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Recall: Multi-armed bandits
• No x, take an action, observe a reward immediately

• So, a degenerate tree (not truly sequential)

• This is what we call a simple (multi-arm) bandit problem

• Focus on exploration, not credit assignment
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Recall: k-armed Bandit Problem
• On each of an infinite sequence of time steps, t=1, 2, 3, …,  

you choose an action At from k possibilities, and receive a real-
valued reward Rt

• The reward depends only on the action taken; 
it is identically, independently distributed (i.i.d.):

• These true values are unknown. The distribution is unknown

• Nevertheless, you must maximize your total reward

• You must both try actions to learn their values (explore),  
and prefer those that appear best (exploit)

true valuesq⇤(a)
.
= E[Rt|At = a] , 8a 2 {1, . . . , k}



Recall: Action-Value Methods
• Methods that learn action-value estimates and construct a policy 

based on them

• Estimates can be maintained incrementally, eg: 

• $\epsilon$-greedy: choose the action with maximum Q_t with high 
probability, uniformly randomly otherwise

• UCB: maintain an upper bound on the action value, choose greedily 
based on value plus upper bound

Qn+1 = Qn +
1

n

h
Rn �Qn

i
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Figure 2.2: The e↵ect of optimistic initial action-value estimates on the 10-armed testbed.
Both methods used a constant step-size parameter, ↵ = 0.1.

example, it is not well suited to nonstationary problems because its drive for ex-
ploration is inherently temporary. If the task changes, creating a renewed need for
exploration, this method cannot help. Indeed, any method that focuses on the initial
state in any special way is unlikely to help with the general nonstationary case. The
beginning of time occurs only once, and thus we should not focus on it too much.
This criticism applies as well to the sample-average methods, which also treat the
beginning of time as a special event, averaging all subsequent rewards with equal
weights. Nevertheless, all of these methods are very simple, and one of them or some
simple combination of them is often adequate in practice. In the rest of this book
we make frequent use of several of these simple exploration techniques.

2.6 Upper-Confidence-Bound Action Selection

Exploration is needed because the estimates of the action values are uncertain. The
greedy actions are those that look best at present, but some of the other actions
may actually be better. "-greedy action selection forces the non-greedy actions to
be tried, but indiscriminately, with no preference for those that are nearly greedy or
particularly uncertain. It would be better to select among the non-greedy actions
according to their potential for actually being optimal, taking into account both how
close their estimates are to being maximal and the uncertainties in those estimates.
One e↵ective way of doing this is to select actions as

At

.
= argmax

a

"
Qt(a) + c

s
log t

Nt(a)

#
, (2.8)

where log t denotes the natural logarithm of t (the number that e ⇡ 2.71828 would
have to be raised to in order to equal t), and the number c > 0 controls the degree
of exploration. If Nt(a) = 0, then a is considered to be a maximizing action.

The idea of this upper confidence bound (UCB) action selection is that the square-
root term is a measure of the uncertainty or variance in the estimate of a’s value.



Formally: What do bandit algorithms 
optimize?

• The best possible action: 

• The value of the best possible action: 

• Regret at time step t: 

• Total regret up to time t: 

a* = arg max
a

q*(a)

v* = q*(a*)
It = 𝔼[v* − q*(At)]

Lt = 𝔼 [
t

∑
τ=0

It]
Reward

L- (Total Regret

↳I
&Time



Counting regret
• The expected number of times action a has been chosen up to 

time t: 

• The gap of action a: 

• Note that the optimal action(s) has gap 0

• Regret can then be computed from gaps and counts!

 

Nt(a)

Δa = v* − q*(a)

Lt = 𝔼 [v* − q*(At)]
= ∑

a∈𝒜

𝔼 [Nt(a)](v* − q*(a))

= ∑
a∈𝒜

𝔼 [Nt(a)] Δa



Observations
• Regret is a useful theoretical tool for comparing bandit/RL 

algorithms

• You can’t compute it empirically (except in toy problems)

• But we can bound it over all problems

• Maximizing reward is equivalent to minimizing regret

• Worse actions lead to more regret

• Ideally, we minimize the number of time steps on which high 
regret actions are chosen



Linear vs sublinear regret
Lecture 9: Exploration and Exploitation

Multi-Armed Bandits
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If an algorithm forever explores it will have linear total regret

If an algorithm never explores it will have linear total regret

Is it possible to achieve sublinear total regret?



Epsilon-greedy regret
• With probability  select greedy action 

• With probability  select uniformly at random

• Selecting action a incurs regret 

• Therefore, the probability of choosing any action at time step t 
is at least: 

• So instantaneous regret is bounded as: 

• And total regret: 

(1 − ϵ)
At = arg max

a
Qt(a)

ϵ
Δa

ϵ
|𝒜 |

𝔼[It] ≥
ϵ

|𝒜 | ∑
a

Δa

Lt =
t

∑
τ=1

𝔼[Iτ] ≥ t
ϵ

|𝒜 | ∑
a

Δa



Improving on linear regret
• Fixed  leads to linear regret !

• What if we reduced the frequency of suboptimal actions over 
time?

• Ie introduce a decay: 

• Let  be the gap of the second-best action

• Let where  is a constant

• We can show that this algorithm has logarithmic regret!

ϵ

ϵt → 0 as t → ∞

g = min
a:Δa>0

Δa

ϵt = min (1,
c |𝒜 |

g2t ) c > 0



What is the optimal achievable 
regret?

• The difficulty of a bandit problem depends on how similar the 
optimal arm is to all the rest

• The closer the means and the more similar the reward 
distribution, the harder the problem

• Distribution similarity can be described by the KL divergence 
between the reward distribution of arm a compared to the 
optimal arm

• Lai and Robins (1979): for any multi-armed bandit asymptotic 
regret is at least logarithmic in the number of steps:

lim
t→∞

Lt ≥ log t ∑
a:Δa>0

Δa

KL(ℛa | |ℛa*)
= O(log t)



Achieving optimal regret
• Decaying epsilon can do this, but requires knowledge of the 

action gap (which is not known in practice)

• Are there other algorithms that achieve logarithmic asymptotic 
regret?



Recall: Optimism in the face of uncertainty

• Choose actions about which you are very uncertain

Lecture 9: Exploration and Exploitation

Multi-Armed Bandits

Upper Confidence Bound

Optimism in the Face of Uncertainty
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Which action should we pick?

The more uncertain we are about an action-value

The more important it is to explore that action

It could turn out to be the best action

Lecture 9: Exploration and Exploitation

Multi-Armed Bandits

Upper Confidence Bound

Optimism in the Face of Uncertainty (2)

After picking blue action

We are less uncertain about the value

And more likely to pick another action

Until we home in on best action



UCB
• Choose greedily wrt 

•
Where the upper bound: 

• Why did we pick U this way?

At = arg max
a

(Qt(a) + Ut(a))

Ut = c
log(t)
Nt(a)



Hoeffding Inequality
Lecture 9: Exploration and Exploitation

Multi-Armed Bandits

Upper Confidence Bound

Hoe↵ding’s Inequality

Theorem (Hoe↵ding’s Inequality)

Let X1, ...,Xt be i.i.d. random variables in [0,1], and let
X t =

1

⌧

Pt
⌧=1

X⌧ be the sample mean. Then

P
⇥
E [X ] > X t + u

⇤
 e�2tu2

We will apply Hoe↵ding’s Inequality to rewards of the bandit

conditioned on selecting action a

P
h
Q(a) > Q̂t(a) + Ut(a)

i
 e�2Nt(a)Ut(a)2



From Hoeffding to UCB
• Apply Hoeffding to a bandit problem for action a: 

• Pick a probability p that the true value exceeds the upper bound 

and solve for U: 

• Now reduce p as we observe more rewards, eg 

• For m=8 you get the classic version of UCB!

•
Regret: 

P [q*(a) > Qt(a) + Ut(a)] ≤ e−2Nt(a)Ut(a)2

e−2Nt(a)Ut(a)2 = p

Ut(a) =
−log p
2Nt(a)

p = t−m

lim
t→∞

Lt ≤ 8 log(t) ∑
a:Δa>0

Δa



Summary so far
• Logarithmic regret is the best we can hope for in K-armed 

bandits

• In a stationary problem, epsilon-greedy with fixed epsilon 
provides linear regret (worst possible)

• Decaying epsilon can provide logarithmic regret only if you 
know the optimality gap (how much is the difference in 
expected reward between the top 2 actions)

• UCB is regret-optimal!

• Next: gradient-based algorithms



Gradient-Bandit Algorithms
• Let           be a learned preference for taking action aHt(a)
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of one action over another is important; if we add 1000 to all the preferences there is
no e↵ect on the action probabilities, which are determined according to a soft-max
distribution (i.e., Gibbs or Boltzmann distribution) as follows:

Pr{At =a} .
=

eHt(a)

P
k

b=1 eHt(b)

.
= ⇡t(a), (2.9)

where here we have also introduced a useful new notation ⇡t(a) for the probability of
taking action a at time t. Initially all preferences are the same (e.g., H1(a) = 0, 8a)
so that all actions have an equal probability of being selected.

There is a natural learning algorithm for this setting based on the idea of stochastic
gradient ascent. On each step, after selecting the action At and receiving the reward
Rt, the preferences are updated by:

Ht+1(At)
.
= Ht(At) + ↵

�
Rt � R̄t

��
1 � ⇡t(At)

�
, and

Ht+1(a)
.
= Ht(a) � ↵

�
Rt � R̄t

�
⇡t(a), 8a 6= At,

(2.10)

where ↵ > 0 is a step-size parameter, and R̄t 2 R is the average of all the rewards
up through and including time t, which can be computed incrementally as described
in Section 2.3 (or Section 2.4 if the problem is nonstationary). The R̄t term serves
as a baseline with which the reward is compared. If the reward is higher than the
baseline, then the probability of taking At in the future is increased, and if the reward
is below baseline, then probability is decreased. The non-selected actions move in
the opposite direction.

Figure 2.4 shows results with the gradient-bandit algorithm on a variant of the
10-armed testbed in which the true expected rewards were selected according to a
normal distribution with a mean of +4 instead of zero (and with unit variance as
before). This shifting up of all the rewards has absolutely no a↵ect on the gradient-
bandit algorithm because of the reward baseline term, which instantaneously adapts
to the new level. But if the baseline were omitted (that is, if R̄t was taken to be
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Figure 2.4: Average performance of the gradient-bandit algorithm with and without a
reward baseline on the 10-armed testbed with E[q(a)] = 4.

Note that this allows us to work with unnormalized preferences and turn 
them into probabilities!

Same idea as using potentials in graphical models



Softmax (Boltzmann) Exploration
• Let           be a learned preference for taking action aHt(a)
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where ↵ > 0 is a step-size parameter, and R̄t 2 R is the average of all the rewards
up through and including time t, which can be computed incrementally as described
in Section 2.3 (or Section 2.4 if the problem is nonstationary). The R̄t term serves
as a baseline with which the reward is compared. If the reward is higher than the
baseline, then the probability of taking At in the future is increased, and if the reward
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Consider 

This is Boltzmann or softmax exploration!

If the temperature T is very large (towards infinity) - same as uniform

If temperature T goes to 0, same as greedy

Very popular method in practice due to simplicity

But can we derive how preferences should be updated?

Ht(a) = Qt(a)/T
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Derivation of gradient-bandit algorithm
In exact gradient ascent:

Ht+1(a)
.
= Ht(a) + ↵

@ E [Rt ]

@Ht(a)
, (1)

where:
E[Rt ]

.
=

X

b

⇡t(b)q⇤(b),

@ E[Rt ]

@Ht(a)
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@
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"
X

b
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#
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P
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where here we have chosen Xt = R̄t and substituted Rt for q⇤(At),
which is permitted because E[Rt |At ] = q⇤(At).
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�
, (from (1), QED)



Thus it remains only to show that

@ ⇡t(b)

@Ht(a)
= ⇡t(b)

�
1a=b � ⇡t(a)

�
.

Recall the standard quotient rule for derivatives:

@
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
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g(x)

�
=

@f (x)
@x g(x)� f (x)@g(x)@x

g(x)2
.

Using this, we can write...
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Summary Comparison of Bandit Algorithms

" / ↵ / c / Q0

Average
reward

over first 
1000 steps

1.5

1.4

1.3

1.2

1.1

1

𝜀-greedy

UCB

gradient
bandit

greedy with
optimistic

initialization
α = 0.1

1 2 41/21/41/81/161/321/641/128



Classes of bandit algorithms
• Epsilon-greedy (simple randomization)

• Optimism in the face of uncertainty: optimistic initialization, 
UCB

• Gradient-based policy optimization 

• Softmax / Boltzmann exploration (similar in shape to gradient-
based but relies on value function estimation)

• One more class: probability matching



Probability matching
• Select action a according to the probability of it being optimal: 

 where 

• Note that probability matching is optimistic in the face of 
uncertainty - because uncertain action typically have a higher 
probability of being considered optimal

• How can we implement this idea?

π(At = a |Ht) = ℙ[q*(a) ≥ q*(a′￼)∀a′￼≠ a |Ht]
Ht = ⟨A1R1…At−1, Rt−1⟩



Intuition
• If we knew the problem (reward distribution for each arm) we 

could easily compute the optimal action

• Initially, we have uncertainty about the problem 

• Let’s model the uncertainty directly, using a probability 
distribution over the problem parameters!

• This is an instance of Bayesian reasoning



Detour Example: Coin Toss
• Suppose you flip a coin and observe numbers of heads and tails 

• Maximum likelihood estimation says the probability of heads is: 

• But if you knew the coin is probably biased? Could you 
incorporate this information somehow?

NH, NT

NH

NH + NT



Detour Example: Bayesian Coin 
Toss 

Simple	Example

§ Coin	toss:	x			̴	Bernoulli(v)
§ Let’s	assume	that	

§ v			̴	Beta(]£, ]2)	
§ P(v)	∝ v•¶Ö(	(1 − v)•KÖ(

§ ß v I = ® I v ®(©)
∑ ®(™|©)�
´

Posterior

Prior

The	prior	is	conjugate!

Beta	distribution



More generally: Bayesian Reasoning 
• Assume the parameters you’re interested in have some prior distribution 

• After some dataset D comes in, compute a posterior: 

• Now you can sample from the posterior! 

• Advantages:

• provides a good uncertainty estimate for 

• can incorporate existing knowledge through the prior

• Converges in the limit to the same answer as max likelihood 
estimation but can give better estimates when you have small samples

• Disadvantage: Expensive

• Usually practiced with conjugate priors (eg Beta for Bernoulli 
distributions, Normal for Normal distributions…)

p0(θ)

P(θ |D) ∝ P(D |θ)p0(θ)

θ



Back to bandits: Thompson sampling
• Instantiation of probability matching / Bayesian reasoning for 

bandits (developed in the 1930s)

• Idea: we are interested in the parameters of the reward 
distribution for each arm 

• So maintain a probability distribution over them!

• Eg if the distributions are Bernoulli, maintain a Beta distribution, 
with some prior (maybe equal probability) and update as data 
comes in

• Eg if the distributions are normal, maintain a normal over the 
mean, or mean and standard deviation

ℛa, ∀a



Algorithm
• Start with a prior over the reward distributions 

• Repeat

1. Sample a bandit problem, aka rewards from the 
distributions: 

2. Compute the best action for problem 

3. Note this can be done easily for many problems of 
interest!

4. Pull arm  and observe reward 

5. Update the history:  and posterior 

p0(ℛa), ∀a

ℛt ∼ p(ℛa, ∀a |Ht)
At = a*(ℛt)

At Rt

Ht+1 = ⟨Ht, At, Rt⟩
p(ℛa, ∀a |Ht+1)



Efficient implementation
• Instead of maintaining the whole history, if we have conjugate 

priors, we can incrementally update the posterior

• This can in fact be done using an equivalent sample size trick: 
imagine you have some data sampled from the prior, which is 
added to your dataset

• For example:

Thompson	Sampling
Using	Beta	belief	distribution
§ Theorem	[Emilie	et	al.	2012]

§ Initially	assumes	arm	� with	prior	Beta(1,1)	on	¨�
§ ≠Æ =		#“Success”,	ØÆ=	#“Failure”



Example
• Start with a prior

Thompson	Sampling
Using	Beta	belief	distribution

Arm	1 Arm	2 Arm	3

Beta(1,1) Beta(1,1) Beta(1,1)

§ Initialization



Example
• Sample a problem (bandit) from the prior

Thompson	Sampling
Using	Beta	belief	distribution

Arm	1 Arm	2 Arm	3

Beta(1,1) Beta(1,1) Beta(1,1)
X																				0.7																																							0.2																																				0.4

§ For	each	round:
§ Sample	random	variable	X	from	each	arm’s	Beta	

Distribution



Example
• Compute the solution to the problem (best arm)

Thompson	Sampling
Using	Beta	belief	distribution

Arm	1 Arm	2 Arm	3

Beta(1,1) Beta(1,1) Beta(1,1)
X																				0.7																																							0.2																																				0.4

§ For	each	round:
§ Sample	random	variable	X	from	each	arm’s	Beta	

Distribution
§ Select	the	arm	with	largest	X



Example
• Execute the action in the real environment and observe its 

outcome (the reward)

Thompson	Sampling
Using	Beta	belief	distribution

Arm	1 Arm	2 Arm	3

Beta(1,1) Beta(1,1) Beta(1,1)
X																				0.7																																							0.2																																				0.4

§ For	each	round:
§ Sample	random	variable	X	from	each	arm’s	Beta	

Distribution
§ Select	the	arm	with	largest	X
§ Observe	the	result	of	selected	arm

Success!



Example
• Update the posterior to incorporate the observed data

Thompson	Sampling
Using	Beta	belief	distribution

Arm	1 Arm	2 Arm	3

Beta(2,1) Beta(1,1) Beta(1,1)
X																				0.7																																							0.2																																				0.4

§ For	each	round:
§ Sample	random	variable	X	from	each	arm’s	Beta	

Distribution
§ Select	the	arm	with	largest	X
§ Observe	the	result	of	selected	arm
§ Update	prior	Beta	distribution	for	selected	arm
Success!



Properties
• Like UCB, Thompson sampling is asymptotically optimal, ie. 

achieves  regret

• Took almost 80 years to prove that!! (https://arxiv.org/abs/
1111.1797)

• Empirically, Thompson sampling works well for small sample 
sizes, especially if you know something about the problem

O(log t)

https://arxiv.org/abs/1111.1797
https://arxiv.org/abs/1111.1797
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Contextual bandits
• We have some context, aka observation or state (discrete or 

continuous, often high-dimensional)

• The reward distribution depends on the context

0 x~P(x)
/ He
D I MAriT(IX

Rvp((X, A)

Contextual
Bandit



Not just exploration!
• We have to assign credit to different features of the context!

• Usually we will use function approximation to estimate action-
values  (or to estimate the preference function, or 
policy)

• Algorithms we talked about all have equivalents in this problem!

• Eg epsilon-greedy, softmax

• Eg UCB -> LinUCB (assuming )

• Eg Thompson sampling assuming linear rewards

Qw(x, a)

Qw(x, a) = wT
a x


