Wrap-up of Bandits
Sequential decision making
Value functions
Monte Carlo



Recall: Classes of bandit algorithms

* Epsilon-greedy (simple randomization)

* Optimism in the face of uncertainty: optimistic initialization,
UCB

* Gradient-based policy optimization

* Softmax / Boltzmann exploration (similar in shape to gradient-
based but relies on value function estimation)

* One more class: probability matching



Recall: Probability matching

* Select action a according to the probability of it being optimal:
(A, =alH) =Plg*(a) > g*(a@’)Va' # a|H,] where
H = (AR,...A_,R,_))

* Note that probability matching is optimistic in the face of
uncertainty - because uncertain action typically have a higher

probability of being considered optimal

* How can we implement this idea?



Recall: Intuition

If we knew the problem (reward distribution for each arm) we
could easily compute the optimal action

Initially, we have uncertainty about the problem

Let’s model the uncertainty directly, using a probability
distribution over the problem parameters!

This is an instance of Bayesian reasoning



Detour Example: Coin Toss

* Suppose you flip a coin and observe numbers of heads and tails
Ny, Ny

* Maximum likelihood estimation says the probability of heads is:
Ny

Ny + Ny

* In the limit, this is guaranteed to converge to the right answer

e But what if you knew the coin is probably biased? Could you
incorporate this information somehow!



Imagining some prior data

Suppose in your head you imagine some initial tosses, eg

Ky = 9,K; = 1 if you think the coin should be biased towards
heads

Ky + Ny
Ky + Ny + Ky + Ny

You can mix these with data:

In the limit, this still converges to the correct estimate
But in the short term, you use the bias

How many tosses you imagine controls how quickly the bias
washes out

An instance of Bayesian reasoning!



Bayesian Coin Toss

= Coin toss: x ~ Bernoulli(6)

" Let’s assume that Beta distribution
" 0 ~Betalay, ar) —
= P(O) x g%~ (1 —g)%r—1

Prior
P(X]0)P(6)

" POIX) =55

/\

Posterior

The prior is conjugate!




More generally: Bayesian Reasoning

* Assume the parameters you're interested in have some prior distribution

Po(6)
* After some dataset D comes in, compute a posterior:
P(8] D) « P(D|0)py(6)
* Now you can sample from the posterior!
* Advantages:
 provides a good uncertainty estimate for 6
* can incorporate existing knowledge through the prior

* Converges in the limit to the same answer as max likelihood

estimation but can give better estimates when you have small samples
* Disadvantage: Expensive

* Usually practiced with conjugate priors (eg Beta for Bernoulli
distributions, Normal for Normal distributions...)



Back to bandits: Thompson sampling

* Instantiation of probability matching / Bayesian reasoning for
bandits (developed in the 1930s)

* |dea: we are interested in the parameters of the reward
distribution for each arm £ _, Va

* So maintain a probability distribution over them!
* Eg if the distributions are Bernoulli, maintain a Beta distribution,
with some prior (maybe equal probability) and update as data

comes in

* Eg if the distributions are normal, maintain a normal over the
mean, or mean and standard deviation



Algorithm

« Start with a prior over the reward distributions py(£2,), Va
* Repeat

|. Sample a bandit problem, aka rewards from the
distributions: £, ~ p(£ ,Va|H))

2. Compute the best action for problem A, = a*(X%£,)

3. Note this can be done easily for many problems of
interest!

4. Pull arm A, and observe reward R,

5. Update the history: H,, | = (H,, A,, R,) and posterior
p(‘%aa VCl | Ht+1)



Efficient implementation

* Instead of maintaining the whole history, if we have conjugate
priors, we can incrementally update the posterior

* This can in fact be done using an equivalent sample size trick:
imagine you have some data sampled from the prior, which is
added to your dataset

* For example:

Algorithm 1: Thompson Sampling for Bernoulli bandits

S;i=0,F, =0
foreacht=1.2.....do

end

For each arm i = L,...,N, sample 0;(t) from the Beta(S; + 1, F; + 1) distribution.
Play arm i(t) := arg max; ;(t) and observe reward r;.
I[fr=1,thenS;=S; + Lelse F; = F; + 1.




Example

 Start with a prior

Beta(1,1) Beta(1,1) Beta(1,1)




Example

* Sample a problem (bandit) from the prior

0.7 0.2 0.4
Beta(1,1) Beta(1,1) Beta(1,1)




Example

* Compute the solution to the problem (best arm)

4 )

X 0.7 0.2 0.4
Beta(1,1) Beta(1,1) Beta(1,1)

. J




Example

 Execute the action in the real environment and observe its
outcome (the reward)

0.4

X 0.7 0.2
Beta(1,1) Beta(1,1) Beta(1,1)

\_




Example

* Update the posterior to incorporate the observed data

SR

X 0.7 0.2 0.4
Beta(2,1) Beta(1,1) Beta(1,1)

/

-




Properties

Like UCB, Thompson sampling is asymptotically optimal, ie.
achieves O(log 1) regret

Took almost 80 years to prove that!! (https://arxiv.org/abs/
1111.1797)

Empirically, Thompson sampling works well for small sample
sizes, especially if you know something about the problem


https://arxiv.org/abs/1111.1797
https://arxiv.org/abs/1111.1797

Problem space

Single State  Associative

Instructive
feedback

Evaluative
feedback




Problem space

Single State  Associative

Instructive
feedback

Evaluative Bandits
1i{={=1e 0tz 1ed.€ | (Function optimization)




Problem space

Single State  Associative

Instructive Supervised
feedback learning

Evaluative Bandits
1i{={=1e 0tz 1ed.€ | (Function optimization)




Problem space

Single State  Associative

L an=l  Averaging Supervised
(l=lelorz(e ¢ | (IMitiation) learning

Evaluative Bandits
1i{={=1e 0tz 1ed.€ | (Function optimization)




Problem space

Single State  Associative

LsdlmiNs  Averaging Supervised
(l=lelorz(e ¢ | (IMitiation) learning

Evaluative Bandits Contextual
1i{={=1e 0tz 1ed.€ | (Function optimization) bandits




Contextual bandits

* We have some context, aka observation or state (discrete or
continuous, often high-dimensional)

* The reward distribution depends on the context

% XNP(X/>

Ac o
Tl VAT
R~ P()X,A)




Not just exploration!

We have to assign credit to different features of the context!

Usually we will use function approximation to estimate action-
values Q, (x, a) (or to estimate the preference function, or

policy)

Algorithms we talked about all have equivalents in this problem!
Eg epsilon-greedy, softmax

Eg UCB -> LinUCB (assuming Q. (x,a) = w!x)

Eg Thompson sampling assuming linear rewards



Back to sequential decision making

* Recall the infinite tree of possible interactions of the agent and
environment - what other assumptions can we make!?

e At time ¢, agent receives an observation from set X and can choose an
action from set A (think finite for now)

e Goal of the agent is to maximize long-term return

D
/RN

L] T
/70/%

'\ Credd assigpomed



Finite-horizon assumption

* All paths end after at most T time steps
* These are called finite horizon problems

* Eg multi-stage medical treatment design



Rewards and returns

The objective in RL is to maximize long-term future reward

That is, to choose A; so as to maximize R;i1, Rii2, Rit3, ...

But what exactly should be maximized?

The return at time t:

T—t
G=Ryp+Ry+..+R =) Ry
k=1



4 value functions

state action

______________________ values i values
prediction U dr
control Uy g«

» All theoretical objects, mathematical ideals (expected values)

e Distinct from their estimates:

Vils)  Qi(s,a)



Simple Monte Carlo

V(S,) < V(S)+a|G, - V(S,))]




Monte Carlo Methods

1 Monte Carlo methods are learning methods
Experience — values, policy

1 Monte Carlo methods can be used in two ways:
» model-free: No model necessary and still attains optimality
= simulated: Needs only a simulation, not a full model

1 Monte Carlo methods learn from complete sample returns
= Defined for episodic tasks (in the book)

1 Like an associative version of a bandit method



Backup diagram for Monte Carlo

1 Entire rest of episode included O

1 Only one choice considered at O
each state (unlike DP) C

= thus, there will be an ®
explore/exploit dilemma C

/

/

™ Does not bootstrap from

) [
successor states’s values
(unlike DP)
1 Time required to estimate one ®

state does not depend on the
total number of states

terminal state




First-visit Monte Carlo policy evaluation

Initialize:
m <— policy to be evaluated
V < an arbitrary state-value function
Returns(s) < an empty list, for all s € §

Repeat forever:
Generate an episode using 7
For each state s appearing in the episode:
G < return following the first occurrence of s
Append G to Returns(s)
V(s) <+ average(Returns(s))




Monte Carlo Policy Evaluation

1 Goal: learn v, (s)
1 Given: some number of episodes under st which contain s

1 Idea: Average returns observed after visits to s

A Every-Visit MC: average returns for every time s is visited
In an episode

A First-visit MC: average returns only for first time s 1s
visited 1n an episode

1 Both converge asymptotically



Blackjack example

1 Object: Have your card sum be greater than the dealer’s
without exceeding 21.

[ States (200 of them):
= current sum (12-21) i
= dealer’s showing card (ace-10) ET‘\
= do I have a useable ace? =

1 Reward: +1 for winning, O for a draw, -1 for losing

1 Actions: stick (stop receiving cards), hit (receive another
card)

1 Policy: Stick if my sum is 20 or 21, else hit



Learned blackjack state-value functions

After 10,000 episodes After 500,000 episodes

T ——

ace 76

No
usable
ace



Value function approximation (VFA)

b

S; ===y % ) (S, 0)

T'arget,

Target depends on the agent’s behavior!



A natural objective in VFA
IS to minimize the Mean Square Value Error

MSVE(6 Zd [ —1)59)]2

SES

where d(s) |s the fraction of time steps spentin s
Monte Carlo will provide samples of the expectation

e Use sample return instead of Vx
e Use actual visited states instead of d(s)



Gradient Monte Carlo Algorithm for Approximating v ~ v,

Input: the policy 7 to be evaluated

Input: a differentiable function v : § x R — R

Initialize value-function weights @ as appropriate (e.g., 8 = 0)

Repeat forever:

Generate an episode Sy, Ag, R1, 51, A1, ..

Fort=0,1,..., T —1:
0+ 0+ CM[Gt — @(St,H)} V@(St,e)

., R, ST using «




MC vs supervised regression

1 Target returns can be viewed as a supervised label (true
value we want to fit)

1 State is the input

1 We can use any function approximator to fit a function
from states to returns! Neural nets, linear, nonparametric...

A Unlike supervised learning: there is strong correlation
between inputs and between outputs!

1 Due to the lack of iid assumptions, theoretical results from
supervised learning cannot be directly applied



Monte Carlo Estimation of Action Values (Q)

1 Monte Carlo is most useful when a model is not available
= We want to learn g

1 gx(s,a) - average return starting from state s and action a
then following 7t

1 Converges asymptotically if every state-action pair is
visited

1 Exploring starts: Every state-action pair has a non-zero
probability of being the starting pair



Monte Carlo Exploring Starts

Initialize, for all s € 8, a € A(s): Fixed point is optimal
Q(s,a) < arbitrary

7(s) < arbitrary
Returns(s,a) < empty list

policy

Now proven (almost)

Repeat forever:
Choose Sy € 8§ and Ay € A(Sp) s.t. all pairs have probability > 0
Generate an episode starting from Sy, Ag, following 7
For each pair s, a appearing in the episode:
G < return following the first occurrence of s, a
Append G to Returns(s,a)
Q(s,a) « average(Returns(s,a))
For each s in the episode:
m(s) < argmax, Q(s,a)

12



Blackjack example continued

1 Exploring starts
1 Initial policy as described before

JT‘*
121
STICK _58
Usable JJL Sy
ace 116
15
HIT 14
13
12
,,,,,,,,,, 11

No 118 3

usable 116 ©
ace 123
HIT {12 &

112

A23456780910
Dealer showing




On-policy Monte Carlo Control

O On-policy: learn about policy currently executing
1 How do we get rid of exploring starts?
= The policy must be eternally soft:
—m(als) > 0 for all s and a

= ¢.g. e-soft policy:
AL O T AR
non-max  max (greedy)

— probability of an action =

1 An instance of policy iteration: move policy fowards greedy
policy (e.g., e-greedy)

14



On-policy MC Control

Initialize, for all s € §, a € A(s):
Q(s,a) < arbitrary
Returns(s,a) < empty list
m(a|s) <= an arbitrary e-soft policy

Repeat forever:
(a) Generate an episode using 7
(b) For each pair s, a appearing in the episode:
(G < return following the first occurrence of s, a
Append G to Returns(s,a)
Q(s,a) < average(Returns(s,a))
(c) For each s in the episode:
A* + argmax, Q(s,a)
For all a € A(s):
l—e+¢/|A(s)] ifa=A"
m(als) <_{ e/|A(s)] [ if a4 A"
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