
Wrap-up of Bandits
Sequential decision making

Value functions
Monte Carlo

Recall: Classes of bandit algorithms
• Epsilon-greedy (simple randomization)

• Optimism in the face of uncertainty: optimistic initialization,
UCB

• Gradient-based policy optimization

• Softmax / Boltzmann exploration (similar in shape to gradient-
based but relies on value function estimation)

• One more class: probability matching

Recall: Probability matching
• Select action a according to the probability of it being optimal:

 where

• Note that probability matching is optimistic in the face of
uncertainty - because uncertain action typically have a higher
probability of being considered optimal

• How can we implement this idea?

π(At = a |Ht) = ℙ[q*(a) ≥ q*(a′￼)∀a′￼≠ a |Ht]
Ht = ⟨A1R1…At−1, Rt−1⟩

Recall: Intuition
• If we knew the problem (reward distribution for each arm) we

could easily compute the optimal action

• Initially, we have uncertainty about the problem

• Let’s model the uncertainty directly, using a probability
distribution over the problem parameters!

• This is an instance of Bayesian reasoning

Detour Example: Coin Toss
• Suppose you flip a coin and observe numbers of heads and tails

• Maximum likelihood estimation says the probability of heads is:

• In the limit, this is guaranteed to converge to the right answer

• But what if you knew the coin is probably biased? Could you
incorporate this information somehow?

NH, NT

NH

NH + NT

Imagining some prior data
• Suppose in your head you imagine some initial tosses, eg

 if you think the coin should be biased towards
heads

• You can mix these with data:

• In the limit, this still converges to the correct estimate

• But in the short term, you use the bias

• How many tosses you imagine controls how quickly the bias
washes out

• An instance of Bayesian reasoning!

KH = 9,KT = 1

KH + NH

KH + NH + KT + NT

Bayesian Coin Toss Simple	Example

§ Coin	toss:	x			̴	Bernoulli(v)
§ Let’s	assume	that	

§ v			̴	Beta(]£,]2)	
§ P(v)	∝ v•¶Ö((1 − v)•KÖ(

§ ß v I = ® I v ®(©)
∑ ®(™|©)�
´

Posterior

Prior

The	prior	is	conjugate!

Beta	distribution

More generally: Bayesian Reasoning
• Assume the parameters you’re interested in have some prior distribution

• After some dataset D comes in, compute a posterior:

• Now you can sample from the posterior!

• Advantages:

• provides a good uncertainty estimate for

• can incorporate existing knowledge through the prior

• Converges in the limit to the same answer as max likelihood
estimation but can give better estimates when you have small samples

• Disadvantage: Expensive

• Usually practiced with conjugate priors (eg Beta for Bernoulli
distributions, Normal for Normal distributions…)

p0(θ)

P(θ |D) ∝ P(D |θ)p0(θ)

θ

Back to bandits: Thompson sampling
• Instantiation of probability matching / Bayesian reasoning for

bandits (developed in the 1930s)

• Idea: we are interested in the parameters of the reward
distribution for each arm

• So maintain a probability distribution over them!

• Eg if the distributions are Bernoulli, maintain a Beta distribution,
with some prior (maybe equal probability) and update as data
comes in

• Eg if the distributions are normal, maintain a normal over the
mean, or mean and standard deviation

ℛa, ∀a

Algorithm
• Start with a prior over the reward distributions

• Repeat

1. Sample a bandit problem, aka rewards from the
distributions:

2. Compute the best action for problem

3. Note this can be done easily for many problems of
interest!

4. Pull arm and observe reward

5. Update the history: and posterior

p0(ℛa), ∀a

ℛt ∼ p(ℛa, ∀a |Ht)
At = a*(ℛt)

At Rt

Ht+1 = ⟨Ht, At, Rt⟩
p(ℛa, ∀a |Ht+1)

Efficient implementation
• Instead of maintaining the whole history, if we have conjugate

priors, we can incrementally update the posterior

• This can in fact be done using an equivalent sample size trick:
imagine you have some data sampled from the prior, which is
added to your dataset

• For example:

Thompson	Sampling
Using	Beta	belief	distribution
§ Theorem	[Emilie	et	al.	2012]

§ Initially	assumes	arm	� with	prior	Beta(1,1)	on	¨�
§ ≠Æ =		#“Success”,	ØÆ=	#“Failure”

Example
• Start with a prior

Thompson	Sampling
Using	Beta	belief	distribution

Arm	1 Arm	2 Arm	3

Beta(1,1) Beta(1,1) Beta(1,1)

§ Initialization

Example
• Sample a problem (bandit) from the prior

Thompson	Sampling
Using	Beta	belief	distribution

Arm	1 Arm	2 Arm	3

Beta(1,1) Beta(1,1) Beta(1,1)
X																				0.7																																							0.2																																				0.4

§ For	each	round:
§ Sample	random	variable	X	from	each	arm’s	Beta	

Distribution

Example
• Compute the solution to the problem (best arm)

Thompson	Sampling
Using	Beta	belief	distribution

Arm	1 Arm	2 Arm	3

Beta(1,1) Beta(1,1) Beta(1,1)
X																				0.7																																							0.2																																				0.4

§ For	each	round:
§ Sample	random	variable	X	from	each	arm’s	Beta	

Distribution
§ Select	the	arm	with	largest	X

Example
• Execute the action in the real environment and observe its

outcome (the reward)

Thompson	Sampling
Using	Beta	belief	distribution

Arm	1 Arm	2 Arm	3

Beta(1,1) Beta(1,1) Beta(1,1)
X																				0.7																																							0.2																																				0.4

§ For	each	round:
§ Sample	random	variable	X	from	each	arm’s	Beta	

Distribution
§ Select	the	arm	with	largest	X
§ Observe	the	result	of	selected	arm

Success!

Example
• Update the posterior to incorporate the observed data

Thompson	Sampling
Using	Beta	belief	distribution

Arm	1 Arm	2 Arm	3

Beta(2,1) Beta(1,1) Beta(1,1)
X																				0.7																																							0.2																																				0.4

§ For	each	round:
§ Sample	random	variable	X	from	each	arm’s	Beta	

Distribution
§ Select	the	arm	with	largest	X
§ Observe	the	result	of	selected	arm
§ Update	prior	Beta	distribution	for	selected	arm
Success!

Properties
• Like UCB, Thompson sampling is asymptotically optimal, ie.

achieves regret

• Took almost 80 years to prove that!! (https://arxiv.org/abs/
1111.1797)

• Empirically, Thompson sampling works well for small sample
sizes, especially if you know something about the problem

O(log t)

https://arxiv.org/abs/1111.1797
https://arxiv.org/abs/1111.1797

Problem space

Single State Associative

Instructive
feedback

Evaluative
feedback

Problem space

Single State Associative

Instructive
feedback

Evaluative
feedback

Bandits
(Function optimization)

Problem space

Single State Associative

Instructive
feedback

Supervised
learning

Evaluative
feedback

Bandits
(Function optimization)

Problem space

Single State Associative

Instructive
feedback

Averaging
(Imitiation)

Supervised
learning

Evaluative
feedback

Bandits
(Function optimization)

Problem space

Single State Associative

Instructive
feedback

Averaging
(Imitiation)

Supervised
learning

Evaluative
feedback

Bandits
(Function optimization)

Contextual
bandits

Contextual bandits
• We have some context, aka observation or state (discrete or

continuous, often high-dimensional)

• The reward distribution depends on the context

0 x~P(x)
/ He
D I MAriT(IX

Rvp((X, A)

Contextual
Bandit

Not just exploration!
• We have to assign credit to different features of the context!

• Usually we will use function approximation to estimate action-
values (or to estimate the preference function, or
policy)

• Algorithms we talked about all have equivalents in this problem!

• Eg epsilon-greedy, softmax

• Eg UCB -> LinUCB (assuming)

• Eg Thompson sampling assuming linear rewards

Qw(x, a)

Qw(x, a) = wT
a x

Back to sequential decision making
• Recall the infinite tree of possible interactions of the agent and

environment - what other assumptions can we make?Sequential decision making

• At time t, agent receives an observation from set X and can choose an
action from set A (think finite for now)

• Goal of the agent is to maximize long-term return

£8
It
cieat assignment

ft
H v.Exploration
D ⑤
^
O O

-

- - - -
-

CLIFAR LMB 2022 7

Finite-horizon assumption
• All paths end after at most T time steps

• These are called finite horizon problems

• Eg multi-stage medical treatment design

Rewards and returns
• The objective in RL is to maximize long-term future reward

• That is, to choose so as to maximize

• But what exactly should be maximized?

• The return at time t:

At Rt+1, Rt+2, Rt+3, . . .

Gt = Rt+2 + Rt+2 + … + RT =
T−t

∑
k=1

Rt+k

4 value functions

• All theoretical objects, mathematical ideals (expected values)

• Distinct from their estimates:

state
values

action
values

prediction

control q⇤v⇤

v⇡ q⇡

Vt(s) Qt(s, a)

Simple Monte Carlo

T T T TT

T T T T T

T T

T T

TT T

T TT

V (St)←V (St)+α Gt −V (St)[]

St

Monte Carlo Methods

❐ Monte Carlo methods are learning methods
 Experience → values, policy

❐ Monte Carlo methods can be used in two ways:
 model-free: No model necessary and still attains optimality
 simulated: Needs only a simulation, not a full model

❐ Monte Carlo methods learn from complete sample returns
 Defined for episodic tasks (in the book)

❐ Like an associative version of a bandit method

terminal state

Backup diagram for Monte Carlo

❐ Entire rest of episode included

❐ Only one choice considered at
each state (unlike DP)

 thus, there will be an
explore/exploit dilemma

❐ Does not bootstrap from
successor states’s values
(unlike DP)

❐ Time required to estimate one
state does not depend on the
total number of states

First-visit Monte Carlo policy evaluation

100 CHAPTER 5. MONTE CARLO METHODS

To handle the nonstationarity, we adapt the idea of general policy iteration (GPI)
developed in Chapter 4 for DP. Whereas there we computed value functions from
knowledge of the MDP, here we learn value functions from sample returns with
the MDP. The value functions and corresponding policies still interact to attain
optimality in essentially the same way (GPI). As in the DP chapter, first we consider
the prediction problem (the computation of v⇡ and q⇡ for a fixed arbitrary policy ⇡)
then policy improvement, and, finally, the control problem and its solution by GPI.
Each of these ideas taken from DP is extended to the Monte Carlo case in which
only sample experience is available.

5.1 Monte Carlo Prediction

We begin by considering Monte Carlo methods for learning the state-value function
for a given policy. Recall that the value of a state is the expected return—expected
cumulative future discounted reward—starting from that state. An obvious way to
estimate it from experience, then, is simply to average the returns observed after
visits to that state. As more returns are observed, the average should converge to
the expected value. This idea underlies all Monte Carlo methods.

In particular, suppose we wish to estimate v⇡(s), the value of a state s under
policy ⇡, given a set of episodes obtained by following ⇡ and passing through s.
Each occurrence of state s in an episode is called a visit to s. Of course, s may
be visited multiple times in the same episode; let us call the first time it is visited
in an episode the first visit to s. The first-visit MC method estimates v⇡(s) as the
average of the returns following first visits to s, whereas the every-visit MC method
averages the returns following all visits to s. These two Monte Carlo (MC) methods
are very similar but have slightly di↵erent theoretical properties. First-visit MC has
been most widely studied, dating back to the 1940s, and is the one we focus on
in this chapter. Every-visit MC extends more naturally to function approximation
and eligibility traces, as discussed in Chapters 9 and 7. First-visit MC is shown in
procedural form in Figure 5.1.

Initialize:
⇡ policy to be evaluated
V an arbitrary state-value function
Returns(s) an empty list, for all s 2 S

Repeat forever:
Generate an episode using ⇡
For each state s appearing in the episode:

G return following the first occurrence of s
Append G to Returns(s)
V (s) average(Returns(s))

Figure 5.1: The first-visit MC method for estimating v⇡.

Monte Carlo Policy Evaluation

❐ Goal: learn
❐ Given: some number of episodes under π which contain s
❐ Idea: Average returns observed after visits to s

❐ Every-Visit MC: average returns for every time s is visited
in an episode

❐ First-visit MC: average returns only for first time s is
visited in an episode

❐ Both converge asymptotically

1 2 3 4 5

v⇡(s)

Blackjack example

❐ Object: Have your card sum be greater than the dealer’s
without exceeding 21.

❐ States (200 of them):
 current sum (12-21)
 dealer’s showing card (ace-10)
 do I have a useable ace?

❐ Reward: +1 for winning, 0 for a draw, -1 for losing
❐ Actions: stick (stop receiving cards), hit (receive another

card)
❐ Policy: Stick if my sum is 20 or 21, else hit

Learned blackjack state-value functions

Value function approximation (VFA)

St v̂(St,✓)

Targett

✓

Target depends on the agent’s behavior!

A natural objective in VFA
is to minimize the Mean Square Value Error

where is the fraction of time steps spent in s d(s)

MSVE(✓)
.
=

X

s2S

d(s)
h
v⇡(s)� v̂(s,✓)

i2

Monte Carlo will provide samples of the expectation
• Use sample return instead of
• Use actual visited states instead of

vπ
d(s)

194 CHAPTER 9. ON-POLICY PREDICTION WITH APPROXIMATION

Gradient Monte Carlo Algorithm for Approximating v̂ ⇡ v⇡

Input: the policy ⇡ to be evaluated
Input: a di↵erentiable function v̂ : S⇥ Rn ! R

Initialize value-function weights ✓ as appropriate (e.g., ✓ = 0)
Repeat forever:

Generate an episode S0, A0, R1, S1, A1, . . . , RT , ST using ⇡
For t = 0, 1, . . . , T � 1:

✓ ✓ + ↵
⇥
Gt � v̂(St,✓)

⇤
rv̂(St,✓)

If Ut is an unbiased estimate, that is, if E[Ut] = v⇡(St), for each t, then ✓t is guar-
anteed to converge to a local optimum under the usual stochastic approximation
conditions (2.7) for decreasing ↵.

For example, suppose the states in the examples are the states generated by in-
teraction (or simulated interaction) with the environment using policy ⇡. Because
the true value of a state is the expected value of the return following it, the Monte
Carlo target Ut

.
= Gt is by definition an unbiased estimate of v⇡(St). With this

choice, the general SGD method (9.7) converges to a locally optimal approximation
to v⇡(St). Thus, the gradient-descent version of Monte Carlo state-value prediction
is guaranteed to find a locally optimal solution. Pseudocode for a complete algorithm
is shown in the box.

One does not obtain the same guarantees if a bootstrapping estimate of v⇡(St)

is used as the target Ut in (9.7). Bootstrapping targets such as n-step returns G(n)
t

or the DP target
P

a,s0,r ⇡(a|St)p(s0, r|St, a)[r + �v̂(s0,✓t)] all depend on the current
value of the weight vector ✓t, which implies that they will be biased and that they
will not produce a true gradient-descent method. One way to look at this is that
the key step from (9.4) to (9.5) relies on the target being independent of ✓t. This
step would not be valid if a bootstrapping estimate was used in place of v⇡(St).
Bootstrapping methods are not in fact instances of true gradient descent (Barnard,
1993). They take into account the e↵ect of changing the weight vector ✓t on the
estimate, but ignore its e↵ect on the target. They include only a part of the gradient
and, accordingly, we call them semi-gradient methods.

Although semi-gradient (bootstrapping) methods do not converge as robustly as
gradient methods, they do converge reliably in important cases such as the linear
case discussed in the next section. Moreover, they o↵er important advantages which
makes them often clearly preferred. One reason for this is that they are typically
significantly faster to learn, as we have seen in Chapters 6 and 7. Another is that they
enable learning to be continual and online, without waiting for the end of an episode.
This enables them to be used on continuing problems and provides computational
advantages. A prototypical semi-gradient method is semi-gradient TD(0), which uses
Ut

.
= Rt+1 + �v̂(St+1,✓) as its target. Complete pseudocode for this method is given

in the box at the top of the next page.

MC vs supervised regression

❐ Target returns can be viewed as a supervised label (true
value we want to fit)

❐ State is the input
❐ We can use any function approximator to fit a function

from states to returns! Neural nets, linear, nonparametric…

❐ Unlike supervised learning: there is strong correlation
between inputs and between outputs!

❐ Due to the lack of iid assumptions, theoretical results from
supervised learning cannot be directly applied

9

Monte Carlo Estimation of Action Values (Q)

❐ Monte Carlo is most useful when a model is not available
 We want to learn q*

❐ qπ(s,a) - average return starting from state s and action a
then following π

❐ Converges asymptotically if every state-action pair is
visited

❐ Exploring starts: Every state-action pair has a non-zero
probability of being the starting pair

12

Monte Carlo Exploring Starts

Fixed point is optimal
policy π*

Now proven (almost)

5.3. MONTE CARLO CONTROL 107

Initialize, for all s 2 S, a 2 A(s):
Q(s, a) arbitrary
⇡(s) arbitrary
Returns(s, a) empty list

Repeat forever:
Choose S0 2 S and A0 2 A(S0) s.t. all pairs have probability > 0
Generate an episode starting from S0, A0, following ⇡
For each pair s, a appearing in the episode:

G return following the first occurrence of s, a
Append G to Returns(s, a)
Q(s, a) average(Returns(s, a))

For each s in the episode:
⇡(s) argmaxa Q(s, a)

Figure 5.4: Monte Carlo ES: A Monte Carlo control algorithm assuming exploring starts
and that episodes always terminate for all policies.

idea when we first introduced the idea of GPI in Section 4.6. One extreme form of
the idea is value iteration, in which only one iteration of iterative policy evaluation
is performed between each step of policy improvement. The in-place version of
value iteration is even more extreme; there we alternate between improvement and
evaluation steps for single states.

For Monte Carlo policy evaluation it is natural to alternate between evaluation
and improvement on an episode-by-episode basis. After each episode, the observed
returns are used for policy evaluation, and then the policy is improved at all the
states visited in the episode. A complete simple algorithm along these lines is given
in Figure 5.4. We call this algorithm Monte Carlo ES, for Monte Carlo with Exploring
Starts.

In Monte Carlo ES, all the returns for each state–action pair are accumulated and
averaged, irrespective of what policy was in force when they were observed. It is easy
to see that Monte Carlo ES cannot converge to any suboptimal policy. If it did, then
the value function would eventually converge to the value function for that policy,
and that in turn would cause the policy to change. Stability is achieved only when
both the policy and the value function are optimal. Convergence to this optimal
fixed point seems inevitable as the changes to the action-value function decrease
over time, but has not yet been formally proved. In our opinion, this is one of the
most fundamental open theoretical questions in reinforcement learning (for a partial
solution, see Tsitsiklis, 2002).

Example 5.3: Solving Blackjack It is straightforward to apply Monte Carlo
ES to blackjack. Since the episodes are all simulated games, it is easy to arrange
for exploring starts that include all possibilities. In this case one simply picks the
dealer’s cards, the player’s sum, and whether or not the player has a usable ace, all
at random with equal probability. As the initial policy we use the policy evaluated
in the previous blackjack example, that which sticks only on 20 or 21. The initial

13

Blackjack example continued

❐ Exploring starts
❐ Initial policy as described before

108 CHAPTER 5. MONTE CARLO METHODS

Usable
ace

No
usable

ace

20

10A 2 3 4 5 6 7 8 9

Dealer showing

P
la

y
e

r
s
u

m

HIT

STICK 19

21

11
12
13
14
15
16
17
18

!*

10A 2 3 4 5 6 7 8 9

HIT

STICK 20
19

21

11
12
13
14
15
16
17
18

V*

2
1

10 1
2

A

Dealer showing

P
la

y
e
r

s
u
m

10

A

1
2

2
1

+1

"1

v*

Usable
ace

No
usable

ace

20

10A 2 3 4 5 6 7 8 9

Dealer showing

P
la

y
e

r
s
u

m

HIT

STICK 19

21

11
12
13
14
15
16
17
18

!*

10A 2 3 4 5 6 7 8 9

HIT

STICK 20
19

21

11
12
13
14
15
16
17
18

V*

2
1

10 1
2

A

Dealer showing

P
la

y
e
r

s
u
m

10

A

1
2

2
1

+1

"1

v*

Usable
ace

No
usable

ace

20

10A 2 3 4 5 6 7 8 9

Dealer showing
P

la
y
e

r
s
u

m

HIT

STICK 19

21

11
12
13
14
15
16
17
18

!*

10A 2 3 4 5 6 7 8 9

HIT

STICK 20
19

21

11
12
13
14
15
16
17
18

V*

2
1

10 1
2

A

Dealer showing

P
la

y
e
r

s
u
m

10

A

1
2

2
1

+1

"1

v*

Dealer showing Pl
ay

er
 s

um

* *

Figure 5.5: The optimal policy and state-value function for blackjack, found by Monte
Carlo ES (Figure 5.4). The state-value function shown was computed from the action-value
function found by Monte Carlo ES.

action-value function can be zero for all state–action pairs. Figure 5.5 shows the
optimal policy for blackjack found by Monte Carlo ES. This policy is the same as the
“basic” strategy of Thorp (1966) with the sole exception of the leftmost notch in the
policy for a usable ace, which is not present in Thorp’s strategy. We are uncertain
of the reason for this discrepancy, but confident that what is shown here is indeed
the optimal policy for the version of blackjack we have described.

5.4 Monte Carlo Control without Exploring Starts

How can we avoid the unlikely assumption of exploring starts? The only general way
to ensure that all actions are selected infinitely often is for the agent to continue to
select them. There are two approaches to ensuring this, resulting in what we call
on-policy methods and o↵-policy methods. On-policy methods attempt to evaluate
or improve the policy that is used to make decisions, whereas o↵-policy methods
evaluate or improve a policy di↵erent from that used to generate the data. The
Monte Carlo ES method developed above is an example of an on-policy method. In
this section we show how an on-policy Monte Carlo control method can be designed
that does not use the unrealistic assumption of exploring starts. O↵-policy methods
are considered in the next section.

In on-policy control methods the policy is generally soft, meaning that ⇡(a|s) > 0
for all s 2 S and all a 2 A(s), but gradually shifted closer and closer to a deterministic
optimal policy. Many of the methods discussed in Chapter 2 provide mechanisms
for this. The on-policy method we present in this section uses "-greedy policies,

❐ On-policy: learn about policy currently executing
❐ How do we get rid of exploring starts?

 The policy must be eternally soft:
– π(a|s) > 0 for all s and a

 e.g. ε-soft policy:
– probability of an action = or

14

On-policy Monte Carlo Control

max (greedy)non-max

❐ An instance of policy iteration: move policy towards greedy
policy (e.g., ε-greedy)

110 CHAPTER 5. MONTE CARLO METHODS

policies. Let ev⇤ and eq⇤ denote the optimal value functions for the new environment.
Then a policy ⇡ is optimal among "-soft policies if and only if v⇡ = ev⇤. From the
definition of ev⇤ we know that it is the unique solution to

ev⇤(s) = (1� ") max
a

eq⇤(s, a) +
✏

|A(s)|
X

a

eq⇤(s, a)

= (1� ") max
a

X

s0,r

p(s0, r|s, a)
h
r + �ev⇤(s

0)
i

+
✏

|A(s)|
X

a

X

s0,r

p(s0, r|s, a)
h
r + �ev⇤(s

0)
i
.

When equality holds and the "-soft policy ⇡ is no longer improved, then we also
know, from (5.2), that

v⇡(s) = (1� ") max
a

q⇡(s, a) +
✏

|A(s)|
X

a

q⇡(s, a)

= (1� ") max
a

X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s0)

i

+
✏

|A(s)|
X

a

X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s0)

i
.

However, this equation is the same as the previous one, except for the substitution
of v⇡ for ev⇤. Since ev⇤ is the unique solution, it must be that v⇡ = ev⇤.

In essence, we have shown in the last few pages that policy iteration works for "-soft
policies. Using the natural notion of greedy policy for "-soft policies, one is assured
of improvement on every step, except when the best policy has been found among
the "-soft policies. This analysis is independent of how the action-value functions are

Initialize, for all s 2 S, a 2 A(s):
Q(s, a) arbitrary
Returns(s, a) empty list
⇡(a|s) an arbitrary "-soft policy

Repeat forever:
(a) Generate an episode using ⇡
(b) For each pair s, a appearing in the episode:

G return following the first occurrence of s, a
Append G to Returns(s, a)
Q(s, a) average(Returns(s, a))

(c) For each s in the episode:
a⇤ arg maxa Q(s, a)
For all a 2 A(s):

⇡(a|s)
⇢

1� " + "/|A(s)| if a = a⇤

"/|A(s)| if a 6= a⇤

Figure 5.6: An on-policy first-visit MC control algorithm for "-soft policies.

1� ✏+
✏

|A(s)|

15

On-policy MC Control

110 CHAPTER 5. MONTE CARLO METHODS

policies. Let ev⇤ and eq⇤ denote the optimal value functions for the new environment.
Then a policy ⇡ is optimal among "-soft policies if and only if v⇡ = ev⇤. From the
definition of ev⇤ we know that it is the unique solution to

ev⇤(s) = (1� ") max
a

eq⇤(s, a) +
✏

|A(s)|
X

a

eq⇤(s, a)

= (1� ") max
a

X

s0,r

p(s0, r|s, a)
h
r + �ev⇤(s

0)
i

+
✏

|A(s)|
X

a

X

s0,r

p(s0, r|s, a)
h
r + �ev⇤(s

0)
i
.

When equality holds and the "-soft policy ⇡ is no longer improved, then we also
know, from (5.2), that

v⇡(s) = (1� ") max
a

q⇡(s, a) +
✏

|A(s)|
X

a

q⇡(s, a)

= (1� ") max
a

X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s0)

i

+
✏

|A(s)|
X

a

X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s0)

i
.

However, this equation is the same as the previous one, except for the substitution
of v⇡ for ev⇤. Since ev⇤ is the unique solution, it must be that v⇡ = ev⇤.

In essence, we have shown in the last few pages that policy iteration works for "-soft
policies. Using the natural notion of greedy policy for "-soft policies, one is assured
of improvement on every step, except when the best policy has been found among
the "-soft policies. This analysis is independent of how the action-value functions are

Initialize, for all s 2 S, a 2 A(s):
Q(s, a) arbitrary
Returns(s, a) empty list
⇡(a|s) an arbitrary "-soft policy

Repeat forever:
(a) Generate an episode using ⇡
(b) For each pair s, a appearing in the episode:

G return following the first occurrence of s, a
Append G to Returns(s, a)
Q(s, a) average(Returns(s, a))

(c) For each s in the episode:
A⇤ arg maxa Q(s, a)
For all a 2 A(s):

⇡(a|s)
⇢

1� " + "/|A(s)| if a = A⇤

"/|A(s)| if a 6= A⇤

Figure 5.6: An on-policy first-visit MC control algorithm for "-soft policies.

