Multi-arm Bandits

Sutton and Barto, Chapter 2

The simplest
reinforcement learning
problem

Recap: What is Reinforcement Learning?

e Agent-oriented learning—Ilearning by interacting with an
environment to achieve a goal

more realistic and ambitious than other kinds of machine
learning

e Learning by trial and error, with only evaluative feedback (reward)
the kind of machine learning most like natural learning

learning that can tell for itself when it is right or wrong

e The beginnings of a science of mind

Recall: How to think about RL more formally?

e At time t, agent receives an observation from set X and can choose an
action from set A (think finite for now)

e Goal of the agent is to maximize long-term return

@
N

L) T
/5
'\ _ CM;LI/ assdcdfhmt
p// \\ Exr(om(:«‘sm
|
o
-

dt

Simple case: Bandits

No x, take an action, observe a reward immediately
So, a degenerate tree (not truly sequential)
This is what we call a simple (multi-arm) bandit problem

Focus on exploration, not credit assighment

:]/UI\[: ATl

R~ P(|4-0)
ecockt (Simple)

Contextual bandits

There is an observation x (context) followed by action and
immediate rewards

Focus still on exploration

Lots of applications in ad placement, more recently in large
language models

x e~ P(X)

Ae A
A-TEL
R~ P()x,4

Recall: Play a bandit exercise

* Imagine you have two actions
* You play action | and get a reward of 0

* You play action 2 and get a reward of |

Which action should you prefer?

Which action should you try next?

Main Principles
Optimize Expected Value
Other criteria are possible, eg conditional value at risk (CVaR)
Need to balance exploration (trying all actions) vs exploitation
We cannot stop exploring!

More data reduces uncertainty in the mean reward of each
action

The k-armed Bandit Problem

* On each of an infinite sequence of time steps,t=1,2, 3, ...,
you choose an action A; from k possibilities, and receive a real-
valued reward R;

* The reward depends only on the action taken;
it is identically, independently distributed (i.i.d.):

g«(a) =E|Ri|As = a], Vae{l,... k} true values
* These true values are unknown. The distribution is unknown
* Nevertheless, you must maximize your total reward

* You must both try actions to learn their values (explore),
and prefer those that appear best (exploit)

Action Values

Action | — Reward is always 8

 value of action | is q.(1) =
Action 2 — 88% chance of 0, 12% chance of 100!
 value of action 2 is q+«(2) = .88 x 0+ .12 x 100 =

Action 3 — Randomly between -10 and 35, equiprobable

10 0 ! 35 ¢:(3) =

Q*(S)

Action 4 — a third 0, a third 20, and a third from {8,9,..., |8}

q«(4) =

Action-Value Estimation

* Learn and action-value estimate from sequence of rewards

* For example, estimate action values as sample averages:

sum of rewards when a taken prior to ¢t Zf;% Ri-14.—4

Qt(a) =

number of times a taken prior to ¢ Zf;% 14,4

* The sample-average estimates converge to the true values
If the action is taken an infinite number of times

lim Qi(a) = g«(a)

Ni(a)—o0

The number of times action a
has been taken by time ¢

Averaging — learning rule

To simplify notation, let us focus on one action

* We consider only its rewards, and its estimate after n-1 rewards:

R+ Ro+---+ Ry
Qn =
n—1

How can we do this incrementally (without storing all the rewards)?

Could store a running sum and count, then divide

Anything more elegant!?

Derivation of incremental update

;R1‘|‘R2‘|‘""|‘Rn—1

@n m—
oo = ISR
n+1 — n.:1)
1 n—1
- Rn Rz

Averaging — learning rule

To simplify notation, let us focus on one action

* We consider only its rewards, and its estimate after n+1 rewards:

. Ri+Re+--+ Ry
B n—1

@n

How can we do this incrementally (without storing all the rewards)?

Could store a running sum and count (and divide), or equivalently:

Quir = Qn+ R0~ Q)

This is a standard form for learning/update rules:

NewkEstimate < OldEstimate + StepSize [Target — OldEstimate

Tracking a Non-stationary Problem

Suppose the true action values change slowly over time

* then we say that the problem is non-stationary

In this case, sample averages are not a good idea (Why?)

Better is an “exponential, recency-weighted average”:

Qn+1 = Qn + [Rn — Qn]

=(1—a)"Q1+ Za(l —a)"'R;,

i=1
where « is a constant step-size parameter, a € (0, 1]

* There is bias due to (), that becomes smaller over time

Standard stochastic approximation
convergence conditions

* To assure convergence with probability |:
Z ap(a) = oo and Z o (a) < 0o
n=1 n=1

* eg., Ay =
if a,=n"?, pe(0,1)

then convergence is
at the optimal rate:

O(1/v/n)

* nhot o, =

%JPA S|

The Exploration/Exploitation Dilemma

* Suppose you form estimates

Q+ (a) X (x (a), Ya action-value estimates

* Define the greedy action at time t as

A} = argmax Q¢ (a)

« If Ay = A7 then you are exploiting
If A, # A then you are exploring

* You can’t do both, but you need to do both

* You can never stop exploring, but maybe you should explore
less with time. Or maybe not.

e-Greedy Action Selection

* In greedy action selection, you always exploit

* In g-greedy, you are usually greedy, but with probability € you

instead pick an action at random (possibly the greedy action
again)

* This is perhaps the simplest way to balance exploration and
exploitation

A simple bandit algorithm

Initialize, for a = 1 to k:

Q(a) <0
N(a) <0

Repeat forever:
A . | argmax, Q(a) with probability 1 —e (breaking ties randomly)
a random action with probability ¢
R + bandit(A)
N(A)+ N(A)+1
Q(A) + Q(A) + xzy [R — Q(A)]

One Bandit Task from

The 10-armed Testbed

4

3 Ry ~ N(g.(a), 1)
Q*(3)
2 Q*(5)
1 7+(9)
q:(4)
Reward o U | __ I N N B §

distribution ¢.(7) ¢.(10)

1 q:+(2) a:+(8)
Q*(6)

-2 Run for 1000 steps
3 Repeat the whole

thing 2000 times
with different bandit
-4 tasks

I I é I I I I
1 2 3 4 5 7 8 9 10

Action

¢-Greedy Methods on the 10-Armed Testbed

1.5 _
e=0.
VA A
=001
1 L W hMM‘ﬁﬂ
€ =0 (greedy)
Average
reward

0.5 4

0 I I I I

1 250 500 750 1000
Steps

100% _,

80% | oo
% 60% |

Optimal
action 40%

€ = () (greedy)

20%

0%

| | | |
1 250 500 750 1000
Steps

Optimistic Initial Values

* All methods so far depend on Qi (a), i.e., they are biased.
So far we have used Qi(a) =0

» Suppose we initialize the action values optimistically (Q1(a) = 5),
e.g.,on the |0-armed testbed (with o =0.1)

100% -
optimistic, greedy
80% - Q,=5,€=0
% 60% realistic, e-greedy
Optimal 0,=0,€=0.1

action 40% -

20%

0% — T T T T 1
1 200 400 600 800 1000

Upper Confidence Bound (UCB) action selection

* A clever way of reducing exploration over time
* Estimate an upper bound on the true action values

* Select the action with the largest (estimated) upper bound

N logt
Ay = argznax [Qt(a) +c N, (a)]

15} UCB C = 2) \))
| w-‘V»MM'M‘JM’WM.ﬁrWr”"r'nl“sd*fw\fﬁl}rwn’ﬂ‘f‘*“‘“""*’*f‘“\“’wr” W ket e
it

At e-greedy £ =0.1

H

Average | |y
reward

05+

1 250 500 750 1000

Steps

