

Multi-arm Bandits

Sutton and Barto, Chapter 2

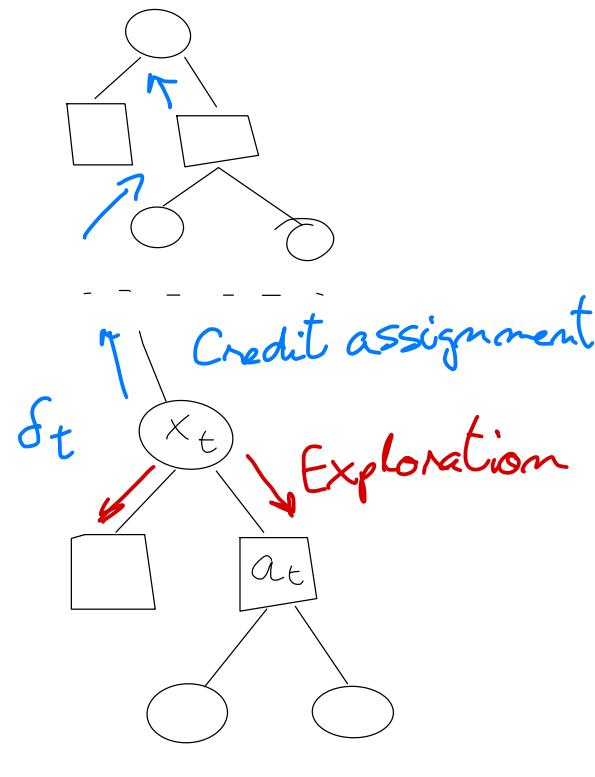
The simplest
reinforcement learning
problem

Recap: What is Reinforcement Learning?

- Agent-oriented learning—learning by interacting with an environment to achieve a goal
 - more **realistic** and **ambitious** than other kinds of machine learning
- Learning by trial and error, with only evaluative feedback (reward)
 - the kind of machine learning most like natural learning
 - learning that can tell for itself when it is right or wrong
- The beginnings of a *science of mind*

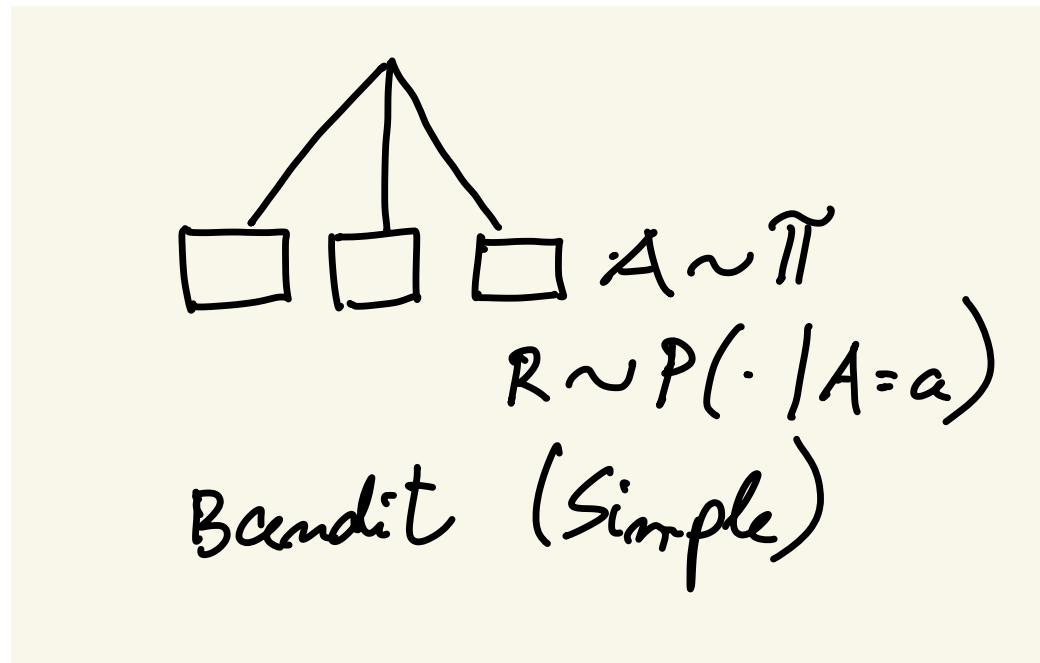
Recall: How to think about RL more formally?

- At time t , agent receives an observation from set \mathcal{X} and can choose an action from set \mathcal{A} (think finite for now)
- Goal of the agent is to maximize long-term return



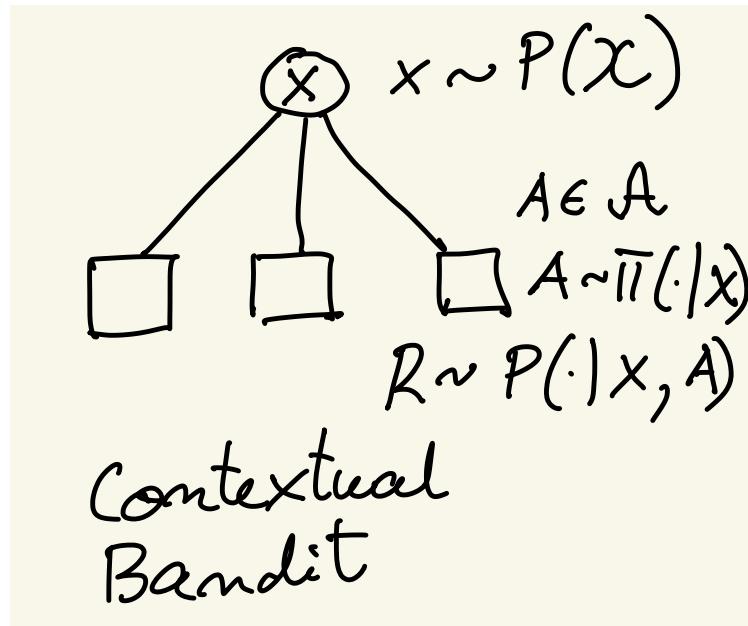
Simple case: Bandits

- No x , take an action, observe a reward immediately
- So, a degenerate tree (not truly sequential)
- This is what we call a simple (multi-arm) bandit problem
- Focus on exploration, not credit assignment



Contextual bandits

- There is an observation x (context) followed by action and immediate rewards
- Focus still on exploration
- Lots of applications in ad placement, more recently in large language models



Recall: Play a bandit exercise

- Imagine you have two actions
- You play action 1 and get a reward of 0
- You play action 2 and get a reward of 1
- Which action should you prefer?
- Which action should you try next?

Main Principles

- Optimize Expected Value
- Other criteria are possible, eg conditional value at risk (CVaR)
- Need to balance exploration (trying all actions) vs exploitation
- We cannot stop exploring!
- More data reduces uncertainty in the mean reward of each action

The k -armed Bandit Problem

- On each of an infinite sequence of *time steps*, $t=1, 2, 3, \dots$, you choose an action A_t from k possibilities, and receive a real-valued *reward* R_t
- The reward depends only on the action taken; it is identically, independently distributed (i.i.d.):

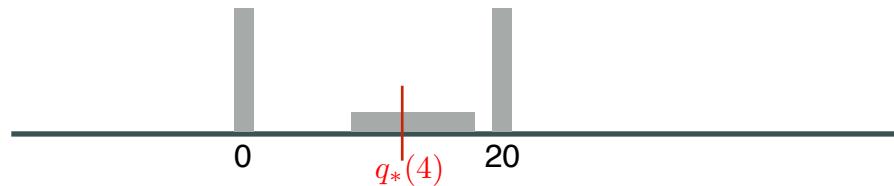
$$q_*(a) \doteq \mathbb{E}[R_t | A_t = a], \quad \forall a \in \{1, \dots, k\} \quad \text{true values}$$

- These true values are *unknown*. The distribution is unknown
- Nevertheless, you must maximize your total reward
- You must both try actions to learn their values (explore), and prefer those that appear best (exploit)

Action Values

- Action 1 — Reward is always 8
 - value of action 1 is $q_*(1) =$
- Action 2 — 88% chance of 0, 12% chance of 100!
 - value of action 2 is $q_*(2) = .88 \times 0 + .12 \times 100 =$
- Action 3 — Randomly between -10 and 35, equiprobable

- Action 4 — a third 0, a third 20, and a third from $\{8,9,\dots,18\}$



$$q_*(4) =$$

Action-Value Estimation

- Learn and action-value estimate from sequence of rewards
- For example, estimate action values as *sample averages*:

$$Q_t(a) \doteq \frac{\text{sum of rewards when } a \text{ taken prior to } t}{\text{number of times } a \text{ taken prior to } t} = \frac{\sum_{i=1}^{t-1} R_i \cdot \mathbf{1}_{A_i=a}}{\sum_{i=1}^{t-1} \mathbf{1}_{A_i=a}}$$

- The sample-average estimates converge to the true values
If the action is taken an infinite number of times

$$\lim_{N_t(a) \rightarrow \infty} Q_t(a) = q_*(a)$$

The number of times action a
has been taken by time t

Averaging → learning rule

- To simplify notation, let us focus on one action
 - We consider only its rewards, and its estimate after $n-1$ rewards:

$$Q_n \doteq \frac{R_1 + R_2 + \cdots + R_{n-1}}{n - 1}$$

- How can we do this incrementally (without storing all the rewards)?
- Could store a running sum and count, then divide
- Anything more elegant?

Derivation of incremental update

$$Q_n \doteq \frac{R_1 + R_2 + \cdots + R_{n-1}}{n - 1}$$

$$\begin{aligned} Q_{n+1} &= \frac{1}{n} \sum_{i=1}^n R_i \\ &= \frac{1}{n} \left(R_n + \sum_{i=1}^{n-1} R_i \right) \\ &= \frac{1}{n} \left(R_n + (n-1) \frac{1}{n-1} \sum_{i=1}^{n-1} R_i \right) \\ &= \frac{1}{n} \left(R_n + (n-1)Q_n \right) \\ &= \frac{1}{n} \left(R_n + nQ_n - Q_n \right) \\ &= Q_n + \frac{1}{n} [R_n - Q_n], \end{aligned}$$

Averaging → learning rule

- To simplify notation, let us focus on one action
 - We consider only its rewards, and its estimate after $n+1$ rewards:

$$Q_n \doteq \frac{R_1 + R_2 + \cdots + R_{n-1}}{n-1}$$

- How can we do this incrementally (without storing all the rewards)?
- Could store a running sum and count (and divide), or equivalently:

$$Q_{n+1} = Q_n + \frac{1}{n} [R_n - Q_n]$$

- This is a standard form for learning/update rules:

$$\text{NewEstimate} \leftarrow \text{OldEstimate} + \text{StepSize} [\text{Target} - \text{OldEstimate}]$$

Tracking a Non-stationary Problem

- Suppose the true action values change slowly over time
 - then we say that the problem is *non-stationary*
- In this case, sample averages are not a good idea (Why?)
- Better is an “exponential, recency-weighted average”:

$$\begin{aligned} Q_{n+1} &\doteq Q_n + \alpha [R_n - Q_n] \\ &= (1 - \alpha)^n Q_1 + \sum_{i=1}^n \alpha (1 - \alpha)^{n-i} R_i, \end{aligned}$$

where α is a constant *step-size parameter*, $\alpha \in (0, 1]$

- There is bias due to Q_1 that becomes smaller over time

Standard stochastic approximation convergence conditions

- To assure convergence with probability 1:

$$\sum_{n=1}^{\infty} \alpha_n(a) = \infty \quad \text{and} \quad \sum_{n=1}^{\infty} \alpha_n^2(a) < \infty$$

- e.g., $\alpha_n \doteq \frac{1}{n}$
if $\alpha_n \doteq n^{-p}$, $p \in (0, 1)$
- not $\alpha_n \doteq \frac{1}{n^2}$
then convergence is
at the optimal rate:
 $O(1/\sqrt{n})$

The Exploration/Exploitation Dilemma

- Suppose you form estimates

$$Q_t(a) \approx q_*(a), \quad \forall a \quad \text{action-value estimates}$$

- Define the *greedy action* at time t as

$$A_t^* \doteq \arg \max_a Q_t(a)$$

- If $A_t = A_t^*$ then you are *exploiting*
If $A_t \neq A_t^*$ then you are *exploring*
- You can't do both, but you need to do both
- You can never stop exploring, but maybe you should explore less with time. Or maybe not.

ϵ -Greedy Action Selection

- In greedy action selection, you always exploit
- In ϵ -greedy, you are usually greedy, but with probability ϵ you instead pick an action at random (possibly the greedy action again)
- This is perhaps the simplest way to balance exploration and exploitation

A simple bandit algorithm

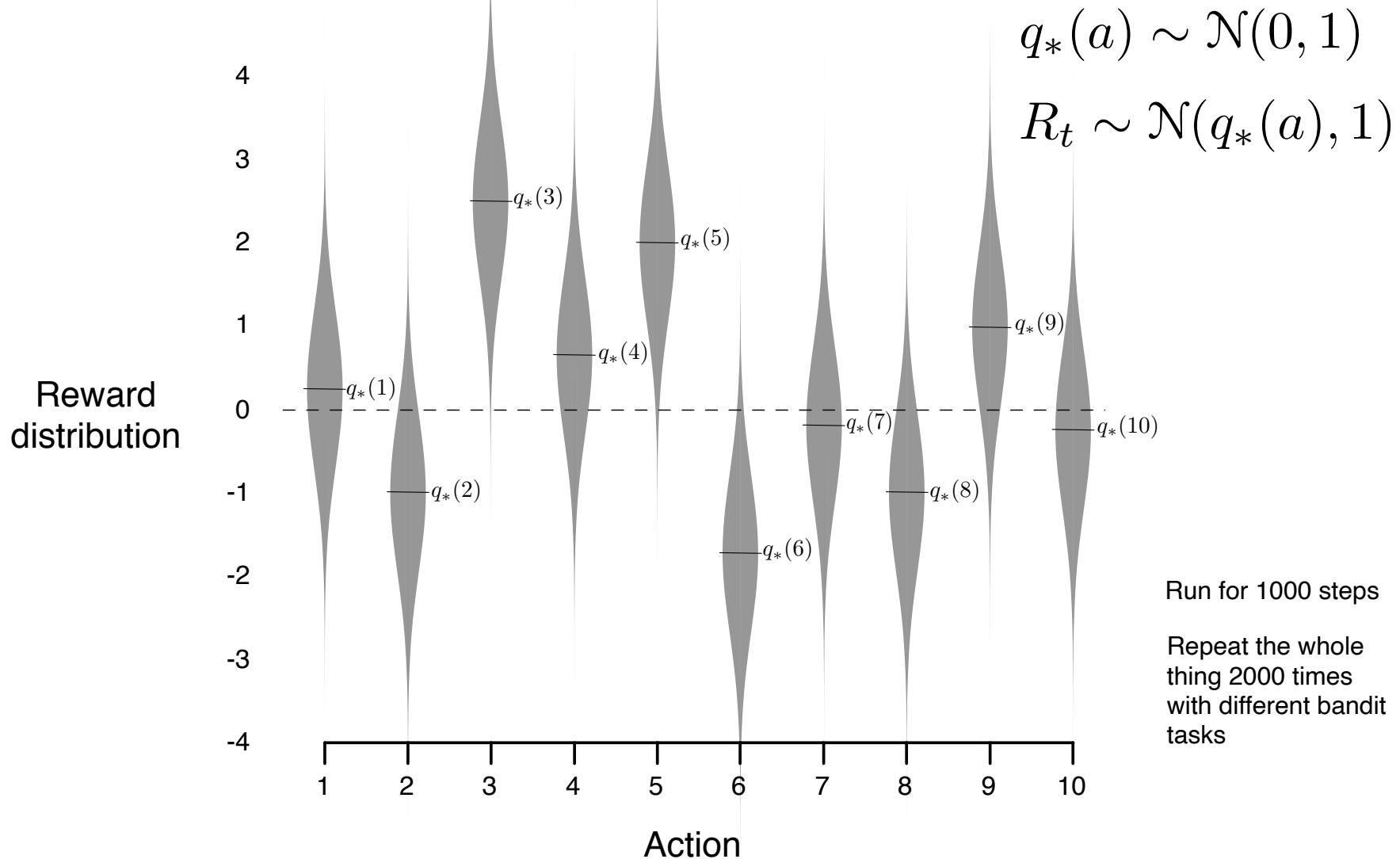
Initialize, for $a = 1$ to k :

$$\begin{aligned} Q(a) &\leftarrow 0 \\ N(a) &\leftarrow 0 \end{aligned}$$

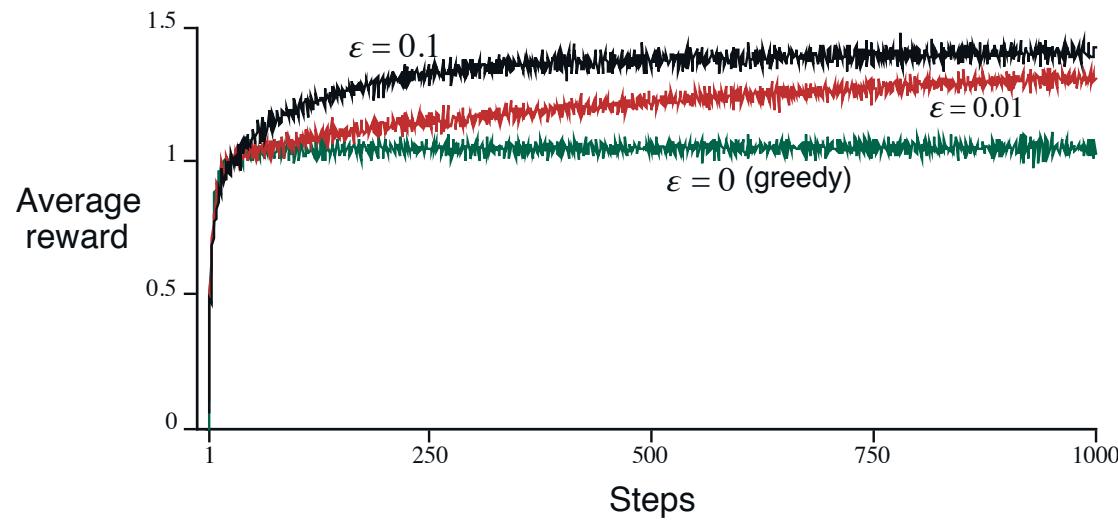
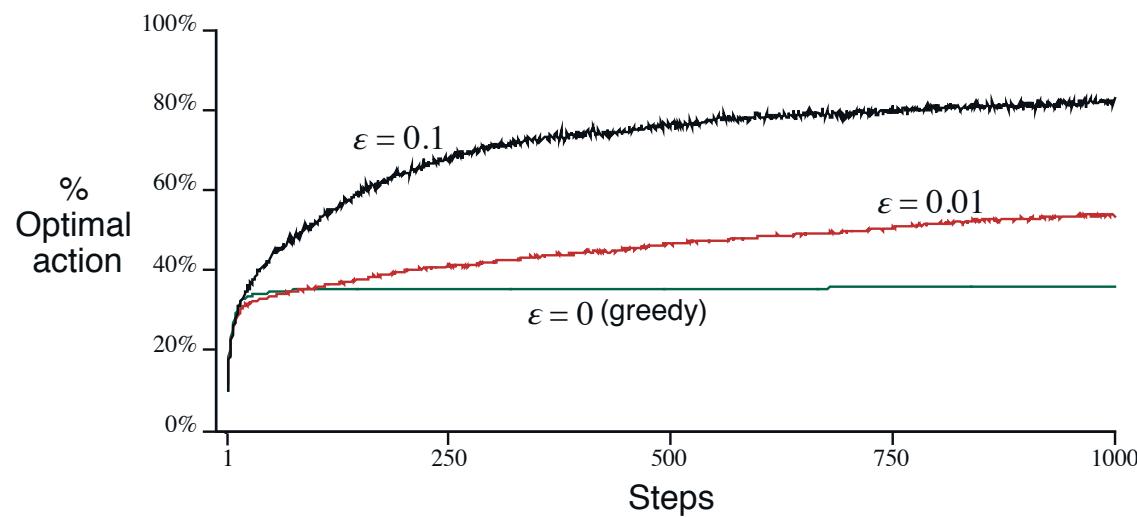
Repeat forever:

$$\begin{aligned} A &\leftarrow \begin{cases} \arg \max_a Q(a) & \text{with probability } 1 - \varepsilon \\ \text{a random action} & \text{with probability } \varepsilon \end{cases} \quad (\text{breaking ties randomly}) \\ R &\leftarrow \text{bandit}(A) \\ N(A) &\leftarrow N(A) + 1 \\ Q(A) &\leftarrow Q(A) + \frac{1}{N(A)} [R - Q(A)] \end{aligned}$$

One Bandit Task from
The 10-armed Testbed

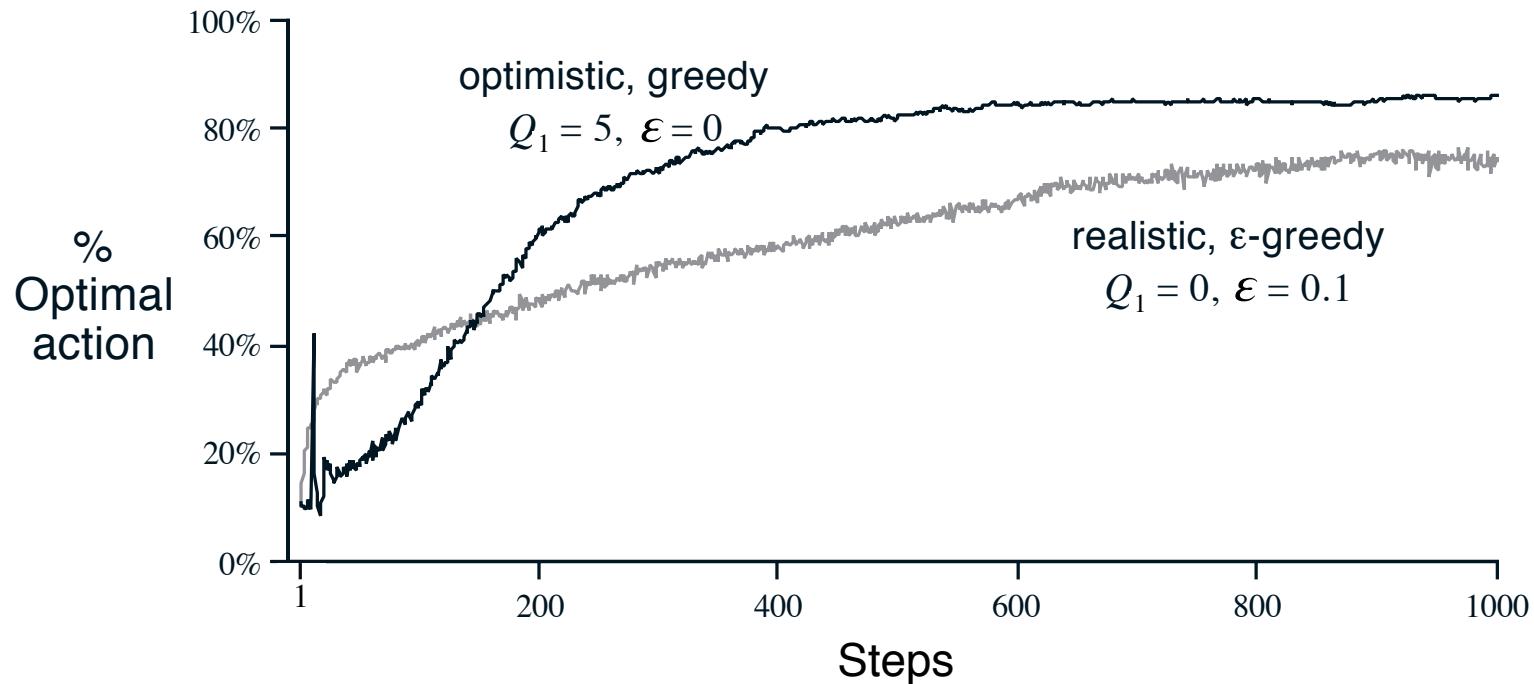


ϵ -Greedy Methods on the 10-Armed Testbed



Optimistic Initial Values

- All methods so far depend on $Q_1(a)$, i.e., they are biased.
So far we have used $Q_1(a) = 0$
- Suppose we initialize the action values *optimistically* ($Q_1(a) = 5$),
e.g., on the 10-armed testbed (with $\alpha = 0.1$)



Upper Confidence Bound (UCB) action selection

- A clever way of reducing exploration over time
- Estimate an upper bound on the true action values
- Select the action with the largest (estimated) upper bound

$$A_t \doteq \operatorname{argmax}_a \left[Q_t(a) + c \sqrt{\frac{\log t}{N_t(a)}} \right]$$

