Multi-arm Bandits
Part 2

Sutton and Barto, Chapter 2

The simplest
reinforcement learning
problem

Recall: Multi-armed bandits

* No x, take an action, observe a reward immediately
* So, a degenerate tree (not truly sequential)
* This is what we call a simple (multi-arm) bandit problem

* Focus on exploration, not credit assighment

:]/UI\[: ATl

R P(- [A=0)
ecockt (Simple)

Recall: k-armed Bandit Problem

* On each of an infinite sequence of time steps,t=1,2, 3, ...,
you choose an action A; from k possibilities, and receive a real-
valued reward R;

* The reward depends only on the action taken;
it is identically, independently distributed (i.i.d.):

g«(a) =E|Ri|As = a], Vae{l,... k} true values
* These true values are unknown. The distribution is unknown
* Nevertheless, you must maximize your total reward

* You must both try actions to learn their values (explore),
and prefer those that appear best (exploit)

Recall: Action-Value Methods

* Methods that learn action-value estimates and construct a policy
based on them

* Estimates can be maintained incrementally, eg:
1
Qn—l—l = Qn + E [Rn — Qn}

* ϵ-greedy: choose the action with maximum Q _t with high
probability, uniformly randomly otherwise

» UCB: maintain an upper bound on the action value, choose greedily
based on value plus upper bound

Ay = arg max [Qt(a) +c]12%;)]

Formally:What do bandit algorithms
optimize!

The best possible action: a* = arg max g*(a)
a

The value of the best possible action: v = g*(a*)

Regret at time step t: [, = E[v* — g*(A,)]

Total regretup to time t: L, = 2 T4

Counting regret

The expected number of times action a has been chosen up to
time t: N(a)

The gap of action a: A, = v* — g*(a)
Note that the optimal action(s) has gap 0

Regret can then be computed from gaps and counts!
L=E [V* — q*(AI)]
=) E [N(@)](* - g%(a))

aed

_Z[E N{a)| A

aed

Observations

Regret is a useful theoretical tool for comparing bandit/RL
algorithms

You can’t compute it empirically (except in toy problems)
But we can bound it over all problems

Maximizing reward is equivalent to minimizing regret
Worse actions lead to more regret

|deally, we minimize the number of time steps on which high
regret actions are chosen

Linear vs sublinear regret

greedy
e-greedy

Total regret
decaying e-greedy

Time-steps

m If an algorithm forever explores it will have linear total regret
m If an algorithm never explores it will have linear total regret

m |s it possible to achieve sublinear total regret?

Epsilon-greedy regret

With probability (1 — ¢) select greedy action
A, = argmax Q/a)

a

With probability € select uniformly at random
Selecting action a incurs regret A

Therefore, the probability of choosing any action at time step t
€

is at least:

€
So instantaneous regret is bounded as: E[/,] > m A,
a

5
€
And total regret: L, = 2 E[L] > z‘m 2 A,

=1

Improving on linear regret

Fixed € leads to linear regret !

What if we reduced the frequency of suboptimal actions over
time?

le introduce a decay:¢, = O as f = o

Let g = min A be the gap of the second-best action
a:A >0

cld|
g°t

Let €, = min <1, >where ¢ > 0 is a constant

We can show that this algorithm has logarithmic regret!

What is the optimal achievable
regret!?

* The difficulty of a bandit problem depends on how similar the
optimal arm is to all the rest

* The closer the means and the more similar the reward
distribution, the harder the problem

* Distribution similarity can be described by the KL divergence
between the reward distribution of arm a compared to the
optimal arm

* Lai and Robins (1979): for any multi-armed bandit asymptotic

regret is at least logarithmic in the number of steps:

A
lim L, > log ¢ Z - = O(log ?)

00 KL R || R

Achieving optimal regret

* Decaying epsilon can do this, but requires knowledge of the
action gap (which is not known in practice)

* Are there other algorithms that achieve logarithmic asymptotic
regret!

Recall: Optimism in the face of uncertainty

* Choose actions about which you are very uncertain

p(Q)

Q) Q(a)

Q(a,)

UCB

. Choose greedily wrt A, = arg max(Q,(a) + U/(a))

log(t)
N(a)

. Where the upper bound: U, = ¢

* Why did we pick U this way?

Hoeffding Inequality

Theorem (Hoeffding's Inequality)

Aet Xi,..., Xt be i.i.d. random variables in [0,1], and let
X; = % 25:1 X, be the sample mean. Then

P[E[X] > X+ u] < e 2

From Hoeffding to UCB

Apply Hoeffding to a bandit problem for action a:
2
P [q*(a) > Qt(a) + Ut(a)] < 6_2Nt(a)Ut(a)

Pick a probability p that the true value exceeds the upper bound
e—2Nt(a)Ut(a)2 =p

and solve for U: —log p
Ula) = \/

Now reduce p as we observe more rewards,eg p = ¢t

For m=8 you get the classic version of UCB!

Regret: Iim L, < 8log(?) Z A,

[— o0
a:A >0

Summary so far

Logarithmic regret is the best we can hope for in K-armed
bandits

In a stationary problem, epsilon-greedy with fixed epsilon
provides linear regret (worst possible)

Decaying epsilon can provide logarithmic regret only if you
know the optimality gap (how much is the difference in
expected reward between the top 2 actions)

UCB is regret-optimal!

Next: gradient-based algorithms

Gradient-Bandit Algorithms

* Let H:(a) be a learned preference for taking action a
. et
Pridi=a} = SOy eHe(d) = m(a)

Note that this allows us to work with unnormalized preferences and turn
them into probabilities!

Same idea as using potentials in graphical models

Softmax (Boltzmann) Exploration

* Let H:(a) be a learned preference for taking action a
. et
Pridi=a} = SOy eHe(d) = m(a)

Consider H/(a) = Q/(a)/T

This is Boltzmann or softmax exploration!

If the temperature T is very large (towards infinity) - same as uniform
If temperature T goes to 0, same as greedy

Very popular method in practice due to simplicity

But can we derive how preferences should be updated?

Gradient-Bandit Algorithms

* Let H:(a) be a learned preference for taking action a

Pridi=a} = z’g_l CHi (D) m(@)

Ht_|_1(At) = Ht(At) —|— Q{(Rt — Rt) (]. — Wt(At))

Gradient-Bandit Algorithms

* Let H:(a) be a learned preference for taking action a

. el
Pridi=a} = SOy eHe(d) = m(a)

Hyi1(a) = Hi(a) + a(Ry — Ry) (1a=a, — m(a)), Va,

Gradient-Bandit Algorithms

* Let H:(a) be a learned preference for taking action a

Pr{d—a} = "
I‘{ t_a/} T 2]521 th(b)
Hiy1(a)
1 d
Ry = - Z R;
1=1
%
Optimal
action

= Hi(a) + a(Rt — Rt) (Lo=a, —
100% [
80%
60%
40%
20% |

0% L,

Wt(a)

me(a)), Va,

]

o= 01 - g
Wline
a =0.

i IR -

/ a=01__

f_,w*”"* without baseline
————————————§=0.

4

e A A b b

R

500 750

Steps

250

1000

Derivation of gradient-bandit algorithm

In exact gradient ascent:

OF [Ri]

Ht-l—l(a) = Ht(a) + 8Ht(a) y (1)

where:

E[R:] = Z m¢(b)q«(b),
b

OE[R:] O
OH:(a) OH:(a)

where X; does not depend on b, because) _, gzzgsg = 0.

OE[R:] 0 m(b)
(a) ~ 20)aHt(a)

O
= L r(b)a-(b)aHtE i/wt()

=K ((t) - Xt) 867;5(/4)) /Wt(At)]
— B[(R R) T)]

where here we have chosen X; = R; and substituted R; for g.(A;),
which is permitted because E[R;:|At] = g.(A¢).

For now assume: g:,igsg = 7¢(b)(1a=p — me(a)). Then:
=E|[(R: — Rt)ﬂ't(At)(la:At — m¢(a)) /me(Ar)]
=E[(R: — Re) (1aza, — me(a))] -

Hep1(a) = He(a) + (Re — Re) (1a—p, — me(a)), (from (1), QED)

Thus it remains only to show that

0 m(b)
OH:(a)

= 7¢(b) (]-a:b — ﬂt(a)).

Recall the standard quotient rule for derivatives:

%, [f(x)] _ Adg(x) — f(x) 5
Ox | g(x) |

Using this, we can write...

8f(><) ag(x)
Quotient Rule: 88 [f(x)] _ g(x) — f(X)
X

g(x) g(x)?
aﬂ't(b))
9H:(a) ~ oHe(a) "t P
9 oHe(b)
8Ht(a) Sk eti(e)
HeHt(b) c (b) O eHt(c)
8Ht(a) Zc 1 th() — e’ (5) Z Ht(a)

- 5 (Q.R.)
(Zlc(:l th(C))

B la:ber(a) Zlc(:l oHi(c) _ gHi(b) gHe(a) o -

— 9er _
(Zlc(:l th(C))2

He (b) eHe(b) gHe(2)

la:be

Sk eth(a) (Zlé:l th(c))2

= 1,_pm(b) — me(b)me(a)
= 7¢(b) (La=p — m(a)). (Q.E.D.)

Summary Comparison of Bandit Algorithms

' UCB greedy with
optimistic
initialization

o =0.1

1.4}

Average ;|

e-greedy _— |
reward .\
: gradient\
over first ol bandit
1000 steps
1.1+
1-

1/128 1/64 1/32 1/16 1/

e/ a/c/ Qo

Classes of bandit algorithms

* Epsilon-greedy (simple randomization)

* Optimism in the face of uncertainty: optimistic initialization,
UCB

* Gradient-based policy optimization

* Softmax / Boltzmann exploration (similar in shape to gradient-
based but relies on value function estimation)

* One more class: probability matching

Probability matching

* Select action a according to the probability of it being optimal:
(A, =alH) =Plg*(a) > g*(a@’)Va' # a|H,] where
H = (AR,...A_,R,_))

* Note that probability matching is optimistic in the face of
uncertainty - because uncertain action typically have a higher

probability of being considered optimal

* How can we implement this idea?

Intuition

If we knew the problem (reward distribution for each arm) we
could easily compute the optimal action

Initially, we have uncertainty about the problem

Let’s model the uncertainty directly, using a probability
distribution over the problem parameters!

This is an instance of Bayesian reasoning

Detour Example: Coin Toss

* Suppose you flip a coin and observe numbers of heads and tails
Ny, Ny

* Maximum likelihood estimation says the probability of heads is:
Ny

Ny + Ny

* But if you knew the coin is probably biased? Could you
incorporate this information somehow?

Detour Example: Bayesian Coin
Toss

= Coin toss: x ~ Bernoulli(6)

" Let’s assume that Beta distribution
" 0 ~Betalay, ar) —
= P(O) x g%~ (1 —g)%r—1

Prior
P(X]0)P(6)

" POIX) =55

/\

Posterior

The prior is conjugate!

More generally: Bayesian Reasoning

* Assume the parameters you're interested in have some prior distribution

Po(6)
* After some dataset D comes in, compute a posterior:
P(8] D) « P(D|0)py(6)
* Now you can sample from the posterior!
* Advantages:
 provides a good uncertainty estimate for 6
* can incorporate existing knowledge through the prior

* Converges in the limit to the same answer as max likelihood

estimation but can give better estimates when you have small samples
* Disadvantage: Expensive

* Usually practiced with conjugate priors (eg Beta for Bernoulli
distributions, Normal for Normal distributions...)

Back to bandits: Thompson sampling

* Instantiation of probability matching / Bayesian reasoning for
bandits (developed in the 1930s)

* |dea: we are interested in the parameters of the reward
distribution for each arm £ _, Va

* So maintain a probability distribution over them!
* Eg if the distributions are Bernoulli, maintain a Beta distribution,
with some prior (maybe equal probability) and update as data

comes in

* Eg if the distributions are normal, maintain a normal over the
mean, or mean and standard deviation

Algorithm

« Start with a prior over the reward distributions py(£2,), Va
* Repeat

|. Sample a bandit problem, aka rewards from the
distributions: £, ~ p(£ ,Va|H))

2. Compute the best action for problem A, = a*(X%£,)

3. Note this can be done easily for many problems of
interest!

4. Pull arm A, and observe reward R,

5. Update the history: H,, | = (H,, A,, R,) and posterior
p(‘%aa VCl | Ht+1)

Efficient implementation

* Instead of maintaining the whole history, if we have conjugate
priors, we can incrementally update the posterior

* This can in fact be done using an equivalent sample size trick:
imagine you have some data sampled from the prior, which is
added to your dataset

* For example:

Algorithm 1: Thompson Sampling for Bernoulli bandits

S;i=0,F, =0
foreacht=1.2.....do

end

For each arm i = L,...,N, sample 0;(t) from the Beta(S; + 1, F; + 1) distribution.
Play arm i(t) := arg max; ;(t) and observe reward r;.
I[fr=1,thenS;=S; + Lelse F; = F; + 1.

Example

 Start with a prior

Beta(1,1) Beta(1,1) Beta(1,1)

Example

* Sample a problem (bandit) from the prior

0.7 0.2 0.4
Beta(1,1) Beta(1,1) Beta(1,1)

Example

* Compute the solution to the problem (best arm)

4)

X 0.7 0.2 0.4
Beta(1,1) Beta(1,1) Beta(1,1)

. J

Example

 Execute the action in the real environment and observe its
outcome (the reward)

0.4

X 0.7 0.2
Beta(1,1) Beta(1,1) Beta(1,1)

_

Example

* Update the posterior to incorporate the observed data

SR

X 0.7 0.2 0.4
Beta(2,1) Beta(1,1) Beta(1,1)

/

-

Properties

Like UCB, Thompson sampling is asymptotically optimal, ie.
achieves O(log 1) regret

Took almost 80 years to prove that!! (https://arxiv.org/abs/
1111.1797)

Empirically, Thompson sampling works well for small sample
sizes, especially if you know something about the problem

https://arxiv.org/abs/1111.1797
https://arxiv.org/abs/1111.1797

Problem space

Single State Associative

Instructive
feedback

Evaluative
feedback

Problem space

Single State Associative

Instructive
feedback

Evaluative Bandits
1i{={=1e 0tz 1ed.€ | (Function optimization)

Problem space

Single State Associative

Instructive Supervised
feedback learning

Evaluative Bandits
1i{={=1e 0tz 1ed.€ | (Function optimization)

Problem space

Single State Associative

L an=l Averaging Supervised
(l=lelorz(e ¢ | (IMitiation) learning

Evaluative Bandits
1i{={=1e 0tz 1ed.€ | (Function optimization)

Problem space

Single State Associative

LsdlmiNs Averaging Supervised
(l=lelorz(e ¢ | (IMitiation) learning

Evaluative Bandits Contextual
1i{={=1e 0tz 1ed.€ | (Function optimization) bandits

Contextual bandits

* We have some context, aka observation or state (discrete or
continuous, often high-dimensional)

* The reward distribution depends on the context

% XNP(X/>

Ac o
Tl VAT
R~ P()X,A)

Not just exploration!

We have to assign credit to different features of the context!

Usually we will use function approximation to estimate action-
values Q, (x, a) (or to estimate the preference function, or

policy)

Algorithms we talked about all have equivalents in this problem!
Eg epsilon-greedy, softmax

Eg UCB -> LinUCB (assuming Q. (x,a) = w!x)

Eg Thompson sampling assuming linear rewards

