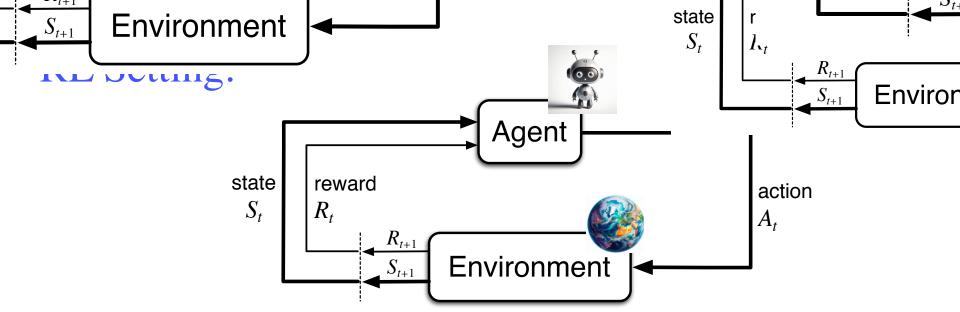
Sequential Decision Making Markov Decision Processes Dynamic Programming

RL Setting:

Environment:

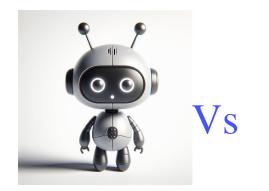
Agent:



Agent and environment interact at discrete time steps: t = 0, 1, 2, 3, ...

Agent observes state at step *t*: $S_t \in S$ produces action at step *t* : $A_t \in \mathcal{A}(S_t)$ gets resulting reward: $R_{t+1} \in \mathcal{R} \subset \mathbb{R}$ and resulting next state: $S_{t+1} \in S^+$

What is the difference between RL and Bandits?



Recall: Markov Decision Processes

- ☐ If a reinforcement learning task has the Markov Property, it is basically a Markov Decision Process (MDP).
- □ If state and action sets are finite, it is a **finite MDP**.
- **T** To define a finite MDP, you need to give:
 - state and action sets
 - one-step "dynamics"

$$p(s', r | s, a) = \mathbf{Pr}\{S_{t+1} = s', R_{t+1} = r \mid S_t = s, A_t = a\}$$

$$p(s'|s,a) \doteq \Pr\{S_{t+1} = s' \mid S_t = s, A_t = a\} = \sum_{r \in \mathcal{R}} p(s',r|s,a)$$
$$r(s,a) \doteq \mathbb{E}[R_{t+1} \mid S_t = s, A_t = a] = \sum_{r \in \mathcal{R}} r \sum_{s' \in \mathcal{S}} p(s',r|s,a)$$

Different Parts of an Agent:

• Value Functions :

• World Model:

• Policy:

Policy at step $t = \pi_t =$

a mapping from states to action probabilities $\pi_t(a \mid s) =$ probability that $A_t = a$ when $S_t = s$

Special case - *deterministic policies*: $\pi_t(s)$ = the action taken with prob=1 when $S_t = s$

- Reinforcement learning methods specify how the agent changes its policy as a result of experience.
- Roughly, the agent's goal is to get as much reward as it can over the long run.

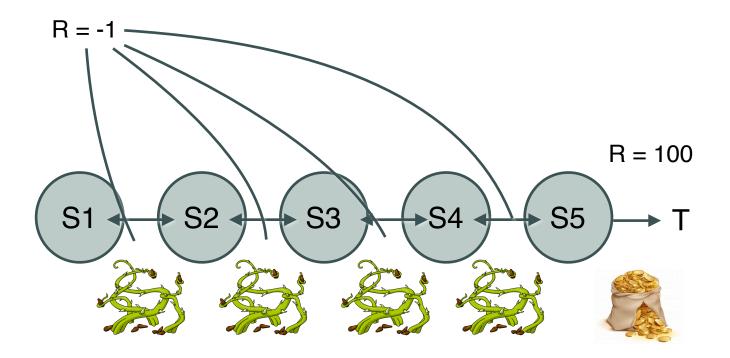
What We Will See Today

- What is the Goal of the Agent? ((Discounted) Return G)
- How do we evaluate which state/actions are good?
 (Dynamic Programming, Value Fct V(s), Action-Value Q(a,s))
- How can we improve our policy π?
 (Bellman Eqn)

What is the Goal of the Agent?

- \square Reward sequence A: 1, 0, 0, 0
- \square Reward sequence B: 0, 1, 0, 0
- \square Reward sequence C: 0, 0, 1.16, 0
- \square Reward sequence D: 0, 0, 0, 1.17

How good are each states?



The reward hypothesis

- That all of what we mean by goals and purposes can be well thought of as the maximization of the cumulative sum of a received scalar signal (reward).
- □ A sort of *null hypothesis*.
 - Possibly wrong, but very simple, and so far very successful.

How can we convert the future sequence of rewards to a single number?

- \square Reward sequence A: 1, 0, 0, 0
- \square Reward sequence B: 0, 1, 0, 0
- \square Reward sequence C: 0, 0, 1.16, 0
- **¬** Reward sequence D: 0, 0, 0, 1.17

Return

Suppose the sequence of rewards after step *t* is:

$$R_{t+1}, R_{t+2}, R_{t+3}, \dots$$

What do we want to maximize?

At least three cases, but in all of them, we seek to maximize the **expected return**, $E\{G_t\}$, on each step *t*.

- <u>Total reward</u>, G_t = sum of all future reward in the episode
- <u>Discounted reward</u>, G_t = sum of all future *discounted* reward
- <u>Average reward</u>, G_t = average reward per time step

Discounted Return

Continuing tasks: interaction does not have natural episodes, but just goes on and on...

In this class, for continuing tasks we will always use *discounted return*:

$$G_{t} = R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1},$$

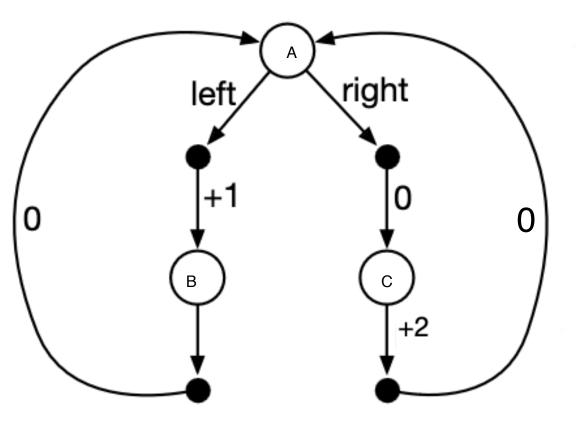
where $\gamma, 0 \le \gamma \le 1$, is the **discount rate**.

shortsighted $0 \leftarrow \gamma \rightarrow 1$ farsighted

Typically, $\gamma = 0.9$

Which one is the best?

- \square Reward sequence A: 1, 0, 0, 0
- \square Reward sequence B: 0, 1, 0, 0
- \square Reward sequence C: 0, 0, 1.16, 0
- \square Reward sequence D: 0, 0, 0, 1.17



What policy is optimal starting from A?

i) Going left.ii) Going right.iii)Something else.

IF 8=0? IF 8=.99

It v= 2?

. 1

Episodic tasks: interaction breaks naturally into episodes, e.g., plays of a game, trips through a maze

In episodic tasks, we often simply use *total reward*:

$$G_t = R_{t+1} + R_{t+2} + \dots + R_T$$
,

where *T* is a final time step at which a **terminal state** is reached, ending an episode.

A Trick to Unify Notation for Returns

□ In episodic tasks, we number the time steps of each episode starting from zero.

Think of each episode as ending in an absorbing state that always produces reward of zero:

$$(S_0 \xrightarrow{R_1 = +1} (S_1) \xrightarrow{R_2 = +1} (S_2) \xrightarrow{R_3 = +1} (S_2) \xrightarrow{R_3 = +1} (S_2) \xrightarrow{R_4 = 0} (R_5 = 0)$$

We can cover all cases by writing $G_t = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$,

where γ can be 1 only if a zero reward absorbing state is always reached.

In episodic tasks, we can also use *average reward*:

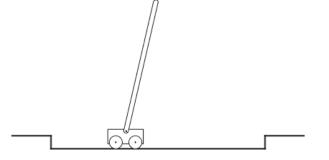
$$G_0 = (\sum_{t=0}^T R_t)/T$$

where *T* is a final time step at which a **terminal state** is reached, ending an episode.

In continuing tasks, we can also define *average reward*:

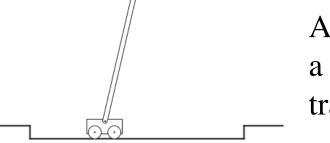
$$G = \lim_{T \to \infty} \left((\sum_{t=0}^{T} R_t) / T \right)$$

More on this later!



Avoid **failure:** the pole falling beyond a critical angle or the cart hitting end of track

As an **episodic task** where episode ends upon failure:

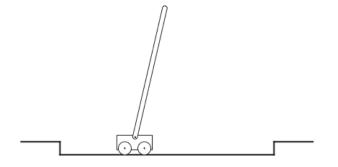


Avoid **failure:** the pole falling beyond a critical angle or the cart hitting end of track

As an **episodic task** where episode ends upon failure:

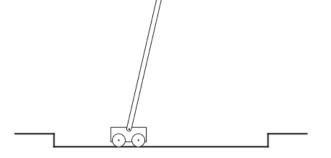
reward = +1 for each step before failure

 \Rightarrow return = number of steps before failure



Avoid **failure:** the pole falling beyond a critical angle or the cart hitting end of track

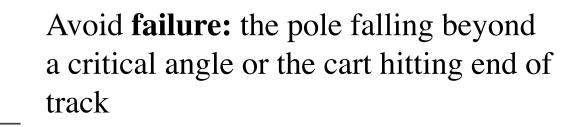
As a **continuing task** with discounted return:



Avoid **failure:** the pole falling beyond a critical angle or the cart hitting end of track

As a **continuing task** with discounted return:

reward = -1 upon failure; 0 otherwise \Rightarrow return = $-\gamma^{k}$, for k steps before failure



As an **episodic task** where episode ends upon failure:

reward = +1 for each step before failure

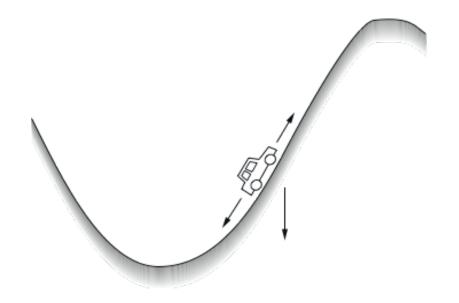
 \Rightarrow return = number of steps before failure

As a **continuing task** with discounted return:

reward = -1 upon failure; 0 otherwise \Rightarrow return = $-\gamma^{k}$, for k steps before failure

In either case, return is maximized by avoiding failure for as long as possible.

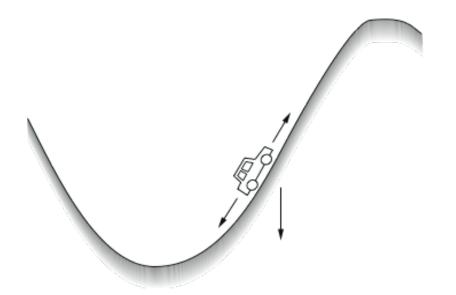
Another Example: Mountain Car



Get to the top of the hill as quickly as possible.

Return is maximized by minimizing number of steps to reach the top of the hill.

Mountain Car: Discounted

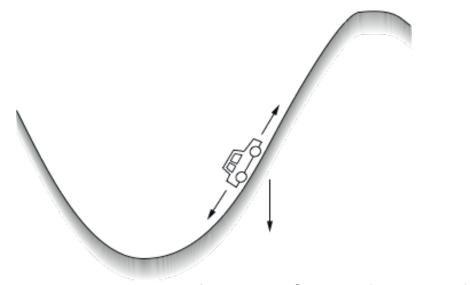


Get to the top of the hill as quickly as possible.

Reward: 1 at the top of the hill, 0 otherwise Return: if discount <1, k=number of time steps, so return is γ^k

> Return is maximized by minimizing number of steps to reach the top of the hill.

Mountain Car: Episodic



Get to the top of the hill as quickly as possible.

reward = -1 for each step where **not** at top of hill \Rightarrow return = - number of steps before reaching top of hill

Return is maximized by minimizing number of steps to reach the top of the hill.

4 value functions

	state values	action values
prediction	v_{π}	q_{π}
control	v_*	q_*

- All theoretical objects, expected values
- Distinct from their estimates: $V_t(s) = Q_t(s,a)$

Values are *expected* returns

• The value of a state, given a policy:

 $v_{\pi}(s) = \mathbb{E}\{G_t \mid S_t = s, A_{t:\infty} \sim \pi\} \qquad v_{\pi} : S \to \Re$

- The value of a state-action pair, given a policy: $q_{\pi}(s, a) = \mathbb{E}\{G_t \mid S_t = s, A_t = a, A_{t+1:\infty} \sim \pi\}$ $q_{\pi}: S \times \mathcal{A} \to \Re$
- The optimal value of a state:

$$v_*(s) = \max_{\pi} v_{\pi}(s) \qquad v_* : \mathcal{S} \to \Re$$

• The optimal value of a state-action pair:

$$q_*(s,a) = \max_{\pi} q_{\pi}(s,a) \qquad q_* : \mathcal{S} \times \mathcal{A} \to \Re$$

- Optimal policy: π_* is an optimal policy if and only if $\pi_*(a|s) > 0$ only where $q_*(s, a) = \max_b q_*(s, b) \quad \forall s \in S$
 - in other words, π_* is optimal iff it is *greedy* wrt q_*

Value Functions

☐ The value of a state is the expected return starting from that state; depends on the agent's policy:

State - value function for policy
$$\pi$$
:
 $v_{\pi}(s) = E_{\pi} \left\{ G_t \mid S_t = s \right\} = E_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \mid S_t = s \right\}$

The value of an action (in a state) is the expected return starting after taking that action from that state; depends on the agent's policy:

Action - value function for policy
$$\pi$$
:
 $q_{\pi}(s,a) = E_{\pi} \left\{ G_t \mid S_t = s, A_t = a \right\} = E_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \mid S_t = s, A_t = a \right\}$

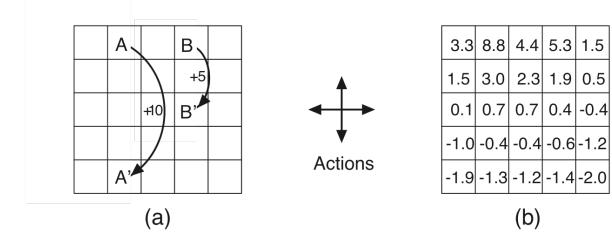
How good are each states?



If $\gamma = 1$, $V^* = ?$

Gridworld

- Actions: north, south, east, west; deterministic.
- □ If would take agent off the grid: no move but reward = -1
- Other actions produce reward = 0, except actions that move agent out of special states A and B as shown.



State-value function for equiprobable random policy; $\gamma = 0.9$

Policy Evaluation

Policy Evaluation: for a given policy π , compute the state-value function v_{π}

Recall: State-value function for policy π

$$v_{\pi}(s) \doteq \mathbb{E}_{\pi}[G_t \mid S_t = s] = \mathbb{E}_{\pi}\left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \mid S_t = s\right]$$

Bellman Equation for a Policy $\boldsymbol{\pi}$

The basic idea:

$$G_{t} = R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \gamma^{3} R_{t+4} + \cdots$$

= $R_{t+1} + \gamma \left(R_{t+2} + \gamma R_{t+3} + \gamma^{2} R_{t+4} + \cdots \right)$
= $R_{t+1} + \gamma G_{t+1}$

So:

$$\begin{aligned}
v_{\pi}(s) &= E_{\pi} \left\{ G_{t} \mid S_{t} = s \right\} \\
&= E_{\pi} \left\{ R_{t+1} + \gamma v_{\pi} \left(S_{t+1} \right) \mid S_{t} = s \right\}
\end{aligned}$$

Or, explicitly writing out the expectation:

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \left[r + \gamma v_{\pi}(s')\right]$$

More on the Bellman Equation

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \left[r + \gamma v_{\pi}(s')\right]$$

This is a set of equations (in fact, linear), one for each state. The value function for π is its unique solution^{*}.

* In the usual case where the system of equations is invertible, but in the current context you would really need to work hard to make it non-invertible.

Q-Function

$$q_{\pi}(s,a) = \mathbb{E}_{\pi}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) \mid S_t = s, A_t = a] \\ = \sum_{s',r} p(s',r|s,a) \Big[r + \gamma v_{\pi}(s') \Big].$$

Policy Evaluation

Policy Evaluation: for a given policy π , compute the state-value function v_{π}

Recall: State-value function for policy π

$$v_{\pi}(s) \doteq \mathbb{E}_{\pi}[G_t \mid S_t = s] = \mathbb{E}_{\pi}\left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \mid S_t = s\right]$$

Recall: Bellman equation for v_{π}

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \left[r + \gamma v_{\pi}(s') \right]$$

-a system of ISI simultaneous equations

Iterative Methods

$$v_0 \to v_1 \to \cdots \to v_k \to v_{k+1} \to \cdots \to v_{\pi}$$

a "sweep"

A sweep consists of applying a **backup operation** to each state.

A full policy-evaluation backup:

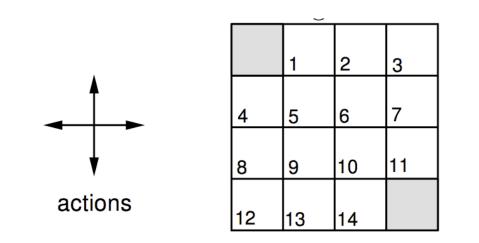
$$v_{k+1}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \left[r + \gamma v_k(s') \right] \qquad \forall s \in \mathcal{S}$$

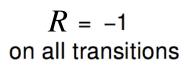
* This works because of Banach's fixed-point theorem, and that probabilities sum to 1 and γ <1.

Input π , the policy to be evaluated Initialize an array V(s) = 0, for all $s \in S^+$ Repeat

$$\begin{array}{l} \Delta \leftarrow 0\\ \text{For each } s \in \mathbb{S}:\\ v \leftarrow V(s)\\ V(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \left[r + \gamma V(s')\right]\\ \Delta \leftarrow \max(\Delta, |v - V(s)|)\\ \text{until } \Delta < \theta \text{ (a small positive number)}\\ \text{Output } V \approx v_{\pi} \end{array}$$

A Small Gridworld

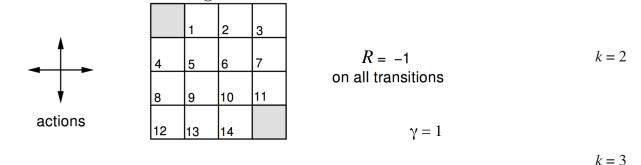




 $\gamma = 1$

- □ An undiscounted episodic task
- \square Nonterminal states: 1, 2, . . ., 14;
- One terminal state (shown twice as shaded squares)
- Actions that would take agent off the grid leave state unchanged
- □ Reward is −1 until the terminal state is reached

 π = equiprobable random action choices



An undiscounted episodic task

- \square Nonterminal states: 1, 2, . . ., 14;
- $\Box \text{ One terminal state (shown twice as shaded squares)} \qquad k = 10$
- Actions that would take agent off the grid leave state unchanged
- \Box Reward is -1 until the terminal state is reached

$V_{k} \,$ for the Random Policy

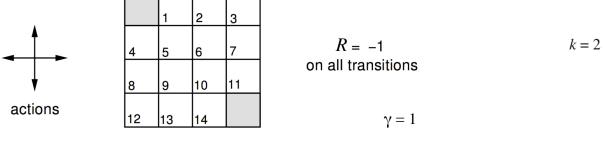
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0

k = 1

 $k = \infty$

k = 0

π = equiprobable random action choices



k = 3

k = 0

k = 1

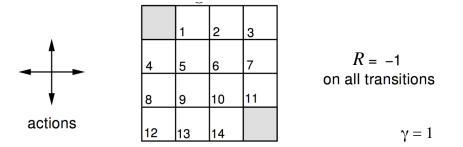
- □ An undiscounted episodic task
- \square Nonterminal states: 1, 2, . . ., 14;
- $\Box \text{ One terminal state (shown twice as shaded squares)} \qquad k = 10$
- Actions that would take agent off the grid leave state unchanged
- \square Reward is -1 until the terminal state is reached

V_k for the Random Policy

0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0

0.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	0.0

 π = equiprobable random action choices



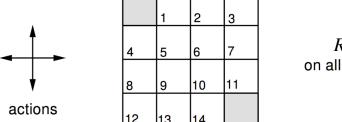
	V_k for the Random Policy			
<i>k</i> = 0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0			
k = 1	0.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 0.0			
<i>k</i> = 2	0.0 -1.7 -2.0 -2.0 -1.7 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -1.7 -2.0 -2.0 -1.7 0.0			

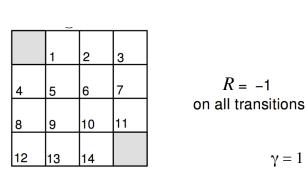
k = 3

- An undiscounted episodic task
- \square Nonterminal states: 1, 2, . . ., 14;
- One terminal state (shown twice as shaded squares)
- Actions that would take agent off the grid leave state unchanged
- \Box Reward is -1 until the terminal state is reached

k = 10

 π = equiprobable random action choices





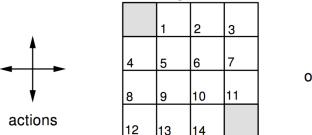
	V_k for the Random Policy
<i>k</i> = 0	0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0
<i>k</i> = 1	0.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 0.0
<i>k</i> = 2	0.0 -1.7 -2.0 -2.0 -1.7 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -1.7 -2.0 -2.0 -1.7 0.0
<i>k</i> = 3	0.0 -2.4 -2.9 -3.0 -2.4 -2.9 -3.0 -2.9 -2.9 -3.0 -2.9 -2.4 -3.0 -2.9 -2.4 0.0

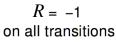
 V_{t} for the

- □ An undiscounted episodic task
- \square Nonterminal states: 1, 2, ..., 14;
- One terminal state (shown twice as shaded squares)
- Actions that would take agent off the grid leave state unchanged
- **Reward** is –1 until the terminal state is reached

k = 10

 π = equiprobable random action choices



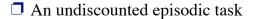


 $\gamma = 1$

0.0	-2.4	-2.9	-3.0
-2.4	-2.9	-3.0	-2.9
-2.9	-3.0	-2.9	-2.4
-3.0	-2.9	-2.4	0.0

0.0	-6.1	-8.4	-9.0
-6.1	-7.7	-8.4	-8.4
-8.4	-8.4	-7.7	-6.1
-9.0	-8.4	-6.1	0.0

0.0	-14.	-20.	-22.
-14.	-18.	-20.	-20.
-20.	-20.	-18.	-14.
-22.	-20.	-14.	0.0



- \square Nonterminal states: 1, 2, . . ., 14;
- One terminal state (shown twice as shaded squares)
- Actions that would take agent off the grid leave state unchanged
- \Box Reward is -1 until the terminal state is reached

 V_k for the Random Policy

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

k = 0

k = 1

k = 2

k = 3

k = 10

 $k = \infty$

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \underbrace{\sum_{s',r} p(s',r|s,a) \left[r + \gamma v_{\pi}(s')\right]}_{s',r}$$

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \underbrace{\sum_{s',r} p(s',r|s,a) \left[r + \gamma v_{\pi}(s')\right]}_{s',r}$$

$$v_*(s) = \max_{a \in \mathcal{A}(s)} q_{\pi_*}(s, a)$$

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \left[r + \gamma v_{\pi}(s')\right]$$

$$v_*(s) = \max_{a \in \mathcal{A}(s)} q_{\pi_*}(s, a)$$
$$= \max_a \mathbb{E}_{\pi_*}[G_t \mid S_t = s, A_t = a]$$

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \underbrace{\sum_{s',r} p(s',r|s,a) [r + \gamma v_{\pi}(s')]}_{s',r}$$

$$v_{*}(s) = \max_{a \in \mathcal{A}(s)} q_{\pi_{*}}(s,a)$$

$$= \max_{a} \mathbb{E}_{\pi_{*}}[G_{t} \mid S_{t} = s, A_{t} = a]$$

$$= \max_{a} \mathbb{E}_{\pi_{*}}[R_{t+1} + \gamma G_{t+1} \mid S_{t} = s, A_{t} = a]$$

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \underbrace{\sum_{s',r} p(s',r|s,a) [r + \gamma v_{\pi}(s')]}_{s',r}$$

$$v_{*}(s) = \max_{a \in \mathcal{A}(s)} q_{\pi_{*}}(s,a)$$

$$= \max_{a} \mathbb{E}_{\pi_{*}}[G_{t} \mid S_{t} = s, A_{t} = a]$$

$$= \max_{a} \mathbb{E}_{\pi_{*}}[R_{t+1} + \gamma G_{t+1} \mid S_{t} = s, A_{t} = a]$$

$$= \max_{a} \mathbb{E}[R_{t+1} + \gamma v_{*}(S_{t+1}) \mid S_{t} = s, A_{t} = a]$$

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) [r + \gamma v_{\pi}(s')]$$

$$v_{*}(s) = \max_{a \in \mathcal{A}(s)} q_{\pi_{*}}(s,a)$$

$$= \max_{a} \mathbb{E}_{\pi_{*}}[G_{t} \mid S_{t} = s, A_{t} = a]$$

$$= \max_{a} \mathbb{E}_{\pi_{*}}[R_{t+1} + \gamma G_{t+1} \mid S_{t} = s, A_{t} = a]$$

$$= \max_{a} \mathbb{E}[R_{t+1} + \gamma v_{*}(S_{t+1}) \mid S_{t} = s, A_{t} = a]$$

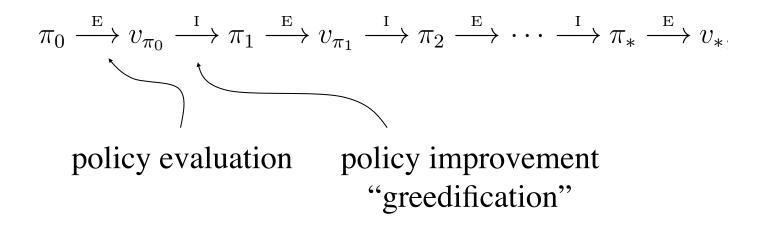
$$= \max_{a} \sum_{s',r} p(s',r|s,a) [r + \gamma v_{*}(s')].$$

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \left[r + \gamma v_{\pi}(s')\right]$$

$$v_*(s) = \max_a \sum_{s',r} p(s',r|s,a) [r + \gamma v_*(s')]$$

Also as many equations as unknowns (non-linear, this time though).

Policy Iteration



Policy Improvement

Suppose we have computed v_{π} for a deterministic policy π .

For a given state s, would it be better to do an action $a \neq \pi(s)$?

It is better to switch to action *a* for state *s* if $q_{\pi}(s,a) > v_{\pi}(s)$ Do this for all states to get a new policy $\pi' \ge \pi$ that is **greedy** with respect to v_{π} :

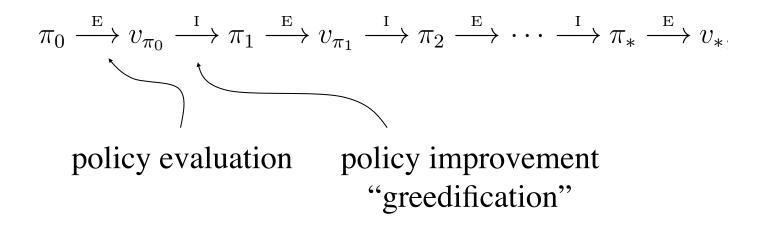
$$\pi'(s) = \arg \max_{a} q_{\pi}(s, a)$$

=
$$\arg \max_{a} \mathbb{E}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) \mid S_t = s, A_t = a]$$

=
$$\arg \max_{a} \sum_{s', r} p(s', r \mid s, a) \Big[r + \gamma v_{\pi}(s') \Big],$$

What if the policy is unchanged by this? Then the policy must be optimal!

Policy Iteration



	eedy Poli					
for	• the Sma	ll Gridworld		V_k for the Random Policy	Greedy Policy w.r.t. V_k	
π = equir	probable random	action choices	<i>k</i> = 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} $	_ random policy
π = equiprobable random action choices			<i>k</i> = 1	0.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 0.0		
	1 2 3 4 5 6 7 8 9 10 11	R = -1 on all transitions	<i>k</i> = 2	0.0 -1.7 -2.0 -2.0 -1.7 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -1.7 -2.0 -2.0 -1.7 0.0		
actions	12 13 14	$\gamma = 1$	<i>k</i> = 3	0.0 -2.4 -2.9 -3.0 -2.4 -2.9 -3.0 -2.9 -2.9 -3.0 -2.9 -2.4		
A n undisco	ounted episodic task			-3.0 -2.9 -2.4 0.0		
 Nonterminal states: 1, 2,, 14; One terminal state (shown twice as shaded squares) Actions that would take agent off the grid leave state unchanged 			<i>k</i> = 10	0.0 -6.1 -8.4 -9.0 -6.1 -7.7 -8.4 -8.4 -8.4 -8.4 -7.7 -6.1 -9.0 -8.4 -6.1 0.0		
□ Reward is –1 until the terminal state is reached			$k = \infty$	0.0 -14. -20. -22. -14. -18. -20. -20. -20. -20. -18. -14. -22. -20. -14. 0.0		

Greedy Policies for the Small Gridworld V_k for the **Greedy Policy** w.r.t. V_k Random Policy 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0random k = 0↤ो∢Ҭ policy 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 π = equiprobable random action choices 0.0-1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 k = 1-1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 0.0 2 3 -1.7 -2.0 -2.0 0.0-1.7 -2.0 -2.0 -2.0 R = -1k = 26 7 5 4 -2.0 -2.0 -2.0 -1.7 \rightarrow on all transitions -2.0 -1.7 0.0 10 8 9 11 actions 12 14 $\gamma = 1$ 13 -2.4 -2.9 -3.0 0.0-2.9 -3.0 -2.9 -2.4 k = 3-3.0 -2.9 -2.4 -2.9 -2.9 -2.4 -3.0 0.0 An undiscounted episodic task \square Nonterminal states: 1, 2, ..., 14; 0.0 -6.1 -8.4 -9.0 optimal -6.1 -7.7 -8.4 -8.4 • One terminal state (shown twice as shaded squares) k = 10policy -8.4 -8.4 -7.7 -6.1 ₽ Actions that would take agent off the grid leave state unchanged -8.4 -6.1 -9.0 0.0**Reward** is -1 until the terminal state is reached

 $k = \infty$

-20. -14.

-18. -20. -20.

-20. -14.

0.0

14.

-20. -20. -18.

-22.

-22.

-14

0.0

 \rightarrow

Policy Iteration – One array version (+ policy)

1. Initialization $V(s) \in \mathbb{R} \text{ and } \pi(s) \in \mathcal{A}(s) \text{ arbitrarily for all } s \in S$

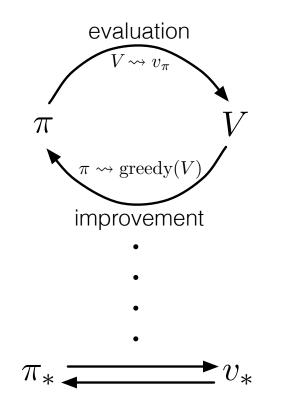
2. Policy Evaluation

Repeat $\Delta \leftarrow 0$ For each $s \in S$: $v \leftarrow V(s)$ $V(s) \leftarrow \sum_{s',r} p(s', r|s, \pi(s)) [r + \gamma V(s')]$ $\Delta \leftarrow \max(\Delta, |v - V(s)|)$ until $\Delta < \theta$ (a small positive number)

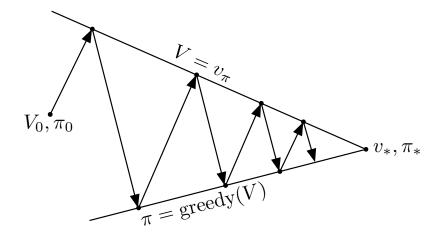
3. Policy Improvement policy-stable \leftarrow true For each $s \in S$: $a \leftarrow \pi(s)$ $\pi(s) \leftarrow \arg \max_a \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$ If $a \neq \pi(s)$, then policy-stable \leftarrow false If policy-stable, then stop and return V and π ; else go to 2

Generalized Policy Iteration

Generalized Policy Iteration (GPI): any interaction of policy evaluation and policy improvement, independent of their granularity.



A geometric metaphor for convergence of GPI:



Value Iteration

Recall the **full policy-evaluation backup**:

$$v_{k+1}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \left[r + \gamma v_k(s')\right] \qquad \forall s \in \mathcal{S}$$

Here is the **full value-iteration backup**:

$$v_{k+1}(s) = \max_{a} \sum_{s',r} p(s',r|s,a) \left[r + \gamma v_k(s') \right] \qquad \forall s \in \mathcal{S}$$

Initialize array V arbitrarily (e.g., V(s) = 0 for all $s \in S^+$)

Repeat $\Delta \leftarrow 0$ For each $s \in S$: $v \leftarrow V(s)$ $V(s) \leftarrow \max_a \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$ $\Delta \leftarrow \max(\Delta, |v - V(s)|)$ until $\Delta < \theta$ (a small positive number)

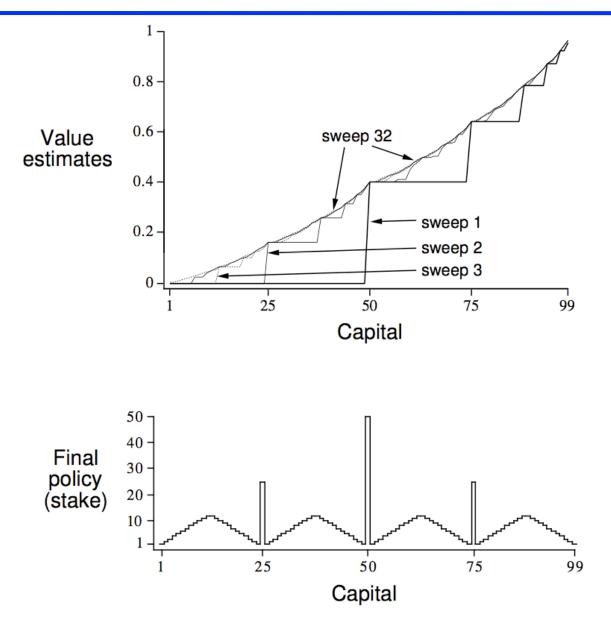
Output a deterministic policy, π , such that $\pi(s) = \arg \max_a \sum_{s',r} p(s', r|s, a) [r + \gamma V(s')]$

Gambler's Problem

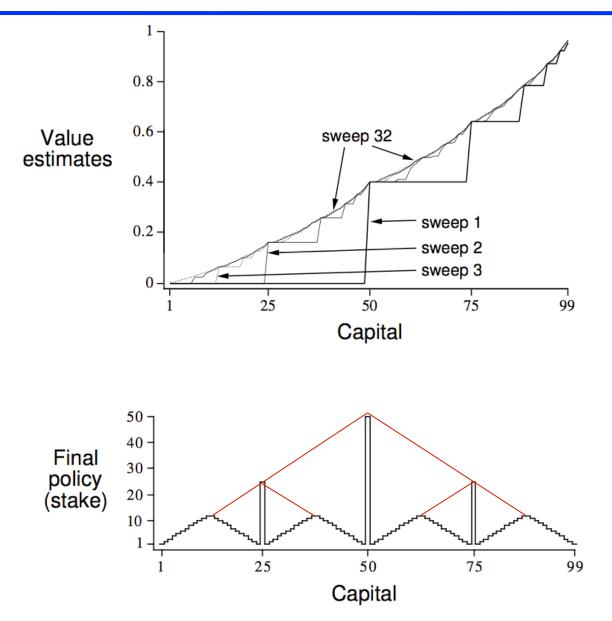
- □ Gambler can repeatedly bet \$ on a coin flip
- Heads he wins his stake, tails he loses it
- □ Initial capital $\in \{\$1, \$2, \dots \$99\}$
- Gambler wins if his capital becomes \$100 loses if it becomes \$0
- **Coin** is unfair
 - Heads (gambler wins) with probability p = .4

I States, Actions, Rewards? Discounting?

Gambler's Problem Solution



Gambler's Problem Solution



Asynchronous Dynamic Programming

- All the DP methods described so far require exhaustive sweeps of the entire state set.
- Asynchronous DP does not use sweeps. Instead it works like this:
 - Repeat until convergence criterion is met:
 - Pick a state at random and apply the appropriate backup
- Still need lots of computation, but does not get locked into hopelessly long sweeps
- Can you select states to backup intelligently? YES: an agent's experience can act as a guide.

Efficiency of DP

- ☐ To find an optimal policy is polynomial in the number of states...
- BUT, the number of states is often astronomical, e.g., often growing exponentially with the number of state variables (what Bellman called "the curse of dimensionality").
- □ In practice, classical DP can be applied to problems with a few millions of states.
- Asynchronous DP can be applied to larger problems, and is appropriate for parallel computation.
- □ It is surprisingly easy to come up with MDPs for which DP methods are not practical.

Summary

- Policy evaluation: backups without a max
- Policy improvement: form a greedy policy, if only locally
- Policy iteration: alternate the above two processes
- □ Value iteration: backups with a max
- □ Full backups (to be contrasted later with sample backups)
- Generalized Policy Iteration (GPI)
- □ Asynchronous DP: a way to avoid exhaustive sweeps
- **Bootstrapping**: updating estimates based on other estimates
- Biggest limitation of DP is that it requires a *probability model* (as opposed to a generative or simulation model)