
Lecture 5: Monte Carlo



Recall: Monte Carlo Methods

❐ Learning methods for sequential decision making 
      Experience → values, policy

❐ Monte Carlo methods learn from complete sample returns
 Defined for episodic tasks (in the book)

❐ Like an associative version of a bandit method: associate 
return to state or state-action pair

Gt = Rt+2 + Rt+2 + … + RT =
T−t

∑
k=1

Rt+k



Recall: Simple Monte Carlo
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Example: Chess
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S: board position; 
Action: legal move; 
Reward: at the end of the game, +1, -1 or 0 (win, loss, draw)



Example: Dialogue
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S: What has been said so far 
Action: next word/sentence 
Reward: user satisfaction 



Example: Robotics navigation
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S: Positions and velocities of various joints; camera images 
Action: joint torques 
Reward: -1 for bumping into an obstacle, -0.1 per time step to 
encourage speed, +1000 for reaching the goal configuration



Value Functions

• All theoretical objects, mathematical ideals (expected values) 

• Algorithm will maintain estimate from data:

state 
values

action 
values

prediction

control q⇤v⇤

v⇡ q⇡

Vt(s) Qt(s, a)



Values are expected returns
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• The value of a state, given a policy: 

• The value of a state-action pair, given a policy: 

• The optimal value of a state: 

• The optimal value of a state-action pair: 

• Optimal policy:       is an optimal policy if and only if 

• in other words,      is optimal iff it is greedy wrt

v⇡(s) = E{Gt | St = s,At:1⇠⇡} v⇡ : S ! <

q⇡(s, a) = E{Gt | St = s,At = a,At+1:1⇠⇡} q⇡ : S⇥A ! <

v⇤(s) = max
⇡

v⇡(s) v⇤ : S ! <

⇡⇤(a|s) > 0 only where q⇤(s, a) = max
b

q⇤(s, b)

⇡⇤

⇡⇤ q⇤

8s 2 S

q⇤(s, a) = max
⇡

q⇡(s, a) q⇤ : S⇥A ! <



Monte Carlo Policy Evaluation

❐ Goal: learn
❐ Given: some number of episodes under π which contain s
❐ Idea: Average returns observed after visits to s

❐ Every-Visit MC: average returns for every time s is visited 
in an episode 

❐ First-visit MC: average returns only for first time s is 
visited in an episode 

❐ Both converge asymptotically

1 2 3 4 5

v⇡(s)



First-visit Monte Carlo policy evaluation
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To handle the nonstationarity, we adapt the idea of general policy iteration (GPI)
developed in Chapter 4 for DP. Whereas there we computed value functions from
knowledge of the MDP, here we learn value functions from sample returns with
the MDP. The value functions and corresponding policies still interact to attain
optimality in essentially the same way (GPI). As in the DP chapter, first we consider
the prediction problem (the computation of v⇡ and q⇡ for a fixed arbitrary policy ⇡)
then policy improvement, and, finally, the control problem and its solution by GPI.
Each of these ideas taken from DP is extended to the Monte Carlo case in which
only sample experience is available.

5.1 Monte Carlo Prediction

We begin by considering Monte Carlo methods for learning the state-value function
for a given policy. Recall that the value of a state is the expected return—expected
cumulative future discounted reward—starting from that state. An obvious way to
estimate it from experience, then, is simply to average the returns observed after
visits to that state. As more returns are observed, the average should converge to
the expected value. This idea underlies all Monte Carlo methods.

In particular, suppose we wish to estimate v⇡(s), the value of a state s under
policy ⇡, given a set of episodes obtained by following ⇡ and passing through s.
Each occurrence of state s in an episode is called a visit to s. Of course, s may
be visited multiple times in the same episode; let us call the first time it is visited
in an episode the first visit to s. The first-visit MC method estimates v⇡(s) as the
average of the returns following first visits to s, whereas the every-visit MC method
averages the returns following all visits to s. These two Monte Carlo (MC) methods
are very similar but have slightly di↵erent theoretical properties. First-visit MC has
been most widely studied, dating back to the 1940s, and is the one we focus on
in this chapter. Every-visit MC extends more naturally to function approximation
and eligibility traces, as discussed in Chapters 9 and 7. First-visit MC is shown in
procedural form in Figure 5.1.

Initialize:
⇡  policy to be evaluated
V  an arbitrary state-value function
Returns(s) an empty list, for all s 2 S

Repeat forever:
Generate an episode using ⇡
For each state s appearing in the episode:

G return following the first occurrence of s
Append G to Returns(s)
V (s) average(Returns(s))

Figure 5.1: The first-visit MC method for estimating v⇡.



Blackjack example

❐ Object: Have your card sum be greater than the dealer’s 
without exceeding 21.

❐ States (200 of them): 
 current sum (12-21)
 dealer’s showing card (ace-10)
 do I have a useable ace?

❐ Reward: +1 for winning, 0 for a draw, -1 for losing
❐ Actions: stick (stop receiving cards), hit (receive another 

card)
❐ Policy: Stick if my sum is 20 or 21, else hit



Learned blackjack state-value functions



Value function approximation (VFA)
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St v̂(St,✓)

Targett

✓

Target depends on the agent’s behavior!



Objective: minimize Mean Square Value Error
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where         is the fraction of time steps spent in s d(s)

MSVE(✓)
.
=

X

s2S

d(s)
h
v⇡(s)� v̂(s,✓)

i2

Monte Carlo will provide samples of the expectation 
• Use sample return instead of  
• Use actual visited states instead of  

vπ
d(s)

Use  instead of Gt vπ
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Gradient Monte Carlo Algorithm for Approximating v̂ ⇡ v⇡

Input: the policy ⇡ to be evaluated
Input: a di↵erentiable function v̂ : S⇥ Rn ! R

Initialize value-function weights ✓ as appropriate (e.g., ✓ = 0)
Repeat forever:

Generate an episode S0, A0, R1, S1, A1, . . . , RT , ST using ⇡
For t = 0, 1, . . . , T � 1:

✓  ✓ + ↵
⇥
Gt � v̂(St,✓)

⇤
rv̂(St,✓)

If Ut is an unbiased estimate, that is, if E[Ut] = v⇡(St), for each t, then ✓t is guar-
anteed to converge to a local optimum under the usual stochastic approximation
conditions (2.7) for decreasing ↵.

For example, suppose the states in the examples are the states generated by in-
teraction (or simulated interaction) with the environment using policy ⇡. Because
the true value of a state is the expected value of the return following it, the Monte
Carlo target Ut

.
= Gt is by definition an unbiased estimate of v⇡(St). With this

choice, the general SGD method (9.7) converges to a locally optimal approximation
to v⇡(St). Thus, the gradient-descent version of Monte Carlo state-value prediction
is guaranteed to find a locally optimal solution. Pseudocode for a complete algorithm
is shown in the box.

One does not obtain the same guarantees if a bootstrapping estimate of v⇡(St)

is used as the target Ut in (9.7). Bootstrapping targets such as n-step returns G(n)
t

or the DP target
P

a,s0,r ⇡(a|St)p(s0, r|St, a)[r + �v̂(s0,✓t)] all depend on the current
value of the weight vector ✓t, which implies that they will be biased and that they
will not produce a true gradient-descent method. One way to look at this is that
the key step from (9.4) to (9.5) relies on the target being independent of ✓t. This
step would not be valid if a bootstrapping estimate was used in place of v⇡(St).
Bootstrapping methods are not in fact instances of true gradient descent (Barnard,
1993). They take into account the e↵ect of changing the weight vector ✓t on the
estimate, but ignore its e↵ect on the target. They include only a part of the gradient
and, accordingly, we call them semi-gradient methods.

Although semi-gradient (bootstrapping) methods do not converge as robustly as
gradient methods, they do converge reliably in important cases such as the linear
case discussed in the next section. Moreover, they o↵er important advantages which
makes them often clearly preferred. One reason for this is that they are typically
significantly faster to learn, as we have seen in Chapters 6 and 7. Another is that they
enable learning to be continual and online, without waiting for the end of an episode.
This enables them to be used on continuing problems and provides computational
advantages. A prototypical semi-gradient method is semi-gradient TD(0), which uses
Ut

.
= Rt+1 + �v̂(St+1,✓) as its target. Complete pseudocode for this method is given

in the box at the top of the next page.



MC vs supervised regression

❐ Target returns can be viewed as a supervised label (true 
value we want to fit)

❐ State is the input
❐ We can use any function approximator to fit a function 

from states to returns! Neural nets, linear, nonparametric…

❐ Unlike supervised learning: there is strong correlation 
between inputs and between outputs!

❐ Due to the lack of iid assumptions, theoretical results from 
supervised learning cannot be directly applied



State aggregation is the simplest kind of VFA
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• States are partitioned into disjoint subsets (groups) 

• One component of 𝜽 is allocated to each group

v̂(s,✓)
.
= ✓group(s)

r✓ v̂(s,✓)
.
= [0, 0, . . . , 0, 1, 0, 0, . . . , 0]

✓  ✓ + ↵ [Targett � v̂(St,✓)]r✓ v̂(St,✓)Recall:



Example: The 1000-state random walk 
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• States are numbered 1 to 1000 

• Walks start in the near middle, at state 500 

• At each step, jump to one of the 100 states to the right,  
or to one of the 100 states to the left 

• If the jump goes beyond 1 or 1000, terminates with a reward of -1 or +1 
(otherwise Rt=0)

+1-1

state 1 state 500 state 1000

trajectory of 11 jumps

S0 = 500

S1 2 {400..499} [ {501..600}



Example: State aggregation into 10 groups
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+1-1

state 1 state 500 state 1000

trajectory of 11 jumps

( ( ( ( ( ( ( ( ( (group 1 group 2 group 3 group 4 group 5 group 6 group 7 group 8 group 9 group 10

The whole value function over 1000 states will be approximated 
with 10 numbers!



Example: Gradient MC with state aggregation
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0

State

Value
scale

    True 
value v⇡

    Approximate 
MC value v̂

    State distribution         d
0.0017

0.0137

Distribution
scale

10001

0

-1

1

Figure 9.1: Function approximation by state aggregation on the 1000-state random walk
task, using the gradient Monte Carlo algorithm (page 194).

close to the global minimum of the MSVE (9.1).

Some of the details of the approximate values are best appreciated by reference to
the state distribution d for this task, shown in the lower portion of the figure with
a right-side scale. State 500, in the center, is the first state of every episode, but
it is rarely visited again. On average, about 1.37% of the time steps are spent in
the start state. The states reachable in one step from the start state are the second
most visited, with about 0.17% of the time steps being spent in each of them. From
there d falls o↵ almost linearly, reaching about 0.0147% at the extreme states 1 and
1000. The most visible e↵ect of the distribution is on the leftmost groups, whose
values are clearly shifted higher than the unweighted average of the true values of
states within the group, and on the rightmost groups, whose values are clearly shifted
lower. This is due to the states in these areas having the greatest asymmetry in their
weightings by d. For example, in the leftmost group, state 99 is weighted more
than 3 times more strongly than state 0. Thus the estimate for the group is biased
toward the true value of state 99, which is higher than the true value of state 0.

9.4 Linear Methods

One of the most important special cases of function approximation is that in which
the approximate function, v̂(·,✓), is a linear function of the weight vector, ✓. Corre-
sponding to every state s, there is a real-valued vector of features �(s)

.
= (�1(s), �2(s), . . . , �n(s))>,

with the same number of components as ✓. The features may be constructed from
the states in many di↵erent ways; we cover a few possibilities in the next sections.
However the features are constructed, the approximate state-value function is given

• 10 groups of 100 states 

• after 100,000 episodes 

• α = 2 x 10-5 

• state distribution affects 
accuracy
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Policy at step t = π t =

               a mapping from states to action probabilities
               π t (a | s) =  probability that At = a when St = s

What about control?

❐ Reinforcement learning methods specify how the agent 
changes its policy as a result of experience.

❐ Roughly, the agent’s goal is to get as much reward as it can 
over the long run.

Special case - deterministic policies:
  πt (s) = the action taken with prob=1 when St = s
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Monte Carlo Estimation of Action Values (Q)

❐ Monte Carlo is most useful when a model is not available
 We want to learn q*

❐ qπ(s,a) - average return starting from state s and action a 
then following π

❐ Converges asymptotically if every state-action pair is 
visited

❐ Exploring starts: Every state-action pair has a non-zero 
probability of being the starting pair
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Monte Carlo Exploring Starts
5.3. MONTE CARLO CONTROL 107

Initialize, for all s 2 S, a 2 A(s):
Q(s, a) arbitrary
⇡(s) arbitrary
Returns(s, a) empty list

Repeat forever:
Choose S0 2 S and A0 2 A(S0) s.t. all pairs have probability > 0
Generate an episode starting from S0, A0, following ⇡
For each pair s, a appearing in the episode:

G return following the first occurrence of s, a
Append G to Returns(s, a)
Q(s, a) average(Returns(s, a))

For each s in the episode:
⇡(s) argmaxa Q(s, a)

Figure 5.4: Monte Carlo ES: A Monte Carlo control algorithm assuming exploring starts
and that episodes always terminate for all policies.

idea when we first introduced the idea of GPI in Section 4.6. One extreme form of
the idea is value iteration, in which only one iteration of iterative policy evaluation
is performed between each step of policy improvement. The in-place version of
value iteration is even more extreme; there we alternate between improvement and
evaluation steps for single states.

For Monte Carlo policy evaluation it is natural to alternate between evaluation
and improvement on an episode-by-episode basis. After each episode, the observed
returns are used for policy evaluation, and then the policy is improved at all the
states visited in the episode. A complete simple algorithm along these lines is given
in Figure 5.4. We call this algorithm Monte Carlo ES, for Monte Carlo with Exploring
Starts.

In Monte Carlo ES, all the returns for each state–action pair are accumulated and
averaged, irrespective of what policy was in force when they were observed. It is easy
to see that Monte Carlo ES cannot converge to any suboptimal policy. If it did, then
the value function would eventually converge to the value function for that policy,
and that in turn would cause the policy to change. Stability is achieved only when
both the policy and the value function are optimal. Convergence to this optimal
fixed point seems inevitable as the changes to the action-value function decrease
over time, but has not yet been formally proved. In our opinion, this is one of the
most fundamental open theoretical questions in reinforcement learning (for a partial
solution, see Tsitsiklis, 2002).

Example 5.3: Solving Blackjack It is straightforward to apply Monte Carlo
ES to blackjack. Since the episodes are all simulated games, it is easy to arrange
for exploring starts that include all possibilities. In this case one simply picks the
dealer’s cards, the player’s sum, and whether or not the player has a usable ace, all
at random with equal probability. As the initial policy we use the policy evaluated
in the previous blackjack example, that which sticks only on 20 or 21. The initial
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Blackjack example continued

❐ Exploring starts
❐ Initial policy as described before
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Figure 5.5: The optimal policy and state-value function for blackjack, found by Monte
Carlo ES (Figure 5.4). The state-value function shown was computed from the action-value
function found by Monte Carlo ES.

action-value function can be zero for all state–action pairs. Figure 5.5 shows the
optimal policy for blackjack found by Monte Carlo ES. This policy is the same as the
“basic” strategy of Thorp (1966) with the sole exception of the leftmost notch in the
policy for a usable ace, which is not present in Thorp’s strategy. We are uncertain
of the reason for this discrepancy, but confident that what is shown here is indeed
the optimal policy for the version of blackjack we have described.

5.4 Monte Carlo Control without Exploring Starts

How can we avoid the unlikely assumption of exploring starts? The only general way
to ensure that all actions are selected infinitely often is for the agent to continue to
select them. There are two approaches to ensuring this, resulting in what we call
on-policy methods and o↵-policy methods. On-policy methods attempt to evaluate
or improve the policy that is used to make decisions, whereas o↵-policy methods
evaluate or improve a policy di↵erent from that used to generate the data. The
Monte Carlo ES method developed above is an example of an on-policy method. In
this section we show how an on-policy Monte Carlo control method can be designed
that does not use the unrealistic assumption of exploring starts. O↵-policy methods
are considered in the next section.

In on-policy control methods the policy is generally soft, meaning that ⇡(a|s) > 0
for all s 2 S and all a 2 A(s), but gradually shifted closer and closer to a deterministic
optimal policy. Many of the methods discussed in Chapter 2 provide mechanisms
for this. The on-policy method we present in this section uses "-greedy policies,



❐ On-policy: learn about policy currently executing
❐ How do we get rid of exploring starts?

 The policy must be eternally soft: 
– π(a|s) > 0 for all s and a

 e.g. ε-soft policy: 
– probability of an action =              or

14

On-policy Monte Carlo Control

max (greedy)non-max

❐ An instance of policy iteration: move policy towards greedy 
policy (e.g.,  ε-greedy)
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policies. Let ev⇤ and eq⇤ denote the optimal value functions for the new environment.
Then a policy ⇡ is optimal among "-soft policies if and only if v⇡ = ev⇤. From the
definition of ev⇤ we know that it is the unique solution to

ev⇤(s) = (1� ") max
a

eq⇤(s, a) +
✏

|A(s)|
X

a

eq⇤(s, a)

= (1� ") max
a

X

s0,r

p(s0, r|s, a)
h
r + �ev⇤(s

0)
i

+
✏

|A(s)|
X

a

X

s0,r

p(s0, r|s, a)
h
r + �ev⇤(s

0)
i
.

When equality holds and the "-soft policy ⇡ is no longer improved, then we also
know, from (5.2), that

v⇡(s) = (1� ") max
a

q⇡(s, a) +
✏

|A(s)|
X

a

q⇡(s, a)

= (1� ") max
a

X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s0)

i

+
✏

|A(s)|
X

a

X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s0)

i
.

However, this equation is the same as the previous one, except for the substitution
of v⇡ for ev⇤. Since ev⇤ is the unique solution, it must be that v⇡ = ev⇤.

In essence, we have shown in the last few pages that policy iteration works for "-soft
policies. Using the natural notion of greedy policy for "-soft policies, one is assured
of improvement on every step, except when the best policy has been found among
the "-soft policies. This analysis is independent of how the action-value functions are

Initialize, for all s 2 S, a 2 A(s):
Q(s, a) arbitrary
Returns(s, a) empty list
⇡(a|s) an arbitrary "-soft policy

Repeat forever:
(a) Generate an episode using ⇡
(b) For each pair s, a appearing in the episode:

G return following the first occurrence of s, a
Append G to Returns(s, a)
Q(s, a) average(Returns(s, a))

(c) For each s in the episode:
a⇤  arg maxa Q(s, a)
For all a 2 A(s):

⇡(a|s) 
⇢

1� " + "/|A(s)| if a = a⇤

"/|A(s)| if a 6= a⇤

Figure 5.6: An on-policy first-visit MC control algorithm for "-soft policies.

1� ✏+
✏

|A(s)|
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Monte Carlo Control

❐ MC policy iteration: Policy evaluation using MC methods 
followed by policy improvement

❐ Policy improvement step: greedify with respect to value 
(or action-value) function

evaluation

improvement

⇡ Q
⇡  greedy(Q)

Q q⇡
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On-policy MC Control
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However, this equation is the same as the previous one, except for the substitution
of v⇡ for ev⇤. Since ev⇤ is the unique solution, it must be that v⇡ = ev⇤.

In essence, we have shown in the last few pages that policy iteration works for "-soft
policies. Using the natural notion of greedy policy for "-soft policies, one is assured
of improvement on every step, except when the best policy has been found among
the "-soft policies. This analysis is independent of how the action-value functions are

Initialize, for all s 2 S, a 2 A(s):
Q(s, a) arbitrary
Returns(s, a) empty list
⇡(a|s) an arbitrary "-soft policy

Repeat forever:
(a) Generate an episode using ⇡
(b) For each pair s, a appearing in the episode:

G return following the first occurrence of s, a
Append G to Returns(s, a)
Q(s, a) average(Returns(s, a))

(c) For each s in the episode:
A⇤  arg maxa Q(s, a)
For all a 2 A(s):

⇡(a|s) 
⇢

1� " + "/|A(s)| if a = A⇤

"/|A(s)| if a 6= A⇤

Figure 5.6: An on-policy first-visit MC control algorithm for "-soft policies.



MC Control with function approximation

28

• Always learn the action-value function of the current policy  

• Always act near-greedily wrt the current action-value 
estimates (eg soft max, epsilon-greedy) 

• The learning rule: 

• For MC, Ut = Gt
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action-value prediction is

✓t+1
.
= ✓t + ↵

h
Ut � q̂(St, At, ✓t)

i
rq̂(St, At, ✓t). (10.1)

For example, the update for the one-step Sarsa method is

✓t+1
.
= ✓t + ↵

h
Rt+1 + �q̂(St+1, At+1, ✓t)� q̂(St, At, ✓t)

i
rq̂(St, At, ✓t). (10.2)

We call this method episodic semi-gradient one-step Sarsa. For a constant policy,
this method converges in the same way that TD(0) does, with the same kind of error
bound (9.14).

To form control methods, we need to couple such action-value prediction methods
with techniques for policy improvement and action selection. Suitable techniques
applicable to continuous actions, or to actions from large discrete sets, are a topic of
ongoing research with as yet no clear resolution. On the other hand, if the action set
is discrete and not too large, then we can use the techniques already developed in
previous chapters. That is, for each possible action a available in the current state St,
we can compute q̂(St, a, ✓t) and then find the greedy action A⇤

t = argmaxa q̂(St, a, ✓t).
Policy improvement is then done (in the on-policy case treated in this chapter) by
changing the estimation policy to a soft approximation of the greedy policy such as
the "-greedy policy. Actions are selected according to this same policy. Pseudocode
for the complete algorithm is given in the box.

Example 10.1: Mountain–Car Task Consider the task of driving an underpow-
ered car up a steep mountain road, as suggested by the diagram in the upper left
of Figure 10.1. The di�culty is that gravity is stronger than the car’s engine, and
even at full throttle the car cannot accelerate up the steep slope. The only solution
is to first move away from the goal and up the opposite slope on the left. Then, by

Episodic Semi-gradient Sarsa for Estimating q̂ ⇡ q⇤

Input: a di↵erentiable function q̂ : S⇥A⇥ Rn ! R

Initialize value-function weights ✓ 2 Rn arbitrarily (e.g., ✓ = 0)
Repeat (for each episode):

S, A initial state and action of episode (e.g., "-greedy)
Repeat (for each step of episode):

Take action A, observe R, S0

If S0 is terminal:
✓  ✓ + ↵

⇥
R� q̂(S, A, ✓)

⇤
rq̂(S, A, ✓)

Go to next episode
Choose A0 as a function of q̂(S0, ·, ✓) (e.g., "-greedy)
✓  ✓ + ↵

⇥
R + �q̂(S0, A0, ✓)� q̂(S, A, ✓)

⇤
rq̂(S, A, ✓)

S  S0

A A0



Monte Carlo Summary
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• Easy to implement for any sequential decision making problem! 

• Can leverage the power of function approximation 

• Policies leverage randomized exploration ideas  

• But: we have to wait until the end of an episode to make any 
updates! 

• That can be really long! Eg sequential treatment design 

• Even in games that can be too long! Eg opponent adaptation 

• Can we do something more efficient? More responsive?



Recall: sequential decision making

• Recall the infinite tree of possible interactions of the agent and 
environment - is finite horizon the only assumption we can 
make?

Sequential decision making

• At time t, agent receives an observation from set X and can choose an
action from set A (think finite for now)

• Goal of the agent is to maximize long-term return
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It
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H v.Exploration
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^
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-
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-
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Finite clustering assumption
• The infinite paths cluster into a finite number of clusters!

• The means similar situations will recur 

• So we can generalize!



One more step: Markovian 
assumption

• The way we got to some specific situation is not relevant for 
the future!

• All that matters is our current observation 

• Alternatively, if we should have remembered something, we will 
consider it part of 

• We will call such an observation state

Xt

Xt
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The Markov Property

❐ By “the state” at step t, the book means whatever information is 
available to the agent at step t about its environment.

❐ The state can include immediate “sensations,” highly processed 
sensations, and structures built up over time from sequences of 
sensations. 

❐ Ideally, a state should summarize past sensations so as to retain 
all “essential” information, i.e., it should have the Markov 
Property:

❐ for all                      and all histories  
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defined only by specifying the complete probability distribution:

Pr{Rt+1 = r, St+1 = s
0 | S0, A0, R1, . . . , St�1, At�1, Rt, St, At}, (3.4)

for all r, s
0, and all possible values of the past events: S0, A0, R1, ..., St�1,

At�1, Rt, St, At. If the state signal has the Markov property, on the other
hand, then the environment’s response at t + 1 depends only on the state and
action representations at t, in which case the environment’s dynamics can be
defined by specifying only

p(s0
, r|s, a) = Pr{Rt+1 = r, St+1 = s

0 | St, At}, (3.5)

for all r, s
0, St, and At. In other words, a state signal has the Markov property,

and is a Markov state, if and only if (3.5) is equal to (3.4) for all s
0, r, and

histories, S0, A0, R1, ..., St�1, At�1, Rt, St, At. In this case, the environment
and task as a whole are also said to have the Markov property.

If an environment has the Markov property, then its one-step dynamics
(3.5) enable us to predict the next state and expected next reward given the
current state and action. One can show that, by iterating this equation, one
can predict all future states and expected rewards from knowledge only of the
current state as well as would be possible given the complete history up to the
current time. It also follows that Markov states provide the best possible basis
for choosing actions. That is, the best policy for choosing actions as a function
of a Markov state is just as good as the best policy for choosing actions as a
function of complete histories.

Even when the state signal is non-Markov, it is still appropriate to think
of the state in reinforcement learning as an approximation to a Markov state.
In particular, we always want the state to be a good basis for predicting
future rewards and for selecting actions. In cases in which a model of the
environment is learned (see Chapter 8), we also want the state to be a good
basis for predicting subsequent states. Markov states provide an unsurpassed
basis for doing all of these things. To the extent that the state approaches the
ability of Markov states in these ways, one will obtain better performance from
reinforcement learning systems. For all of these reasons, it is useful to think of
the state at each time step as an approximation to a Markov state, although
one should remember that it may not fully satisfy the Markov property.

The Markov property is important in reinforcement learning because de-
cisions and values are assumed to be a function only of the current state. In
order for these to be e↵ective and informative, the state representation must
be informative. All of the theory presented in this book assumes Markov state
signals. This means that not all the theory strictly applies to cases in which
the Markov property does not strictly apply. However, the theory developed

=
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Markov Property

❐ An assumption about the environment
❐ Next state and reward depend only on the previous state and 

action, and noting else that happened in the past

❐ The assumption is useful to develop, analyze and 
understand algorithms

❐ It does NOT mean it has to always hold
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p(St+1 = s′￼, Rt+1 = r |St = s, At = a) = p(St+1 = s′￼, Rt+1 = r |St = s, At = a, τt), ∀τt



Agent and environment interact at discrete time steps:  t = 0, 1, 2,K
     Agent observes state at step t:    St ∈
     produces action at step t :   At ∈ (St )
     gets resulting reward:    Rt+1 ∈

     and resulting next state:  St+1 ∈

Agent

Environment

action
At

reward
Rt

state
St

Rt+1

St+1
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The Agent-Environment InterfaceSUMMARY OF NOTATION xiii

Summary of Notation

Capital letters are used for random variables and major algorithm variables.
Lower case letters are used for the values of random variables and for scalar
functions. Quantities that are required to be real-valued vectors are written
in bold and in lower case (even if random variables).

s state
a action
S set of all nonterminal states
S+ set of all states, including the terminal state
A(s) set of actions possible in state s

t discrete time step
T final time step of an episode
St state at t
At action at t
Rt reward at t, dependent, like St, on At�1 and St�1

Gt return (cumulative discounted reward) following t

G(n)
t n-step return (Section 7.1)

G�
t �-return (Section 7.2)

⇡ policy, decision-making rule
⇡(s) action taken in state s under deterministic policy ⇡
⇡(a|s) probability of taking action a in state s under stochastic policy ⇡
p(s0|s, a) probability of transition from state s to state s0 under action a
r(s, a, s0) expected immediate reward on transition from s to s0 under action a

v⇡(s) value of state s under policy ⇡ (expected return)
v⇤(s) value of state s under the optimal policy
q⇡(s, a) value of taking action a in state s under policy ⇡
q⇤(s, a) value of taking action a in state s under the optimal policy
Vt estimate (a random variable) of v⇡ or v⇤
Qt estimate (a random variable) of q⇡ or q⇤

v̂(s,w) approximate value of state s given a vector of weights w
q̂(s, a,w) approximate value of state–action pair s, a given weights w
w,wt vector of (possibly learned) weights underlying an approximate value function
x(s) vector of features visible when in state s
w>x inner product of vectors, w>x =

P
i wixi; e.g., v̂(s,w) = w>x(s)
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The other random variables are a function of this sequence. The transitional
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Figure 3.1: The agent–environment interaction in reinforcement learning.

gives rise to rewards, special numerical values that the agent tries to maximize
over time. A complete specification of an environment defines a task , one
instance of the reinforcement learning problem.

More specifically, the agent and environment interact at each of a sequence
of discrete time steps, t = 0, 1, 2, 3, . . ..2 At each time step t, the agent receives
some representation of the environment’s state, St 2 S, where S is the set of
possible states, and on that basis selects an action, At 2 A(St), where A(St)
is the set of actions available in state St. One time step later, in part as a
consequence of its action, the agent receives a numerical reward , Rt+1 2 R, and
finds itself in a new state, St+1.3 Figure 3.1 diagrams the agent–environment
interaction.

At each time step, the agent implements a mapping from states to prob-
abilities of selecting each possible action. This mapping is called the agent’s
policy and is denoted ⇡t, where ⇡t(a|s) is the probability that At = a if St = s.
Reinforcement learning methods specify how the agent changes its policy as
a result of its experience. The agent’s goal, roughly speaking, is to maximize
the total amount of reward it receives over the long run.

This framework is abstract and flexible and can be applied to many di↵erent
problems in many di↵erent ways. For example, the time steps need not refer
to fixed intervals of real time; they can refer to arbitrary successive stages of
decision-making and acting. The actions can be low-level controls, such as the
voltages applied to the motors of a robot arm, or high-level decisions, such
as whether or not to have lunch or to go to graduate school. Similarly, the
states can take a wide variety of forms. They can be completely determined by

wider audience.
2
We restrict attention to discrete time to keep things as simple as possible, even though

many of the ideas can be extended to the continuous-time case (e.g., see Bertsekas and

Tsitsiklis, 1996; Werbos, 1992; Doya, 1996).
3
We use Rt+1 instead of Rt to denote the immediate reward due to the action taken

at time t because it emphasizes that the next reward and the next state, St+1, are jointly

determined.
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Tsitsiklis, 1996; Werbos, 1992; Doya, 1996).
3
We use Rt+1 instead of Rt to denote the immediate reward due to the action taken

at time t because it emphasizes that the next reward and the next state, St+1, are jointly

determined.
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Markov Decision Processes

❐ If a reinforcement learning task has the Markov Property, it is 
basically a Markov Decision Process (MDP).

❐ If state and action sets are finite, it is a finite MDP. 
❐ To define a finite MDP, you need to give:

 state and action sets
 one-step “dynamics” 

 there is also:
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A particular finite MDP is defined by its state and action sets and by the
one-step dynamics of the environment. Given any state and action s and a,
the probability of each possible pair of next state and reward, s

0
, r, is denoted

p(s0
, r|s, a) = Pr{St+1 =s

0
, Rt+1 = r | St =s, At =a}. (3.6)

These quantities completely specify the dynamics of a finite MDP. Most of the
theory we present in the rest of this book implicitly assumes the environment
is a finite MDP.

Given the dynamics as specified by (3.6), one can compute anything else
one might want to know about the environment, such as the expected rewards
for state–action pairs,

r(s, a) = E[Rt+1 | St =s, At =a] =
X

r2R

r

X

s02S

p(s0
, r|s, a), (3.7)

the state-transition probabilities,

p(s0|s, a) = Pr{St+1 =s
0 | St =s, At =a} =

X

r2R

p(s0
, r|s, a), (3.8)

and the expected rewards for state–action–next-state triples,

r(s, a, s
0) = E[Rt+1 | St =s, At =a, St+1 = s

0] =

P
r2R rp(s0

, r|s, a)

p(s0|s, a)
. (3.9)

In the first edition of this book, the dynamics were expressed exclusively in
terms of the latter two quantities, which were denote Pa

ss0 and Ra

ss0 respectively.
One weakness of that notation is that it still did not fully characterize the
dynamics of the rewards, giving only their expectations. Another weakness is
the excess of subscripts and superscripts. In this edition we will predominantly
use the explicit notation of (3.6), while sometimes referring directly to the
transition probabilities (3.8).

Example 3.7: Recycling Robot MDP The recycling robot (Example
3.3) can be turned into a simple example of an MDP by simplifying it and
providing some more details. (Our aim is to produce a simple example, not
a particularly realistic one.) Recall that the agent makes a decision at times
determined by external events (or by other parts of the robot’s control system).
At each such time the robot decides whether it should (1) actively search for
a can, (2) remain stationary and wait for someone to bring it a can, or (3) go
back to home base to recharge its battery. Suppose the environment works
as follows. The best way to find cans is to actively search for them, but this
runs down the robot’s battery, whereas waiting does not. Whenever the robot
is searching, the possibility exists that its battery will become depleted. In
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Recycling Robot 

An Example Finite MDP

❐ At each step, robot has to decide whether it should (1) actively 
search for a can, (2) wait for someone to bring it a can, or (3) 
go to home base and recharge. 

❐ Searching is better but runs down the battery; if runs out of 
power while searching, has to be rescued (which is bad).

❐ Decisions made on basis of current energy level: high, low.
❐ Reward = number of cans collected
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Recycling Robot MDP

= high,low{ }
(high) = search, wait{ }
(low) = search, wait,recharge{ }

rsearch =  expected no. of cans while searching
rwait =  expected no. of cans while waiting
                     rsearch > rwait

search

high low
1,  0

 1–! ,   –3

search

recharge

wait

wait

search1–" ,  R

! ,  R  search

", R search

1,  R wait

1,  R wait

3.6. MARKOV DECISION PROCESSES 59

s s0 a p(s0|s, a) r(s, a, s0)
high high search ↵ rsearch
high low search 1� ↵ rsearch
low high search 1� � �3
low low search � rsearch
high high wait 1 rwait
high low wait 0 rwait
low high wait 0 rwait
low low wait 1 rwait
low high recharge 1 0
low low recharge 0 0.

Table 3.1: Transition probabilities and expected rewards for the finite MDP
of the recycling robot example. There is a row for each possible combination
of current state, s, next state, s0, and action possible in the current state,
a 2 A(s).

is S = {high, low}. Let us call the possible decisions—the agent’s actions—
wait, search, and recharge. When the energy level is high, recharging would
always be foolish, so we do not include it in the action set for this state. The
agent’s action sets are

A(high) = {search, wait}
A(low) = {search, wait, recharge}.

If the energy level is high, then a period of active search can always be
completed without risk of depleting the battery. A period of searching that
begins with a high energy level leaves the energy level high with probability
↵ and reduces it to low with probability 1�↵. On the other hand, a period of
searching undertaken when the energy level is low leaves it low with probability
� and depletes the battery with probability 1��. In the latter case, the robot
must be rescued, and the battery is then recharged back to high. Each can
collected by the robot counts as a unit reward, whereas a reward of �3 results
whenever the robot has to be rescued. Let rsearch and rwait, with rsearch > rwait,
respectively denote the expected number of cans the robot will collect (and
hence the expected reward) while searching and while waiting. Finally, to keep
things simple, suppose that no cans can be collected during a run home for
recharging, and that no cans can be collected on a step in which the battery
is depleted. This system is then a finite MDP, and we can write down the
transition probabilities and the expected rewards, as in Table 3.1.

A transition graph is a useful way to summarize the dynamics of a finite

3.6. MARKOV DECISION PROCESSES 59

s s0 a p(s0|s, a) r(s, a, s0)
high high search ↵ rsearch
high low search 1� ↵ rsearch
low high search 1� � �3
low low search � rsearch
high high wait 1 rwait
high low wait 0 rwait
low high wait 0 rwait
low low wait 1 rwait
low high recharge 1 0
low low recharge 0 0.

Table 3.1: Transition probabilities and expected rewards for the finite MDP
of the recycling robot example. There is a row for each possible combination
of current state, s, next state, s0, and action possible in the current state,
a 2 A(s).

is S = {high, low}. Let us call the possible decisions—the agent’s actions—
wait, search, and recharge. When the energy level is high, recharging would
always be foolish, so we do not include it in the action set for this state. The
agent’s action sets are

A(high) = {search, wait}
A(low) = {search, wait, recharge}.

If the energy level is high, then a period of active search can always be
completed without risk of depleting the battery. A period of searching that
begins with a high energy level leaves the energy level high with probability
↵ and reduces it to low with probability 1�↵. On the other hand, a period of
searching undertaken when the energy level is low leaves it low with probability
� and depletes the battery with probability 1��. In the latter case, the robot
must be rescued, and the battery is then recharged back to high. Each can
collected by the robot counts as a unit reward, whereas a reward of �3 results
whenever the robot has to be rescued. Let rsearch and rwait, with rsearch > rwait,
respectively denote the expected number of cans the robot will collect (and
hence the expected reward) while searching and while waiting. Finally, to keep
things simple, suppose that no cans can be collected during a run home for
recharging, and that no cans can be collected on a step in which the battery
is depleted. This system is then a finite MDP, and we can write down the
transition probabilities and the expected rewards, as in Table 3.1.

A transition graph is a useful way to summarize the dynamics of a finite

3.6. MARKOV DECISION PROCESSES 59

s s0 a p(s0|s, a) r(s, a, s0)
high high search ↵ rsearch
high low search 1� ↵ rsearch
low high search 1� � �3
low low search � rsearch
high high wait 1 rwait
high low wait 0 rwait
low high wait 0 rwait
low low wait 1 rwait
low high recharge 1 0
low low recharge 0 0.

Table 3.1: Transition probabilities and expected rewards for the finite MDP
of the recycling robot example. There is a row for each possible combination
of current state, s, next state, s0, and action possible in the current state,
a 2 A(s).

is S = {high, low}. Let us call the possible decisions—the agent’s actions—
wait, search, and recharge. When the energy level is high, recharging would
always be foolish, so we do not include it in the action set for this state. The
agent’s action sets are

A(high) = {search, wait}
A(low) = {search, wait, recharge}.

If the energy level is high, then a period of active search can always be
completed without risk of depleting the battery. A period of searching that
begins with a high energy level leaves the energy level high with probability
↵ and reduces it to low with probability 1�↵. On the other hand, a period of
searching undertaken when the energy level is low leaves it low with probability
� and depletes the battery with probability 1��. In the latter case, the robot
must be rescued, and the battery is then recharged back to high. Each can
collected by the robot counts as a unit reward, whereas a reward of �3 results
whenever the robot has to be rescued. Let rsearch and rwait, with rsearch > rwait,
respectively denote the expected number of cans the robot will collect (and
hence the expected reward) while searching and while waiting. Finally, to keep
things simple, suppose that no cans can be collected during a run home for
recharging, and that no cans can be collected on a step in which the battery
is depleted. This system is then a finite MDP, and we can write down the
transition probabilities and the expected rewards, as in Table 3.1.

A transition graph is a useful way to summarize the dynamics of a finite

3.6. MARKOV DECISION PROCESSES 59

s s0 a p(s0|s, a) r(s, a, s0)
high high search ↵ rsearch
high low search 1� ↵ rsearch
low high search 1� � �3
low low search � rsearch
high high wait 1 rwait
high low wait 0 rwait
low high wait 0 rwait
low low wait 1 rwait
low high recharge 1 0
low low recharge 0 0.

Table 3.1: Transition probabilities and expected rewards for the finite MDP
of the recycling robot example. There is a row for each possible combination
of current state, s, next state, s0, and action possible in the current state,
a 2 A(s).

is S = {high, low}. Let us call the possible decisions—the agent’s actions—
wait, search, and recharge. When the energy level is high, recharging would
always be foolish, so we do not include it in the action set for this state. The
agent’s action sets are

A(high) = {search, wait}
A(low) = {search, wait, recharge}.

If the energy level is high, then a period of active search can always be
completed without risk of depleting the battery. A period of searching that
begins with a high energy level leaves the energy level high with probability
↵ and reduces it to low with probability 1�↵. On the other hand, a period of
searching undertaken when the energy level is low leaves it low with probability
� and depletes the battery with probability 1��. In the latter case, the robot
must be rescued, and the battery is then recharged back to high. Each can
collected by the robot counts as a unit reward, whereas a reward of �3 results
whenever the robot has to be rescued. Let rsearch and rwait, with rsearch > rwait,
respectively denote the expected number of cans the robot will collect (and
hence the expected reward) while searching and while waiting. Finally, to keep
things simple, suppose that no cans can be collected during a run home for
recharging, and that no cans can be collected on a step in which the battery
is depleted. This system is then a finite MDP, and we can write down the
transition probabilities and the expected rewards, as in Table 3.1.

A transition graph is a useful way to summarize the dynamics of a finite

3.6. MARKOV DECISION PROCESSES 59

s s0 a p(s0|s, a) r(s, a, s0)
high high search ↵ rsearch
high low search 1� ↵ rsearch
low high search 1� � �3
low low search � rsearch
high high wait 1 rwait
high low wait 0 rwait
low high wait 0 rwait
low low wait 1 rwait
low high recharge 1 0
low low recharge 0 0.

Table 3.1: Transition probabilities and expected rewards for the finite MDP
of the recycling robot example. There is a row for each possible combination
of current state, s, next state, s0, and action possible in the current state,
a 2 A(s).

is S = {high, low}. Let us call the possible decisions—the agent’s actions—
wait, search, and recharge. When the energy level is high, recharging would
always be foolish, so we do not include it in the action set for this state. The
agent’s action sets are

A(high) = {search, wait}
A(low) = {search, wait, recharge}.

If the energy level is high, then a period of active search can always be
completed without risk of depleting the battery. A period of searching that
begins with a high energy level leaves the energy level high with probability
↵ and reduces it to low with probability 1�↵. On the other hand, a period of
searching undertaken when the energy level is low leaves it low with probability
� and depletes the battery with probability 1��. In the latter case, the robot
must be rescued, and the battery is then recharged back to high. Each can
collected by the robot counts as a unit reward, whereas a reward of �3 results
whenever the robot has to be rescued. Let rsearch and rwait, with rsearch > rwait,
respectively denote the expected number of cans the robot will collect (and
hence the expected reward) while searching and while waiting. Finally, to keep
things simple, suppose that no cans can be collected during a run home for
recharging, and that no cans can be collected on a step in which the battery
is depleted. This system is then a finite MDP, and we can write down the
transition probabilities and the expected rewards, as in Table 3.1.

A transition graph is a useful way to summarize the dynamics of a finite

SUMMARY OF NOTATION xiii

Summary of Notation

Capital letters are used for random variables and major algorithm variables.
Lower case letters are used for the values of random variables and for scalar
functions. Quantities that are required to be real-valued vectors are written
in bold and in lower case (even if random variables).

s state
a action
S set of all nonterminal states
S+ set of all states, including the terminal state
A(s) set of actions possible in state s

t discrete time step
T final time step of an episode
St state at t
At action at t
Rt reward at t, dependent, like St, on At�1 and St�1

Gt return (cumulative discounted reward) following t

G(n)
t n-step return (Section 7.1)

G�
t �-return (Section 7.2)

⇡ policy, decision-making rule
⇡(s) action taken in state s under deterministic policy ⇡
⇡(a|s) probability of taking action a in state s under stochastic policy ⇡
p(s0|s, a) probability of transition from state s to state s0 under action a
r(s, a, s0) expected immediate reward on transition from s to s0 under action a

v⇡(s) value of state s under policy ⇡ (expected return)
v⇤(s) value of state s under the optimal policy
q⇡(s, a) value of taking action a in state s under policy ⇡
q⇤(s, a) value of taking action a in state s under the optimal policy
Vt estimate (a random variable) of v⇡ or v⇤
Qt estimate (a random variable) of q⇡ or q⇤

v̂(s,w) approximate value of state s given a vector of weights w
q̂(s, a,w) approximate value of state–action pair s, a given weights w
w,wt vector of (possibly learned) weights underlying an approximate value function
x(s) vector of features visible when in state s
w>x inner product of vectors, w>x =

P
i wixi; e.g., v̂(s,w) = w>x(s)
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Return

Suppose the sequence of rewards after step t  is:
                         Rt+1, Rt+2 , Rt+3,K
What do we want to maximize?

At least three cases, but in all of them, 
we seek to maximize the expected return, E Gt{ }, on each step t.

• Total reward, Gt = sum of all future reward in the episode

• Discounted reward, Gt = sum of all future discounted reward

• Average reward, Gt = average reward per time step

. . .



Rewards and returns
• The objective in RL is to maximize long-term future reward 

• That is, to choose      so as to maximize  

• But what exactly should be maximized?  

• The discounted return at time t:

At Rt+1, Rt+2, Rt+3, . . .

Gt = Rt+1 + �Rt+2 + �2Rt+3 + �3Rt+4 + · · · � 2 [0, 1)

Reward sequence
1 0 0 0…

Return
1

0 0 2 0 0 0…
0.5(or any)

0.5 0.5
0.9 0 0 2 0 0 0… 1.62
0.5 -1 2 6 3 2 0 0 0… 2

�

the discount rate



optimal policy example
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Recall: Episodic Tasks

42

Episodic tasks: interaction breaks naturally into 
episodes, e.g., plays of a game, trips through a maze

In episodic tasks, we almost always use simple total 
reward:

Gt = Rt+1 + Rt+2 +L + RT ,

where T is a final time step at which a terminal state is reached, 
ending an episode.

...
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Continuing Tasks

Continuing tasks: interaction does not have natural episodes, but 
just goes on and on...  

In this class, for continuing tasks we will always use discounted 
return:

            Gt = Rt+1 + γ Rt+2 + γ
2Rt+3 +L = γ kRt+k+1,

k=0

∞

∑
where γ , 0 ≤ γ ≤1,  is the discount rate.

shortsighted  0 ←γ → 1  farsighted

Typically, γ = 0.9

...
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An Example: Pole Balancing

Avoid failure: the pole falling beyond
a critical angle or the cart hitting end of
track

reward  = +1 for each step before failure
⇒   return =  number of steps before failure

As an episodic task where episode ends upon failure:

As a continuing task with discounted return:
reward  = −1 upon failure;  0 otherwise
⇒   return =  −γ k ,  for k steps before failure

In either case, return is maximized by 
avoiding failure for as long as possible.
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Another Example: Mountain Car

Get to the top of the hill
as quickly as possible. 

reward  = −1 for each step where not at top of hill
⇒   return =  − number of steps before reaching top of hill

Return is maximized by minimizing 
number of steps to reach the top of the hill. 



R1 = +1S0 S1
R2 = +1 S2

R3 = +1 R4 = 0
R5 = 0. . .

❐ In episodic tasks, we number the time steps of each episode 
starting from zero.

❐ We usually do not have to distinguish between episodes, so 
instead of writing       for states in episode j, we write just

❐ Think of each episode as ending in an absorbing state that 
always produces reward of zero:

❐ We can cover all cases by writing
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A Trick to Unify Notation for Returns

StSt , j

                                                                Gt = γ kRt+k+1,
k=0

∞

∑
where γ  can be 1 only if a zero reward absorbing state is always reached.


