Lecture 5: Monte Carlo

Recall: Monte Carlo Methods

1 Learning methods for sequential decision making
Experience — values, policy

1 Monte Carlo methods learn from complete sample returns

= Defined for episodic tasks (in the book)
T—t

G =Ry+Ry,+...+R =) Ry,
k=1
1 Like an associative version of a bandit method: associate
return to state or state-action pair

Recall: Simple Monte Carlo

V(S,) < V(S)+a|G, - V(S,))]

Example: Chess

S: board position;
Action: legal move;
Reward: at the end of the game, +1, -1 or O (win, loss, draw)

St

Example: Dialogue

S: What has been said so far
Action: next word/sentence
Reward: user satisfaction

Example: Robotics navigation

S: Positions and velocities of various joints; camera images
Action: joint torques

Reward: -1 for bumping into an obstacle, -0.1 per time step to
encourage speed, +1000 for reaching the goal configuration

St

Value Functions

state action

______________________ values i values
prediction U dr
control Uy g«

» All theoretical objects, mathematical ideals (expected values)

» Algorithm will maintain estimate from data:

Vils) Qi(s,a)

Values are expected returns

The value of a state, given a policy:
Vre(s) =E{G: | St = s, Ap.oo ~ 1} Ut S — R
The value of a state-action pair, given a policy:
gr(s,a) = E{G; | St = s, Ay = a, A411.00~T} gr : S XA — R
The optimal value of a state:
Vi (8) = mngw(s) Vet S — R
The optimal value of a state-action pair:
q*(s,a):mgxqﬂ(s,a) s :S XA — R
Optimal policy: m, is an optimal policy if and only if
7« (a|s) > 0 only where ¢.(s,a) = max q«(s,b) VseS

e in other words, . is optimal iff it is greedy wrt g,

Monte Carlo Policy Evaluation

1 Goal: learn v, (s)
1 Given: some number of episodes under st which contain s

1 Idea: Average returns observed after visits to s

A Every-Visit MC: average returns for every time s is visited
In an episode

A First-visit MC: average returns only for first time s 1s
visited 1n an episode

1 Both converge asymptotically

First-visit Monte Carlo policy evaluation

Initialize:
m <— policy to be evaluated
V < an arbitrary state-value function
Returns(s) < an empty list, for all s € §

Repeat forever:
Generate an episode using 7
For each state s appearing in the episode:
G < return following the first occurrence of s
Append G to Returns(s)
V(s) <+ average(Returns(s))

Blackjack example

1 Object: Have your card sum be greater than the dealer’s
without exceeding 21.

[States (200 of them):
= current sum (12-21) i
= dealer’s showing card (ace-10) ET‘\
= do I have a useable ace? =

1 Reward: +1 for winning, O for a draw, -1 for losing

1 Actions: stick (stop receiving cards), hit (receive another
card)

1 Policy: Stick if my sum is 20 or 21, else hit

Learned blackjack state-value functions

After 10,000 episodes After 500,000 episodes

T ——

ace 76

No
usable
ace

Value function approximation (VFA)

P

S, ey %) (S, 0)
/

T'arget,

Target depends on the agent’s behavior!

13

Objective: minimize Mean Square Value Error

MSVE(6) =) d(s) {’UW(S) — (s, 9)} 2

SES

where d(s) is the fraction of time steps spentin s

Use G, instead of v,

Monte Carlo will provide samples of the expectation
e Use sample return instead of Vx
e Use actual visited states instead of d(s)

14

Gradient Monte Carlo Algorithm for Approximating v ~ v,

Input: the policy 7 to be evaluated

Input: a differentiable function v : § x R — R

Initialize value-function weights @ as appropriate (e.g., 8 = 0)

Repeat forever:

Generate an episode Sy, Ag, R1, 51, A1, ..

Fort=0,1,..., T —1:
0+ 0+ CM[Gt — @(St,H)} V@(St,e)

., R, ST using «

MC vs supervised regression

1 Target returns can be viewed as a supervised label (true
value we want to fit)

1 State is the input

1 We can use any function approximator to fit a function
from states to returns! Neural nets, linear, nonparametric...

A Unlike supervised learning: there is strong correlation
between inputs and between outputs!

1 Due to the lack of iid assumptions, theoretical results from
supervised learning cannot be directly applied

State aggregation is the simplest kind of VFA

e States are partitioned into disjoint subsets (groups)

« One component of @ is allocated to each group
v(s,0) =0

group(s)

Ve 9(s,0) =[0,0,...,0,1,0,0,...,0]

Recall: 0 « 0+ o[Target, — 6(S;,0)] Vo 6(5;, 0)

17

Example: The 1000-state random walk

o States are numbered 1 to 1000
o Walks start in the near middle, at state 500 So = 500

» At each step, jump to one of the 100 states to the right, S, € {400..499} U {501..600}
or to one of the 100 states to the left

 |f the jump goes beyond 1 or 1000, terminates with a reward of -1 or +1
(otherwise R,=0)

trajectory of 11 jumps

-1

N
| /
|

state 1 state 500 state 1000

18

Example: State aggregation into 10 groups

trajectory of 11 jumps

-1

—
H/_/R,_/H_/W_/ | ~—
| group1 group2 group3 group4 group5 | group 6 up7 oup 8 group 9 group 10
\
‘. \
| |

state 1 state 500 state 1000

The whole value function over 1000 states will be approximated
with 10 numbers!

Example: Gradient MC with state aggregation

10 groups of 100 states
after 100,000 episodes
a=2x10°

state distribution affects
accuracy

Value
scale

Approxmate
- MC value ¥ \

/__

True
value v

| ’* ‘

State

1000

10.0137

Distribution
scale

10.0017

20

What about control?

Policy atstept = 7, =

t

a mapping from states to action probabilities

7, (als)= probability that A =a when §, = s

Special case - deterministic policies:
77 (s) = the action taken with prob=1 when §;=s

1 Reinforcement learning methods specify how the agent
changes its policy as a result of experience.

1 Roughly, the agent’s goal is to get as much reward as it can
over the long run.

21

Monte Carlo Estimation of Action Values (Q)

1 Monte Carlo is most useful when a model is not available
= We want to learn g

1 gx(s,a) - average return starting from state s and action a
then following 7t

1 Converges asymptotically if every state-action pair is
visited

1 Exploring starts: Every state-action pair has a non-zero
probability of being the starting pair

Monte Carlo Exploring Starts

Initialize, for all s € 8, a € A(s):
Q(s,a) < arbitrary
m(s) < arbitrary
Returns(s,a) < empty list

Repeat forever:
Choose Sy € 8 and Ay € A(Sy) s.t. all pairs have probability > 0
Generate an episode starting from Sy, Ag, following 7
For each pair s, a appearing in the episode:
G < return following the first occurrence of s, a
Append G to Returns(s,a)
Q(s,a) « average(Returns(s,a))
For each s in the episode:
m(s) < argmax, Q(s,a)

12

Blackjack example continued

1 Exploring starts
1 Initial policy as described before

JT‘*
121
STICK _58
Usable JJL Sy
ace 116
15
HIT 14
13
12
,,,,,,,,,, 11

No 118 3

usable 116 ©
ace 123
HIT {12 &

112

A23456780910
Dealer showing

On-policy Monte Carlo Control

O On-policy: learn about policy currently executing
1 How do we get rid of exploring starts?
= The policy must be eternally soft:
—m(als) > 0 for all s and a

= ¢.g. e-soft policy:
AL O T AR
non-max max (greedy)

— probability of an action =

1 An instance of policy iteration: move policy fowards greedy
policy (e.g., e-greedy)

14

Monte Carlo Control

evaluation

m
T Q
7 ~~ greedy(Q)

improvement

1 MC policy iteration: Policy evaluation using MC methods
followed by policy improvement

1 Policy improvement step: greedify with respect to value
(or action-value) function

10

On-policy MC Control

Initialize, for all s € §, a € A(s):
Q(s,a) < arbitrary
Returns(s,a) < empty list
m(a|s) <= an arbitrary e-soft policy

Repeat forever:
(a) Generate an episode using 7
(b) For each pair s, a appearing in the episode:
(G < return following the first occurrence of s, a
Append G to Returns(s,a)
Q(s,a) < average(Returns(s,a))
(c) For each s in the episode:
A* + argmax, Q(s,a)
For all a € A(s):
l—e+¢/|A(s)] ifa=A"
m(als) <_{ e/|A(s)] [if a4 A"

15

MC Control with function approximation

Always learn the action-value function of the current policy

Always act near-greedily wrt the current action-value
estimates (eg soft max, epsilon-greedy)

The learning rule:
Oi11=0;+« [Ut — q(St, As, Ht)} Vq(Si, At, 04)
For MC, U, = G,

28

Monte Carlo Summary

Easy to implement for any sequential decision making problem!
Can leverage the power of function approximation
Policies leverage randomized exploration ideas

But: we have to wait until the end of an episode to make any
updates!

That can be really long! Eg sequential treatment design
Even in games that can be too long! Eg opponent adaptation

Can we do something more efficient? More responsive?

29

Recall: sequential decision making

e At time ¢, agent receives an observation from set X and can choose an
action from set A (think finite for now)

e Goal of the agent is to maximize long-term return

®
/NN

LT
/5

'\ 7 Cmatlt &sso‘ammt

* Recall the infinite tree of possible interactions of the agent and
environment - is finite horizon the only assumption we can
make?

Finite clustering assumption

* The infinite paths cluster into a finite number of clusters!
* The means similar situations will recur

* So we can generalize!

One more step: Markovian
assumption

The way we got to some specific situation is not relevant for
the future!

All that matters is our current observation X,

Alternatively, if we should have remembered something, we will
consider it part of X,

We will call such an observation state

The Markov Property

1 By “the state” at step ¢, the book means whatever information is
available to the agent at step ¢ about its environment.

1 The state can include immediate “sensations,” highly processed
sensations, and structures built up over time from sequences of
sensations.

1 Ideally, a state should summarize past sensations so as to retain
all “essential” information, 1.e., it should have the Markov
Property:

Pr{Rt—I—l =T, St—i—l — S, ‘ SO; A07 Rla I St—17 At—17 Rt7 StaAt} =
p(s,7|s,a) = Pr{Ry1 = 1,541 = 5" [St, At}

 for all ¢ € $*,r € ®, and all histories Sy, Ao, Ry, ..., Si—1, Ai_1, Ry, Si, Ay

33

Markov Property

1 An assumption about the environment

1 Next state and reward depend only on the previous state and
action, and noting else that happened in the past

P S =8 Ry =r|S,=s5,A=a)=p(S;;, =5 R ,=r|S,=s,A=a,r1),Vr,

1 The assumption is useful to develop, analyze and
understand algorithms

1 It does NOT mean it has to always hold

34

The Agent-Environment Interface

'_l Agen’[JI

state reward

Rt+1 ("

\.

Environment J<

action
A,

Agent and environment interact at discrete time steps: #=10,1,2,3,...

Agent observes state at stept: S, €8

produces action at step 7 : A, € A(S,)

gets resulting reward: R, € R C R

and resulting next state: S

e 8t

r+1

35

Markov Decision Processes

1 If a reinforcement learning task has the Markov Property, it is
basically a Markov Decision Process (MDP).

1 If state and action sets are finite, it is a finite MDP.
1 To define a finite MDP, you need to give:
= state and action sets

" one-step “dynamics”

p(s',rls,a) =Pr{S;1=5,Ri1=7r|Si=s, Ai=a}

p(s'|s,a) = Pr{Sip1=5"| Si=s,4y=a} = Zp(s',r|s,a)

reR

T(S,CL) =]E’[Rt—l—l ‘ StzsaAt:a] — y:ry:p(slaﬂsaa)

rcR s'ES§

36

An Example Finite MDP

Recycling Robot

1 At each step, robot has to decide whether it should (1) actively
search for a can, (2) wait for someone to bring it a can, or (3)
g0 to home base and recharge.

1 Searching is better but runs down the battery; if runs out of
power while searching, has to be rescued (which 1s bad).

1 Decisions made on basis of current energy level: high, low.

1 Reward = number of cans collected

37

Recycling Robot MDP

S = {high, low} Iearen = €Xpected no. of cans while searching
A(high) = {search, wa j_t} r.... = expected no.of cans while waiting
HAQow) = {search, wait, recharge} Fsearch = Tyait
1, Twait l—ﬁ , -3
B y I'search
wait search
1,0 recharge
® low
search
1, Twai
A, Tsearch l-0, Tsearcn wait

38

Return

Suppose the sequence of rewards after step ¢ 1s:
R ,R._.R

t+1° T 420 T 4390 0

What do we want to maximize?

At least three cases, but in all of them,

we seek to maximize the expected return, £ {Gt } on each step .

e Total reward, G; = sum of all future reward in the episode

e Discounted reward, G; = sum of all future discounted reward

e Average reward, G; = average reward per time step

39

Rewards and returns

The objective in RL is to maximize long-term future reward

That is, to choose A; so as to maximize R;i1, Rii2, Rit3, ...

But what exactly should be maximized?

The discounted return at time t:

the discount rate

Gy = Riy1 +YRip2 + v’ Rigs + Y Regu + -+ v €10,1)
Y Reward sequence Return

O.5(or any) 1000...

0.5 002000...

0.9 002000...

0.5 -12632000...

A V\q\k fh\ ! (\j (3 D?JW“‘CI\?

R ety

R- R‘\ﬂ\ﬁ (- Othen

¥ ¥-0¢
It ¥=.99

\

IRNARA

41

Recall: Episodic Tasks

Episodic tasks: interaction breaks naturally into
episodes, e.g., plays of a game, trips through a maze

In episodic tasks, we almost always use simple roral
reward.

G =R

r+1

+Rt+2 -+ R,

where 7 1s a final time step at which a terminal state is reached,

ending an episode.

42

Continuing Tasks

Continuing tasks: interaction does not have natural episodes, but
just goes on and on...

In this class, for continuing tasks we will always use discounted
return:

0

Rt+1 +)/R +2 + y Rt+3 = E)/kRHkH’

k=0
where y,0 <y <1, is the discount rate.

G, =

shortsighted 0 <y — 1 farsighted

Typically, ¥ =0.9

43

An Example: Pole Balancing

Avoid failure: the pole falling beyond
| a critical angle or the cart hitting end of

/ track
— od —

As an episodic task where episode ends upon failure:
reward = +1 for each step before failure

=> return = number of steps before failure

As a continuing task with discounted return:
reward = -1 upon failure; O otherwise

= return = -y, for k steps before failure

In either case, return is maximized by
avolding failure for as long as possible.

44

Another Example: Mountain Car

Get to the top of the hill
as quickly as possible.

o
/|
reward = -1 for each step where not at top of hill

= return = - number of steps before reaching top of hill

Return 1s maximized by minimizing
number of steps to reach the top of the hill.

45

A Trick to Unify Notation for Returns

1 In episodic tasks, we number the time steps of each episode
starting from zero.

1 We usually do not have to distinguish between episodes, so
instead of writing j for states in episode j, we write just S,

1 Think of each episode as ending in an absorbing state that
always produces reward of zero:

. () () Rs5=0

t+k+1°

3 We can cover all cases by writing G, = E v R
k=0

where y can be 1 only if a zero reward absorbing state is always reached.

46

