
Lecture 6: Markov Decision Processes. 
Dynamic Programming for policy evaluation



Recall: Sequential decision making
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Sequential decision making

• At time t, agent receives an observation from set X and can choose an
action from set A (think finite for now)

• Goal of the agent is to maximize long-term return
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• Recall the infinite tree of possible interactions of the agent and 
environment - is finite horizon the only assumption we can make?



Finite clustering assumption
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• Paths do NOT need to finish in a finite amount of time

• But, the infinite tree of paths clusters into a finite number of 
clusters!

• The means similar situations will recur 

• So we can generalize!



One more step: Markovian assumption
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• The way we got to some specific situation is not relevant for 
the future!

• All that matters is our current observation 

• Alternatively, if we should have remembered something, we will 
consider it part of 

• Eg remembering previous image frames or words

• We will call such an observation state

Xt

Xt
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Markovian State

❐ By “the state” at step t, the book means whatever information is 
available to the agent at step t about its environment.

❐ The state can include immediate “sensations,” highly processed 
sensations, and structures built up over time from sequences of 
sensations. 

❐ Ideally, a state should summarize past sensations so as to retain 
all “essential” information, i.e., it should have the Markov 
Property:

❐ for all                      and all histories  
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defined only by specifying the complete probability distribution:

Pr{Rt+1 = r, St+1 = s
0 | S0, A0, R1, . . . , St�1, At�1, Rt, St, At}, (3.4)

for all r, s
0, and all possible values of the past events: S0, A0, R1, ..., St�1,

At�1, Rt, St, At. If the state signal has the Markov property, on the other
hand, then the environment’s response at t + 1 depends only on the state and
action representations at t, in which case the environment’s dynamics can be
defined by specifying only

p(s0
, r|s, a) = Pr{Rt+1 = r, St+1 = s

0 | St, At}, (3.5)

for all r, s
0, St, and At. In other words, a state signal has the Markov property,

and is a Markov state, if and only if (3.5) is equal to (3.4) for all s
0, r, and

histories, S0, A0, R1, ..., St�1, At�1, Rt, St, At. In this case, the environment
and task as a whole are also said to have the Markov property.

If an environment has the Markov property, then its one-step dynamics
(3.5) enable us to predict the next state and expected next reward given the
current state and action. One can show that, by iterating this equation, one
can predict all future states and expected rewards from knowledge only of the
current state as well as would be possible given the complete history up to the
current time. It also follows that Markov states provide the best possible basis
for choosing actions. That is, the best policy for choosing actions as a function
of a Markov state is just as good as the best policy for choosing actions as a
function of complete histories.

Even when the state signal is non-Markov, it is still appropriate to think
of the state in reinforcement learning as an approximation to a Markov state.
In particular, we always want the state to be a good basis for predicting
future rewards and for selecting actions. In cases in which a model of the
environment is learned (see Chapter 8), we also want the state to be a good
basis for predicting subsequent states. Markov states provide an unsurpassed
basis for doing all of these things. To the extent that the state approaches the
ability of Markov states in these ways, one will obtain better performance from
reinforcement learning systems. For all of these reasons, it is useful to think of
the state at each time step as an approximation to a Markov state, although
one should remember that it may not fully satisfy the Markov property.

The Markov property is important in reinforcement learning because de-
cisions and values are assumed to be a function only of the current state. In
order for these to be e↵ective and informative, the state representation must
be informative. All of the theory presented in this book assumes Markov state
signals. This means that not all the theory strictly applies to cases in which
the Markov property does not strictly apply. However, the theory developed
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Markov Property

❐ Next state and reward depend only on the previous state and 
action, and noting else that happened in the past

❐ The assumption is useful to develop, analyze and 
understand algorithms

❐ It does NOT mean it has to always hold
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p(St+1 = s′￼, Rt+1 = r |St = s, At = a) = p(St+1 = s′￼, Rt+1 = r |St = s, At = a, τt), ∀τt



Agent and environment interact at discrete time steps:  t = 0, 1, 2,K
     Agent observes state at step t:    St ∈
     produces action at step t :   At ∈ (St )
     gets resulting reward:    Rt+1 ∈

     and resulting next state:  St+1 ∈

Agent

Environment

action
At

reward
Rt

state
St

Rt+1

St+1
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The Agent-Environment InterfaceSUMMARY OF NOTATION xiii

Summary of Notation

Capital letters are used for random variables and major algorithm variables.
Lower case letters are used for the values of random variables and for scalar
functions. Quantities that are required to be real-valued vectors are written
in bold and in lower case (even if random variables).

s state
a action
S set of all nonterminal states
S+ set of all states, including the terminal state
A(s) set of actions possible in state s

t discrete time step
T final time step of an episode
St state at t
At action at t
Rt reward at t, dependent, like St, on At�1 and St�1

Gt return (cumulative discounted reward) following t

G(n)
t n-step return (Section 7.1)

G�
t �-return (Section 7.2)

⇡ policy, decision-making rule
⇡(s) action taken in state s under deterministic policy ⇡
⇡(a|s) probability of taking action a in state s under stochastic policy ⇡
p(s0|s, a) probability of transition from state s to state s0 under action a
r(s, a, s0) expected immediate reward on transition from s to s0 under action a

v⇡(s) value of state s under policy ⇡ (expected return)
v⇤(s) value of state s under the optimal policy
q⇡(s, a) value of taking action a in state s under policy ⇡
q⇤(s, a) value of taking action a in state s under the optimal policy
Vt estimate (a random variable) of v⇡ or v⇤
Qt estimate (a random variable) of q⇡ or q⇤

v̂(s,w) approximate value of state s given a vector of weights w
q̂(s, a,w) approximate value of state–action pair s, a given weights w
w,wt vector of (possibly learned) weights underlying an approximate value function
x(s) vector of features visible when in state s
w>x inner product of vectors, w>x =

P
i wixi; e.g., v̂(s,w) = w>x(s)
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Figure 3.1: The agent–environment interaction in reinforcement learning.

gives rise to rewards, special numerical values that the agent tries to maximize
over time. A complete specification of an environment defines a task , one
instance of the reinforcement learning problem.

More specifically, the agent and environment interact at each of a sequence
of discrete time steps, t = 0, 1, 2, 3, . . ..2 At each time step t, the agent receives
some representation of the environment’s state, St 2 S, where S is the set of
possible states, and on that basis selects an action, At 2 A(St), where A(St)
is the set of actions available in state St. One time step later, in part as a
consequence of its action, the agent receives a numerical reward , Rt+1 2 R, and
finds itself in a new state, St+1.3 Figure 3.1 diagrams the agent–environment
interaction.

At each time step, the agent implements a mapping from states to prob-
abilities of selecting each possible action. This mapping is called the agent’s
policy and is denoted ⇡t, where ⇡t(a|s) is the probability that At = a if St = s.
Reinforcement learning methods specify how the agent changes its policy as
a result of its experience. The agent’s goal, roughly speaking, is to maximize
the total amount of reward it receives over the long run.

This framework is abstract and flexible and can be applied to many di↵erent
problems in many di↵erent ways. For example, the time steps need not refer
to fixed intervals of real time; they can refer to arbitrary successive stages of
decision-making and acting. The actions can be low-level controls, such as the
voltages applied to the motors of a robot arm, or high-level decisions, such
as whether or not to have lunch or to go to graduate school. Similarly, the
states can take a wide variety of forms. They can be completely determined by

wider audience.
2
We restrict attention to discrete time to keep things as simple as possible, even though

many of the ideas can be extended to the continuous-time case (e.g., see Bertsekas and

Tsitsiklis, 1996; Werbos, 1992; Doya, 1996).
3
We use Rt+1 instead of Rt to denote the immediate reward due to the action taken

at time t because it emphasizes that the next reward and the next state, St+1, are jointly

determined.
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Markov Decision Processes

❐ If a reinforcement learning task has the Markov Property, it is 
called a Markov Decision Process (MDP).

❐ If state and action sets are finite, it is a finite MDP. 
❐ To define a finite MDP, you need to give:

 state and action sets
 one-step “dynamics” 

 there is also:

58 CHAPTER 3. THE REINFORCEMENT LEARNING PROBLEM

A particular finite MDP is defined by its state and action sets and by the
one-step dynamics of the environment. Given any state and action s and a,
the probability of each possible pair of next state and reward, s

0
, r, is denoted

p(s0
, r|s, a) = Pr{St+1 =s

0
, Rt+1 = r | St =s, At =a}. (3.6)

These quantities completely specify the dynamics of a finite MDP. Most of the
theory we present in the rest of this book implicitly assumes the environment
is a finite MDP.

Given the dynamics as specified by (3.6), one can compute anything else
one might want to know about the environment, such as the expected rewards
for state–action pairs,

r(s, a) = E[Rt+1 | St =s, At =a] =
X

r2R

r

X

s02S

p(s0
, r|s, a), (3.7)

the state-transition probabilities,

p(s0|s, a) = Pr{St+1 =s
0 | St =s, At =a} =

X

r2R

p(s0
, r|s, a), (3.8)

and the expected rewards for state–action–next-state triples,

r(s, a, s
0) = E[Rt+1 | St =s, At =a, St+1 = s

0] =

P
r2R rp(s0

, r|s, a)

p(s0|s, a)
. (3.9)

In the first edition of this book, the dynamics were expressed exclusively in
terms of the latter two quantities, which were denote Pa

ss0 and Ra

ss0 respectively.
One weakness of that notation is that it still did not fully characterize the
dynamics of the rewards, giving only their expectations. Another weakness is
the excess of subscripts and superscripts. In this edition we will predominantly
use the explicit notation of (3.6), while sometimes referring directly to the
transition probabilities (3.8).

Example 3.7: Recycling Robot MDP The recycling robot (Example
3.3) can be turned into a simple example of an MDP by simplifying it and
providing some more details. (Our aim is to produce a simple example, not
a particularly realistic one.) Recall that the agent makes a decision at times
determined by external events (or by other parts of the robot’s control system).
At each such time the robot decides whether it should (1) actively search for
a can, (2) remain stationary and wait for someone to bring it a can, or (3) go
back to home base to recharge its battery. Suppose the environment works
as follows. The best way to find cans is to actively search for them, but this
runs down the robot’s battery, whereas waiting does not. Whenever the robot
is searching, the possibility exists that its battery will become depleted. In

58 CHAPTER 3. FINITE MARKOV DECISION PROCESSES

3.6 Markov Decision Processes

A reinforcement learning task that satisfies the Markov property is called a Markov
decision process, or MDP. If the state and action spaces are finite, then it is called a
finite Markov decision process (finite MDP). Finite MDPs are particularly important
to the theory of reinforcement learning. We treat them extensively throughout this
book; they are all you need to understand 90% of modern reinforcement learning.

A particular finite MDP is defined by its state and action sets and by the one-step
dynamics of the environment. Given any state and action s and a, the probability
of each possible pair of next state and reward, s0, r, is denoted

p(s0, r|s, a)
.
= Pr

�
St+1 =s0, Rt+1 = r | St =s, At =a

 
. (3.6)

These quantities completely specify the dynamics of a finite MDP. Most of the theory
we present in the rest of this book implicitly assumes the environment is a finite MDP.

Given the dynamics as specified by (3.6), one can compute anything else one might
want to know about the environment, such as the expected rewards for state–action
pairs,

r(s, a)
.
= E[Rt+1 | St =s, At =a] =

X

r2R

r
X

s02S

p(s0, r|s, a), (3.7)

the state-transition probabilities,

p(s0|s, a)
.
= Pr

�
St+1 =s0 | St =s, At =a

 
=
X

r2R

p(s0, r|s, a), (3.8)

and the expected rewards for state–action–next-state triples,

r(s, a, s0)
.
= E

⇥
Rt+1

�� St =s, At =a, St+1 = s0⇤ =

P
r2R rp(s0, r|s, a)

p(s0|s, a)
. (3.9)

In the first edition of this book, the dynamics were expressed exclusively in terms
of the latter two quantities, which were denoted Pa

ss0 and Ra

ss0 respectively. One
weakness of that notation is that it still did not fully characterize the dynamics
of the rewards, giving only their expectations. Another weakness is the excess of
subscripts and superscripts. In this edition we will predominantly use the explicit
notation of (3.6), while sometimes referring directly to the transition probabilities
(3.8).

Example 3.7: Recycling Robot MDP The recycling robot (Example 3.3) can
be turned into a simple example of an MDP by simplifying it and providing some
more details. (Our aim is to produce a simple example, not a particularly realistic
one.) Recall that the agent makes a decision at times determined by external events
(or by other parts of the robot’s control system). At each such time the robot decides
whether it should (1) actively search for a can, (2) remain stationary and wait for
someone to bring it a can, or (3) go back to home base to recharge its battery.
Suppose the environment works as follows. The best way to find cans is to actively

58 CHAPTER 3. FINITE MARKOV DECISION PROCESSES

3.6 Markov Decision Processes

A reinforcement learning task that satisfies the Markov property is called a Markov
decision process, or MDP. If the state and action spaces are finite, then it is called a
finite Markov decision process (finite MDP). Finite MDPs are particularly important
to the theory of reinforcement learning. We treat them extensively throughout this
book; they are all you need to understand 90% of modern reinforcement learning.

A particular finite MDP is defined by its state and action sets and by the one-step
dynamics of the environment. Given any state and action s and a, the probability
of each possible pair of next state and reward, s0, r, is denoted

p(s0, r|s, a)
.
= Pr

�
St+1 =s0, Rt+1 = r | St =s, At =a

 
. (3.6)

These quantities completely specify the dynamics of a finite MDP. Most of the theory
we present in the rest of this book implicitly assumes the environment is a finite MDP.

Given the dynamics as specified by (3.6), one can compute anything else one might
want to know about the environment, such as the expected rewards for state–action
pairs,

r(s, a)
.
= E[Rt+1 | St =s, At =a] =

X

r2R

r
X

s02S

p(s0, r|s, a), (3.7)

the state-transition probabilities,

p(s0|s, a)
.
= Pr

�
St+1 =s0 | St =s, At =a

 
=
X

r2R

p(s0, r|s, a), (3.8)

and the expected rewards for state–action–next-state triples,

r(s, a, s0)
.
= E

⇥
Rt+1

�� St =s, At =a, St+1 = s0⇤ =

P
r2R rp(s0, r|s, a)

p(s0|s, a)
. (3.9)

In the first edition of this book, the dynamics were expressed exclusively in terms
of the latter two quantities, which were denoted Pa

ss0 and Ra

ss0 respectively. One
weakness of that notation is that it still did not fully characterize the dynamics
of the rewards, giving only their expectations. Another weakness is the excess of
subscripts and superscripts. In this edition we will predominantly use the explicit
notation of (3.6), while sometimes referring directly to the transition probabilities
(3.8).

Example 3.7: Recycling Robot MDP The recycling robot (Example 3.3) can
be turned into a simple example of an MDP by simplifying it and providing some
more details. (Our aim is to produce a simple example, not a particularly realistic
one.) Recall that the agent makes a decision at times determined by external events
(or by other parts of the robot’s control system). At each such time the robot decides
whether it should (1) actively search for a can, (2) remain stationary and wait for
someone to bring it a can, or (3) go back to home base to recharge its battery.
Suppose the environment works as follows. The best way to find cans is to actively



9

Recycling Robot 

An Example Finite MDP

❐ At each step, robot has to decide whether it should (1) actively 
search for a can, (2) wait for someone to bring it a can, or (3) 
go to home base and recharge. 

❐ Searching is better but runs down the battery; if runs out of 
power while searching, has to be rescued (which is bad).

❐ Decisions made on basis of current energy level: high, low.
❐ Reward = number of cans collected
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Recycling Robot MDP

= high,low{ }
(high) = search, wait{ }
(low) = search, wait,recharge{ }

rsearch =  expected no. of cans while searching
rwait =  expected no. of cans while waiting
                     rsearch > rwait

search

high low
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search
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3.6. MARKOV DECISION PROCESSES 59

s s0 a p(s0|s, a) r(s, a, s0)
high high search ↵ rsearch
high low search 1� ↵ rsearch
low high search 1� � �3
low low search � rsearch
high high wait 1 rwait
high low wait 0 rwait
low high wait 0 rwait
low low wait 1 rwait
low high recharge 1 0
low low recharge 0 0.

Table 3.1: Transition probabilities and expected rewards for the finite MDP
of the recycling robot example. There is a row for each possible combination
of current state, s, next state, s0, and action possible in the current state,
a 2 A(s).

is S = {high, low}. Let us call the possible decisions—the agent’s actions—
wait, search, and recharge. When the energy level is high, recharging would
always be foolish, so we do not include it in the action set for this state. The
agent’s action sets are

A(high) = {search, wait}
A(low) = {search, wait, recharge}.

If the energy level is high, then a period of active search can always be
completed without risk of depleting the battery. A period of searching that
begins with a high energy level leaves the energy level high with probability
↵ and reduces it to low with probability 1�↵. On the other hand, a period of
searching undertaken when the energy level is low leaves it low with probability
� and depletes the battery with probability 1��. In the latter case, the robot
must be rescued, and the battery is then recharged back to high. Each can
collected by the robot counts as a unit reward, whereas a reward of �3 results
whenever the robot has to be rescued. Let rsearch and rwait, with rsearch > rwait,
respectively denote the expected number of cans the robot will collect (and
hence the expected reward) while searching and while waiting. Finally, to keep
things simple, suppose that no cans can be collected during a run home for
recharging, and that no cans can be collected on a step in which the battery
is depleted. This system is then a finite MDP, and we can write down the
transition probabilities and the expected rewards, as in Table 3.1.

A transition graph is a useful way to summarize the dynamics of a finite
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Summary of Notation

Capital letters are used for random variables and major algorithm variables.
Lower case letters are used for the values of random variables and for scalar
functions. Quantities that are required to be real-valued vectors are written
in bold and in lower case (even if random variables).

s state
a action
S set of all nonterminal states
S+ set of all states, including the terminal state
A(s) set of actions possible in state s

t discrete time step
T final time step of an episode
St state at t
At action at t
Rt reward at t, dependent, like St, on At�1 and St�1

Gt return (cumulative discounted reward) following t

G(n)
t n-step return (Section 7.1)

G�
t �-return (Section 7.2)

⇡ policy, decision-making rule
⇡(s) action taken in state s under deterministic policy ⇡
⇡(a|s) probability of taking action a in state s under stochastic policy ⇡
p(s0|s, a) probability of transition from state s to state s0 under action a
r(s, a, s0) expected immediate reward on transition from s to s0 under action a

v⇡(s) value of state s under policy ⇡ (expected return)
v⇤(s) value of state s under the optimal policy
q⇡(s, a) value of taking action a in state s under policy ⇡
q⇤(s, a) value of taking action a in state s under the optimal policy
Vt estimate (a random variable) of v⇡ or v⇤
Qt estimate (a random variable) of q⇡ or q⇤

v̂(s,w) approximate value of state s given a vector of weights w
q̂(s, a,w) approximate value of state–action pair s, a given weights w
w,wt vector of (possibly learned) weights underlying an approximate value function
x(s) vector of features visible when in state s
w>x inner product of vectors, w>x =

P
i wixi; e.g., v̂(s,w) = w>x(s)
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Return

Suppose the sequence of rewards after step t  is:
                         Rt+1, Rt+2 , Rt+3,K
What do we want to maximize?

At least three cases, but in all of them, 
we seek to maximize the expected return, E Gt{ }, on each step t.

• Total reward, Gt = sum of all future reward in the episode

• Discounted reward, Gt = sum of all future discounted reward

• Average reward, Gt = average reward per time step

. . .



Recall: Episodic Tasks

12

Episodic tasks: interaction breaks naturally into 
episodes, e.g., plays of a game, trips through a maze

In episodic tasks, we almost always use simple total 
reward:

Gt = Rt+1 + Rt+2 +L + RT ,

where T is a final time step at which a terminal state is reached, 
ending an episode.

...
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Continuing Tasks

Continuing tasks: interaction does not have natural episodes, but 
just goes on and on...  

In this class, for continuing tasks we will mostly use discounted 
return:

            Gt = Rt+1 + γ Rt+2 + γ
2Rt+3 +L = γ kRt+k+1,

k=0

∞

∑
where γ , 0 ≤ γ ≤1,  is the discount rate.

shortsighted  0 ←γ → 1  farsighted

Typically, γ = 0.9

...



R1 = +1S0 S1
R2 = +1 S2

R3 = +1 R4 = 0
R5 = 0. . .

❐ Think of each episode as ending in an absorbing state that 
always produces reward of zero

❐ We can cover all cases by writing

14

A Trick to Unify Notation for Returns

                                                                Gt = γ kRt+k+1,
k=0

∞

∑
where γ  can be 1 only if a zero reward absorbing state is always reached.



Ways to interpret the discount factor

❐ Inflation!
❐ Survival probability
❐ Part of the problem definition, NOT a hyper parameter!!
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Example
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Episodic and Continuing Tasks: Average Reward

In episodic tasks, we can also use average reward:

where T is a final time step at which a terminal state is reached, 
ending an episode.

G0 = (
T

∑
t=0

Rt)/T

In continuing tasks, we can also define average reward:

G = lim
T→∞ ((

T

∑
t=0

Rt)/T)
Some advantages and disadvantages compared to discounting 



An Example: Pole Balancing

Avoid failure: the pole falling beyond
a critical angle or the cart hitting end of
track

As an episodic task where episode ends upon failure:



An Example: Pole Balancing
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a critical angle or the cart hitting end of
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reward  = +1 for each step before failure
⇒   return =  number of steps before failure

As an episodic task where episode ends upon failure:
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An Example: Pole Balancing

Avoid failure: the pole falling beyond
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track

As a continuing task with discounted return:

reward  = −1 upon failure;  0 otherwise
⇒   return =  −γ k ,  for k steps before failure



An Example: Pole Balancing

Avoid failure: the pole falling beyond
a critical angle or the cart hitting end of
track

reward  = +1 for each step before failure
⇒   return =  number of steps before failure

As an episodic task where episode ends upon failure:

As a continuing task with discounted return:
reward  = −1 upon failure;  0 otherwise
⇒   return =  −γ k ,  for k steps before failure

In either case, return is maximized by 
avoiding failure for as long as possible.



Another Example: Mountain Car

Get to the top of the hill
as quickly as possible. 

Return is maximized by minimizing 
number of steps to reach the top of the hill. 



Mountain Car: Discounted

Get to the top of the hill
as quickly as possible. 

Return is maximized by minimizing 
number of steps to reach the top of the hill. 

Reward: 1 at the top of the hill, 0 otherwise
Return: if discount <1, k=number of time steps, so return is γk



Mountain Car: Episodic

Get to the top of the hill
as quickly as possible. 

Return is maximized by minimizing 
number of steps to reach the top of the hill. 

reward  = −1 for each step where not at top of hill
⇒   return =  − number of steps before reaching top of hill
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Value Functions

State - value function for policy π :

vπ (s) = Eπ Gt St = s{ } = Eπ γ kRt+k+1 St = s
k=0

∞

∑
%
&
'

(
)
*

Action - value function for policy π :

qπ (s,a) = Eπ Gt St = s,At = a{ } = Eπ γ kRt+k+1 St = s,At = a
k=0

∞

∑
%
&
'

(
)
*

❐ The value of a state is the expected return starting from 
that state; depends on the agent’s policy:

❐ The value of an action (in a state) is the expected return 
starting after taking that action from that state; depends on 
the agent’s policy:
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Gridworld

❐ Actions: north, south, east, west; deterministic.
❐ If would take agent off the grid: no move but reward = –1
❐ Other actions produce reward = 0, except actions that move 

agent out of special states A and B as shown.

State-value function 
for equiprobable 
random policy;
γ = 0.9
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Bellman Equation for a Policy π

Gt = Rt+1 + γ Rt+2 + γ
2Rt+3 + γ

3Rt+4L
= Rt+1 + γ Rt+2 + γ Rt+3 + γ

2Rt+4L( )
= Rt+1 + γGt+1

The basic idea: 

So: vπ (s) = Eπ Gt St = s{ }
= Eπ Rt+1 + γ vπ St+1( ) St = s{ }

Or, without the expectation operator: 

...+

...+

v⇡(s) =
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0)
i

v⇡(s) = E⇡

⇥
Rt+1 + �Rt+2 + �2Rt+3 + · · ·

�� St=s
⇤

= E⇡[Rt+1 + �v⇡(St+1) | St=s] (1)

=
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0)
i
, (2)

i
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More on the Bellman Equation

This is a set of equations (in fact, linear), one for each state.
The value function for π  is its unique solution.

Backup diagrams:

for vπ for qπ

v⇡(s) =
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s
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i
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Rt+1 + �Rt+2 + �2Rt+3 + · · ·

�� St=s
⇤

= E⇡[Rt+1 + �v⇡(St+1) | St=s] (1)

=
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0)
i
, (2)

i



Iterative Methods

a “sweep”

A sweep consists of applying a backup operation to each state.

A full policy-evaluation backup:

v0 ! v1 ! · · · ! vk ! vk+1 ! · · · ! v⇡

v⇡(s) =
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0)
i

vk+1(s) =
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �vk(s

0)
i

8s 2 S

v⇡(s) = E⇡[Gt | St = s] = E⇡

" 1X

k=0
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����� St = s

#
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=
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X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0)
i
, (2)
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q⇡⇤(s, a)

= max
a

E[Rt+1 + �v⇤(St+1) | St=s,At=a] (3)
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X
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0)
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. (4)
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Iterative Policy Evaluation – One array version
86 CHAPTER 4. DYNAMIC PROGRAMMING

Input ⇡, the policy to be evaluated
Initialize an array V (s) = 0, for all s 2 S+

Repeat
� 0
For each s 2 S:

v  V (s)
V (s) 

P
a
⇡(a|s)

P
s0,r p(s0

, r|s, a)
⇥
r + �V (s0)

⇤

� max(�, |v � V (s)|)
until � < ✓ (a small positive number)
Output V ⇡ v⇡

Figure 4.1: Iterative policy evaluation.

Another implementation point concerns the termination of the algorithm.
Formally, iterative policy evaluation converges only in the limit, but in practice
it must be halted short of this. A typical stopping condition for iterative policy
evaluation is to test the quantity maxs2S |vk+1(s)�vk(s)| after each sweep and
stop when it is su�ciently small. Figure 4.1 gives a complete algorithm for
iterative policy evaluation with this stopping criterion.

Example 4.1 Consider the 4⇥4 gridworld shown below.

actions

r  =  !1

on all transitions

1 2 3

4 5 6 7

8 9 10 11

12 13 14

R

The nonterminal states are S = {1, 2, . . . , 14}. There are four actions pos-
sible in each state, A = {up, down, right, left}, which deterministically
cause the corresponding state transitions, except that actions that would take
the agent o↵ the grid in fact leave the state unchanged. Thus, for instance,
p(6|5, right) = 1, p(10|5, right) = 0, and p(7|7, right) = 1. This is an undis-
counted, episodic task. The reward is �1 on all transitions until the terminal
state is reached. The terminal state is shaded in the figure (although it is
shown in two places, it is formally one state). The expected reward function is
thus r(s, a, s

0) = �1 for all states s, s
0 and actions a. Suppose the agent follows

the equiprobable random policy (all actions equally likely). The left side of
Figure 4.2 shows the sequence of value functions {vk} computed by iterative
policy evaluation. The final estimate is in fact v⇡, which in this case gives for
each state the negation of the expected number of steps from that state until



A Small Gridworld

❐ An undiscounted episodic task
❐ Nonterminal states: 1, 2, . . ., 14; 
❐ One terminal state (shown twice as shaded squares)
❐ Actions that would take agent off the grid leave state unchanged
❐ Reward is –1 until the terminal state is reached

R

γ = 1
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Iterative Policy Eval 
for the Small Gridworld

€ 

π =  equiprobable random action choices
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❐ Actions that would take agent off the grid leave state unchanged
❐ Reward is –1 until the terminal state is reached
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Asynchronous DP

❐ Finding the value function of a policy implies solving a 
linear system of equations

❐ So complexity is polynomial (cubic, or possibly quadratic) 
in the number of states

❐ BUT, the number of states is often astronomical, e.g., often 
growing exponentially with the number of state variables 
(what Bellman called “the curse of dimensionality”).

❐ In practice, classical DP can be applied to problems with a 
few millions of states, not more

❐ Asynchronous DP can be applied to larger problems, and is 
appropriate for parallel computation.



Asynchronous DP

❐ All the DP methods described so far require exhaustive 
sweeps of the entire state set.

❐ Asynchronous DP does not use sweeps. Instead it works like 
this:
 Repeat until convergence criterion is met:

– Pick a state at random and apply the appropriate 
backup

❐ Still need lots of computation, but does not get locked into 
hopelessly long sweeps

❐ Can you select states to backup intelligently? YES: an agent’s 
experience can act as a guide.



Asynchronous DP Policy Evaluation

T

T T TT

TT

T

TT

T

T

T

V (St )← Eπ Rt+1 + γV (St+1)[ ]
St

=
X

a

⇡(a|St)
X

s0,r

p(s0, r|St, a)[r + �V (s0)]

r
a

s0



DP methods

❐ Require a model of the transition dynamics and rewards
❐ If we don’t know it, we need to learn it from data!
❐ Model-based RL methods learn a model from the data then 

use it to do approximate asynchronous DP
❐ But learning a model can be expensive! 
❐ MC did not need a model! Just trajectories 



Recall: Simple Monte Carlo

T T T TT

T T T T T

T T

T T

TT T

T TT

V (St )←V (St )+α Gt −V (St )[ ]

St



Temporal-Difference Learning: Between 
MC and DP!

T T T TT

T T T T TTTTTT

T T T T T

V (St )←V (St )+α Rt+1 + γV (St+1)−V (St )[ ]
St

Rt+1St+1



Temporal-Difference (TD) Prediction

Policy Evaluation (the prediction problem): 
         for a given policy π, compute the state-value function vπ 

Simple every-visit Monte Carlo method:

target: the actual return after time t

target: an estimate of the return

Chapter 6

Temporal-Di↵erence Learning

If one had to identify one idea as central and novel to reinforcement learning, it would
undoubtedly be temporal-di↵erence (TD) learning. TD learning is a combination
of Monte Carlo ideas and dynamic programming (DP) ideas. Like Monte Carlo
methods, TD methods can learn directly from raw experience without a model of
the environment’s dynamics. Like DP, TD methods update estimates based in part
on other learned estimates, without waiting for a final outcome (they bootstrap).
The relationship between TD, DP, and Monte Carlo methods is a recurring theme in
the theory of reinforcement learning. This chapter is the beginning of our exploration
of it. Before we are done, we will see that these ideas and methods blend into each
other and can be combined in many ways. In particular, in Chapter 7 we introduce
the TD(�) algorithm, which seamlessly integrates TD and Monte Carlo methods.

As usual, we start by focusing on the policy evaluation or prediction problem, that
of estimating the value function v⇡ for a given policy ⇡. For the control problem
(finding an optimal policy), DP, TD, and Monte Carlo methods all use some variation
of generalized policy iteration (GPI). The di↵erences in the methods are primarily
di↵erences in their approaches to the prediction problem.

6.1 TD Prediction

Both TD and Monte Carlo methods use experience to solve the prediction problem.
Given some experience following a policy ⇡, both methods update their estimate v
of v⇡ for the nonterminal states St occurring in that experience. Roughly speaking,
Monte Carlo methods wait until the return following the visit is known, then use
that return as a target for V (St). A simple every-visit Monte Carlo method suitable
for nonstationary environments is

V (St) V (St) + ↵
h
Gt � V (St)

i
, (6.1)

where Gt is the actual return following time t, and ↵ is a constant step-size parameter
(c.f., Equation 2.4). Let us call this method constant-↵ MC. Whereas Monte Carlo
methods must wait until the end of the episode to determine the increment to V (St)
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The simplest temporal-difference method TD(0):

128 CHAPTER 6. TEMPORAL-DIFFERENCE LEARNING

(only then is Gt known), TD methods need wait only until the next time step. At
time t + 1 they immediately form a target and make a useful update using the
observed reward Rt+1 and the estimate V (St+1). The simplest TD method, known
as TD(0), is

V (St) V (St) + ↵
h
Rt+1 + �V (St+1)� V (St)

i
. (6.2)

In e↵ect, the target for the Monte Carlo update is Gt, whereas the target for the TD
update is Rt+1 + �V (St+1).

Because the TD method bases its update in part on an existing estimate, we say
that it is a bootstrapping method, like DP. We know from Chapter 3 that

v⇡(s)
.
= E⇡[Gt | St =s] (6.3)

= E⇡

" 1X

k=0

�kRt+k+1

����� St =s

#

= E⇡

"
Rt+1 + �

1X

k=0

�kRt+k+2

����� St =s

#

= E⇡[Rt+1 + �v⇡(St+1) | St =s] . (6.4)

Roughly speaking, Monte Carlo methods use an estimate of (6.3) as a target, whereas
DP methods use an estimate of (6.4) as a target. The Monte Carlo target is an
estimate because the expected value in (6.3) is not known; a sample return is used
in place of the real expected return. The DP target is an estimate not because of
the expected values, which are assumed to be completely provided by a model of the
environment, but because v⇡(St+1) is not known and the current estimate, V (St+1),
is used instead. The TD target is an estimate for both reasons: it samples the
expected values in (6.4) and it uses the current estimate V instead of the true v⇡.
Thus, TD methods combine the sampling of Monte Carlo with the bootstrapping of
DP. As we shall see, with care and imagination this can take us a long way toward
obtaining the advantages of both Monte Carlo and DP methods.

Figure 6.1 specifies TD(0) completely in procedural form.

Input: the policy ⇡ to be evaluated
Initialize V (s) arbitrarily (e.g., V (s) = 0, 8s 2 S+)
Repeat (for each episode):

Initialize S
Repeat (for each step of episode):

A action given by ⇡ for S
Take action A; observe reward, R, and next state, S0

V (S) V (S) + ↵
⇥
R + �V (S0)� V (S)

⇤

S  S0

until S is terminal

Figure 6.1: Tabular TD(0) for estimating v⇡.



Random Walk Example

Values learned by TD after
various numbers of episodes
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TD and MC on the Random Walk

Data averaged over
100 sequences of episodes


