e Discounted reward, G; = sum of all future discounted reward

e Average reward, G; = average reward per time step

11

Recall: Episodic Tasks

Episodic tasks: interaction breaks naturally into
episodes, e.g., plays of a game, trips through a maze

In episodic tasks, we almost always use simple roral
reward.

G =R

r+1

+Rt+2 -+ R,

where 7 1s a final time step at which a terminal state is reached,

ending an episode.

12

Continuing Tasks

Continuing tasks: interaction does not have natural episodes, but
just goes on and on...

In this class, for continuing tasks we will mostly use discounted
return:

0

Rt+1 +)/R +2 + y Rt+3 = E)/kRHkH’

k=0
where y,0 <y <1, is the discount rate.

G, =

shortsighted 0 <y — 1 farsighted

Typically, ¥ =0.9

13

A Trick to Unify Notation for Returns

1 Think of each episode as ending in an absorbing state that
always produces reward of zero

1 We can cover all cases by writing

. () () R5=0

Gt = EykRHkH’
k=0

where y can be 1 only if a zero reward absorbing state is always reached.

14

Ways to interpret the discount factor

1 Inflation!
1 Survival probability
1 Part of the problem definition, NOT a hyper parameter!!

15

Whe Yh\ | g 13 DY‘J“WA?

R Jety
R R‘\g\ﬁ (. Ot

T 5-0¢
If ¢.99
Tt 7= 51

16

Episodic and Continuing Tasks: Average Reward

In episodic tasks, we can also use average reward:

Gy = (ZT:Rt)/T

=0

where T 1s a final time step at which a terminal state is reached,
ending an episode.

In continuing tasks, we can also define average reward:

6= (ZR»”)

Some advantages and disadvantages compared to discounting

An Example: Pole Balancing

Avoid failure: the pole falling beyond
a critical angle or the cart hitting end of

track
_— U —

As an episodic task where episode ends upon failure:

An Example: Pole Balancing

a critical angle or the cart hitting end of

/ Avoid failure: the pole falling beyond
track

—] - * I._

As an episodic task where episode ends upon failure:
reward = +1 for each step before failure

=> return = number of steps before failure

An Example: Pole Balancing

Avoid failure: the pole falling beyond
a critical angle or the cart hitting end of

track
_— U —

As a continuing task with discounted return:

An Example: Pole Balancing

a critical angle or the cart hitting end of

/ Avoid failure: the pole falling beyond
track

—] - * I._

As a continuing task with discounted return:

reward = -1 upon failure; O otherwise

= return = -y, for k steps before failure

An Example: Pole Balancing

Avoid failure: the pole falling beyond
| a critical angle or the cart hitting end of

/ track
— od —

As an episodic task where episode ends upon failure:
reward = +1 for each step before failure

=> return = number of steps before failure

As a continuing task with discounted return:
reward = -1 upon failure; O otherwise

= return = -y, for k steps before failure

In either case, return is maximized by
avolding failure for as long as possible.

Another Example: Mountain Car

Get to the top of the hill
as quickly as possible.

/

78

Return 1s maximized by minimizing
number of steps to reach the top of the hill.

Mountain Car: Discounted

Get to the top of the hill
as quickly as possible.

/

78

Reward: 1 at the top of the hill, O otherwise
Return: if discount <1, k=number of time steps, so return is }/

Return 1s maximized by minimizing
number of steps to reach the top of the hill.

Mountain Car: Episodic

Get to the top of the hill
as quickly as possible.

o
/|
reward = -1 for each step where not at top of hill

= return = - number of steps before reaching top of hill

Return 1s maximized by minimizing
number of steps to reach the top of the hill.

Value Functions

1 The value of a state is the expected return starting from
that state; depends on the agent’s policy:
S, = s}

1 The value of an action (in a state) is the expected return
starting after taking that action from that state; depends on
the agent’s policy:

State - value function for policy 7 :

Vn(S) = Eyr {Gt | St = S} = En {iykRHkH
k=0

Action - value function for policy 7 :

QJ'[(S’a) = En {Gt | St = S’At = CZ} = En {iykRHkH

k=0

S =5,A = a}

26

Gridworld

1 Actions: north, south, east, west; deterministic.

1 If would take agent off the grid: no move but reward = —1

1 Other actions produce reward = 0, except actions that move
agent out of special states A and B as shown.

A By
\

+5

+10) B’

+

Actions

3.3

8.8

4.4

5.3

1.5

1.5

3.0

2.3

1.9

0.5

0.1

0.7

0.7

0.4

-0.4

-1.0

-0.4

-0.4

-0.6

-1.2

-1.9

-1.3

-1.2

1.4

-2.0

(b)

State-value function
for equiprobable
random policy;
vy=0.9

27

Bellman Equation for a Policy n

The basic 1dea:

Gt = Rt+1 +)/Rt+2 + yth+3 tY 3I€t+4+
= Rt+1 +)/ (Rt+2 + y Rt+3 +)/ 2I€t+4+”.)
= Rt+1 + y Gt+1

So: v,(5)=E,{G,|S, = s}

St=s}

Or, without the expectation operator:

v (8) = Z (als) Zp(s’, rls,a) [7“ + fyvﬁ(s’)}

= En {Rt+1 + }/vn (St+1)

28

More on the Bellman Equation

U (s) = Z m(als) Zp(s’, r|s,a) {7“ + Wvﬁ(s’)}

This 1s a set of equations (in fact, linear), one for each state.
The value function for m 1s its unique solution.

Backup diagrams:

\) S,d

29

Iterative Methods

Vo —V1 —2 =2V —2 Vgt —2 " —2 Ugp

a “sweep”)

A sweep consists of applying a backup operation to each state.

A full policy-evaluation backup:

VEa1(s) = Zﬂ(a\s) Zp(s’, r|s,a) [7“ + ’yvk(sl)} Vs e d

Iterative Policy Evaluation — One array version

Input 7, the policy to be evaluated
Initialize an array V(s) = 0, for all s € 8
Repeat
A 0
For each s € &:
v <+ V(s)
V(s) = 3, mwlals) X, p(s's7ls, @)1 + 7V ()]
A < max(A, v — V(s)|)
until A < @ (a small positive number)
Output V =~ v,

A Small Gridworld

1

—‘— 4 S
8 9

10

11

actions

12 13

14

1 An undiscounted episodic task

1 Nonterminal states: 1,2, ..., 14;
1 One terminal state (shown twice as shaded squares)
1 Actions that would take agent off the grid leave state unchanged

1 Reward is —1 until the terminal state is reached

R = -1

on all transitions

V=1

Iterative Policy Eval
for the Small Gridworld Vi forhe

Random Policy

0.0[0.0(0.0] 0.0

0.0[0.0(0.0] 0.0

k=0
0.0/ 0.0{0.0] 0.0
0.0/ 0.0/ 0.0] 0.0
7t = equiprobable random action choices
k=1
1 2 3
4 |5 l6 |7 R= -1 k=2
on all transitions
8 9 10 (11
actions 1213 |14 y=1
k=3
3 An undiscounted episodic task
(3 Nonterminal states: 1,2, ..., 14;
7 One terminal state (shown twice as shaded squares) k=10

[Actions that would take agent off the grid leave state unchanged

(1 Reward is —1 until the terminal state is reached

Iterative Policy Eval
for the Small Gridworld

Vj, for the
Random Policy

7t = equiprobable random action choices

actions

12 113 |14

3 An undiscounted episodic task

(3 Nonterminal states: 1,2, ..., 14;

R= -1
on all transitions

v=1

7 One terminal state (shown twice as shaded squares)

[Actions that would take agent off the grid leave state unchanged

(1 Reward is —1 until the terminal state is reached

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

0.0

Iterative Policy Eval

for the Small Gridworld

Vj, for the
Random Policy

7t = equiprobable random action choices

actions

12 113 |14

3 An undiscounted episodic task

(3 Nonterminal states: 1,2, ..., 14;

R= -1
on all transitions

v=1

7 One terminal state (shown twice as shaded squares)

[Actions that would take agent off the grid leave state unchanged

(1 Reward is —1 until the terminal state is reached

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

0.0

0.0

-1.7

-2.0

-2.0

-1.7

-2.0

-2.0

-2.0

-2.0

-2.0

-2.0

-1.7

-2.0

-2.0

-1.7

0.0

Iterative Policy Eval
for the Small Gridworld Vi forhe

Random Policy

0.0/ 0.0/ 0.0/ 0.0
k=0 0.0/ 0.0/ 0.0/ 0.0
0.0/ 0.0{0.0] 0.0
0.0/ 0.0/ 0.0] 0.0
7t = equiprobable random action choices
0.0]-1.0]-1.0]-1.0
k=1 1.0[-1.0/-1.0]-1.0
-1.0{-1.0]-1.0]-1.0
-1.0]-1.0{-1.0{ 0.0
1 |2 |3 0.0]-1.7]-2.0]-2.0
ls L | R- _1 k=2 -1.7]-2.0[-2.0|-2.0
" 2.0|-2.0[-2.0[-1.7
on all transitions
s lo lo | -2.0[-2.0/-1.7 0.0
actions
12 13 |14 v=1 0.0/-2.4/-2.9[-3.0
k=3 2.4]-2.9]-3.0[-2.9
-2.9|-3.0[-2.9|-2.4
: .. -3.0]-2.9]-2.4{ 0.0
3 An undiscounted episodic task
(3 Nonterminal states: 1,2, ..., 14;
7 One terminal state (shown twice as shaded squares) k=10

[Actions that would take agent off the grid leave state unchanged

(1 Reward is —1 until the terminal state is reached

Iterative Policy Eval
for the Small Gridworld

Vj, for the

Random Policy

7t = equiprobable random action choices

4 |5 |8 |7 R=-1
on all transitions

actions

12 |13 |14 v=1

3 An undiscounted episodic task

(3 Nonterminal states: 1,2, ..., 14;

7 One terminal state (shown twice as shaded squares)

[Actions that would take agent off the grid leave state unchanged

(1 Reward is —1 until the terminal state is reached

k=0
k=1
k=2
k=3
k=10
k= o0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

0.0

0.0

-1.7

-2.0

-2.0

-1.7

-2.0

-2.0

-2.0

-2.0

-2.0

-2.0

-1.7

-2.0

-2.0

-1.7

0.0

0.0

-2.4

-2.9

-3.0

-2.4

-2.9

-3.0

-2.9

-2.9

-3.0

-2.9

2.4

-3.0

-2.9

2.4

0.0

0.0

-6.1

-8.4

-9.0

-6.1

-7.7

-8.4

-8.4

-8.4

-8.4

-7.7

-6.1

-9.0

8.4

-6.1

0.0

0.0-

.[-20.

-22.

.[-20.

-20.

20| -

J-18.]-

-22.]-

0.0

Asynchronous DP

1 Finding the value function of a policy implies solving a
linear system of equations

1 So complexity is polynomial (cubic, or possibly quadratic)
1n the number of states
1 BUT, the number of states is often astronomical, e.g., often

growing exponentially with the number of state variables
(what Bellman called “the curse of dimensionality™).

1 In practice, classical DP can be applied to problems with a
few millions of states, not more

1 Asynchronous DP can be applied to larger problems, and is
appropriate for parallel computation.

Asynchronous DP

1 All the DP methods described so far require exhaustive
sweeps of the entire state set.

1 Asynchronous DP does not use sweeps. Instead it works like
this:

= Repeat until convergence criterion 1s met:

— Pick a state at random and apply the appropriate
backup

1 Still need lots of computation, but does not get locked into
hopelessly long sweeps

1 Can you select states to backup intelligently? YES: an agent’s
experience can act as a guide.

Asynchronous DP Policy Evaluation

V(S) < E,[R,, +7V(S,)] =D m@l$) > p(s', 1S, a)lr + 4V ()]

/

o o o
O O ‘< ./
balindbe A}

\

\

N\

/
/

DP methods

1 Require a model of the transition dynamics and rewards
1 If we don’t know it, we need to learn it from data!

1 Model-based RL methods learn a model from the data then
use 1t to do approximate asynchronous DP

1 But learning a model can be expensive!

1 MC did not need a model! Just trajectories

Recall: Simple Monte Carlo

V(S,) < V(S)+a|G, - V(S,))]

Temporal-Difference Learning: Between
MC and DP!

V(S,) < V(S)+a|R

r+1

+yV(S,,)-V(S)]

SO

m b dmd b m

{oahminmrm dh

/ \

Temporal-Difference (TD) Prediction

Policy Evaluation (the prediction problem):
for a given policy m, compute the state-value function vy

Simple every-visit Monte Carlo method:

V(S1) « V(S) + |G = V(Sy)]

target: the actual return after time ¢

The simplest temporal-difference method TD(0):

V(Sy) 4 V(S:) | Rt +7V (Seva) = V(S)
|

target: an estimate of the return

Random Walk Example

~— OO —O—

start
0.8 -
100
0.6 - 1 10
Estimated (1) _——
value 0.4
true
values
Values learned by TD after 0.2 9
various numbers of episodes
0 : : | | |
A B C D E
State

V(S1) ¢ V(i) + | Ryt + 7V (Sea1) = V(Sy)]

TD and MC on the Random Walk

0.25

0.2\

RMS error, 0157
averaged
over states 0.1

o=.15 , N

0.05 -

o=.1

0 I I | |
0 25 50 75 100

Walks / Episodes

Data averaged over
100 sequences of episodes

