
Lecture 23: More on Large Language Models
and RLHF

COMP579, Lecture 23

Recall: RL in an LLM training loop

Lambert

Review: reinforcement learning basics in language

16

Language model we are
training

Completion to promptreward model & other
infrastructure

Next prompt

COMP579, Lecture 23 1

Recall: RLHF training phases

Lambert

Vaswani et al. 2017

base model (instruction, helpful, chatty etc.)

 	 	 	 	 	 	
	 	 	 	 	

Three phases of RLHF

20

preference collection & training

RL optimization

Pretrain+SFT, get preferences and fit reward model, do RL!

COMP579, Lecture 23 2

Supervised fine-tuning (SFT): Same as imitation
learning!

• We have (s, a) pairs, where s is a prompt and a is a generation
corresponding to that prompt (consisting of several tokes

• These are taken from already existing data (eg internet docs, QA, solved
problems...)

• Train a policy πsft that maximizes the likelihood of the observed data:

Jsft(θ) = E(s,a)∼Psft

 1

|a|

|a|∑
k=1

log πθ(ak|s, ai<k)

Training is done by gradient ascent

• Aka teacher forcing

COMP579, Lecture 23 3

Better version: Rejection sampling (aka Best-of-N)

Reinforcement learning: future directions

● Rejection sampling / Best of N Sampling
○ Used in WebGPT, Nakano et al. 2021, and Llama 2, Touvron et al. 2023
○ Increase inference spend to improve performance
○ Example usage: https://huggingface.co/docs/trl/main/en/best_of_n

RLHF at ICML 2023, 55

Best of N sampling

• Generate N answers from the model, reinforce the correct/top one(s)

• Train a policy πsft that maximizes the likelihood of the top data:

Jrft(θ) = Es∼Psft,a∼πsft(·|s)

 1

|a|
1ais at the top

|a|∑
k=1

log πθ(ak|s, ai<k)

Training is done by gradient ascent

• Online rejection sampling finetuning: a ∼ πθ instead of a ∼ πsft

COMP579, Lecture 23 4

Recall: Training a reward model

Lambert

The Transformer - Vaswani et al. 2017

input pair:

selected prompt
+completion

rejected prompt
+completion

Preference model training

23

output:
 scalar rewards

loss: increase difference
of predicted reward

COMP579, Lecture 23 5

Recall: Bradely-Terry loss function

• Collect data from human raters: prompt s, pairs of aw, al responses

• Optimize the expected value of:

− log(σ(rφ(s, aw)− rθ(s, al)))

wrt reward parameter vector φ

• Cf. Ouyang et al, InstructGPT (2022)

• Corresponds to maximum likelihood fitting of binomial preference
function if reward is linear over the variables

COMP579, Lecture 23 6

Recall: reward model almost as good as a single humanMake sure your reward model works first!

Data

Evaluate RM on predicting outcome of held-out human judgments

[Stiennon et al., 2020]

Large enough RM
trained on enough
data approaching
single human perf

COMP579, Lecture 23 7

RLHF finetuning

Lambert

Fine tuning with RL

25

COMP579, Lecture 23 8

PPO for RLHF

𝑞𝑞

𝑜𝑜!
𝑜𝑜"

𝑜𝑜#

𝑟𝑟!
𝑟𝑟"

𝑟𝑟#

𝐴𝐴!
𝐴𝐴"

𝐴𝐴#

𝑞𝑞 𝑜𝑜 GAE 𝐴𝐴

𝑟𝑟

𝑣𝑣

Reward
Model

Policy
Model

Value
Model

… … …

Policy
Model

Reference
Model

Reward
Model

PPO

GRPO

Trained
Models

Frozen
ModelsReference

Model

⊕
𝐾𝐾𝐾𝐾

𝐾𝐾𝐾𝐾

Group
Computation

Figure 4 | Demonstration of PPO and our GRPO. GRPO foregoes the value model, instead
estimating the baseline from group scores, significantly reducing training resources.

on the rewards {𝐿→𝑀} and a learned value function 𝑁𝑂. Thus, in PPO, a value function needs to
be trained alongside the policy model and to mitigate over-optimization of the reward model,
the standard approach is to add a per-token KL penalty from a reference model in the reward at
each token (Ouyang et al., 2022), i.e.,

𝐿𝑀 = 𝐿𝑃 (𝑄, 𝑅↑𝑀) ↓ 𝑆 log
𝑇𝑈(𝑅𝑀 |𝑄, 𝑅<𝑀)
𝑇𝐿𝑉 𝑊 (𝑅𝑀 |𝑄, 𝑅<𝑀)

, (2)

where 𝐿𝑃 is the reward model, 𝑇𝐿𝑉 𝑊 is the reference model, which is usually the initial SFT model,
and 𝑆 is the coefficient of the KL penalty.

As the value function employed in PPO is typically another model of comparable size as
the policy model, it brings a substantial memory and computational burden. Additionally,
during RL training, the value function is treated as a baseline in the calculation of the advantage
for variance reduction. While in the LLM context, usually only the last token is assigned a
reward score by the reward model, which may complicate the training of a value function that is
accurate at each token. To address this, as shown in Figure 4, we propose Group Relative Policy
Optimization (GRPO), which obviates the need for additional value function approximation as
in PPO, and instead uses the average reward of multiple sampled outputs, produced in response
to the same question, as the baseline. More specifically, for each question 𝑄, GRPO samples a
group of outputs {𝑅1, 𝑅2, · · · , 𝑅𝑋} from the old policy 𝑇𝑈𝑅𝑌𝑍 and then optimizes the policy model
by maximizing the following objective:

J𝑋𝑎𝑏𝑐 (𝑈) = E[𝑄 ↔ 𝑏(𝑑), {𝑅𝑒}𝑋𝑒=1 ↔ 𝑇𝑈𝑅𝑌𝑍 (𝑐|𝑄)]

1
𝑋

𝑋∑
𝑒=1

1
|𝑅𝑒 |

|𝑅𝑒 |∑
𝑀=1

{
min

[
𝑇𝑈 (𝑅𝑒,𝑀 |𝑄, 𝑅𝑒,<𝑀)
𝑇𝑈𝑅𝑌𝑍 (𝑅𝑒,𝑀 |𝑄, 𝑅𝑒,<𝑀)

�̂�𝑒,𝑀 , clip
(

𝑇𝑈 (𝑅𝑒,𝑀 |𝑄, 𝑅𝑒,<𝑀)
𝑇𝑈𝑅𝑌𝑍 (𝑅𝑒,𝑀 |𝑄, 𝑅𝑒,<𝑀)

, 1 ↓ 𝑔, 1 + 𝑔

)
�̂�𝑒,𝑀

]
↓ 𝑆D𝑖𝑗

[
𝑇𝑈 | |𝑇𝐿𝑉 𝑊

]}
,

(3)

where 𝑔 and 𝑆 are hyper-parameters, and �̂�𝑒,𝑀 is the advantage calculated based on relative
rewards of the outputs inside each group only, which will be detailed in the following subsec-
tions. The group relative way that GRPO leverages to calculate the advantages, aligns well with
the comparative nature of rewards models, as reward models are typically trained on datasets
of comparisons between outputs on the same question. Also note that, instead of adding KL
penalty in the reward, GRPO regularizes by directly adding the KL divergence between the
trained policy and the reference policy to the loss, avoiding complicating the calculation of �̂�𝑒,𝑀.

13

as

• Train a policy πθ that maximizes advantage:

JPPO(θ) = Es∼Psft,a∼πθold(·|s)

 1

|a|

|a|∑
k=1

πθ(ak|s, ai<k)
πθold(ak|s,ai<k)

Ai

where Ai is the advantage function

• Reward function uses a penalty per token for straying from reference
policy: rt = rφ(s, a<t)− β log πθ(at|s,a<t)

πsft(at|s,a<t)

• Value function/advantage needs to be estimated!

COMP579, Lecture 23 9

GRPO (DeepSeek, 2025)

𝑞𝑞

𝑜𝑜!
𝑜𝑜"

𝑜𝑜#

𝑟𝑟!
𝑟𝑟"

𝑟𝑟#

𝐴𝐴!
𝐴𝐴"

𝐴𝐴#

𝑞𝑞 𝑜𝑜 GAE 𝐴𝐴

𝑟𝑟

𝑣𝑣

Reward
Model

Policy
Model

Value
Model

… … …

Policy
Model

Reference
Model

Reward
Model

PPO

GRPO

Trained
Models

Frozen
ModelsReference

Model

⊕
𝐾𝐾𝐾𝐾

𝐾𝐾𝐾𝐾

Group
Computation

Figure 4 | Demonstration of PPO and our GRPO. GRPO foregoes the value model, instead
estimating the baseline from group scores, significantly reducing training resources.

on the rewards {𝐿→𝑀} and a learned value function 𝑁𝑂. Thus, in PPO, a value function needs to
be trained alongside the policy model and to mitigate over-optimization of the reward model,
the standard approach is to add a per-token KL penalty from a reference model in the reward at
each token (Ouyang et al., 2022), i.e.,

𝐿𝑀 = 𝐿𝑃 (𝑄, 𝑅↑𝑀) ↓ 𝑆 log
𝑇𝑈(𝑅𝑀 |𝑄, 𝑅<𝑀)
𝑇𝐿𝑉 𝑊 (𝑅𝑀 |𝑄, 𝑅<𝑀)

, (2)

where 𝐿𝑃 is the reward model, 𝑇𝐿𝑉 𝑊 is the reference model, which is usually the initial SFT model,
and 𝑆 is the coefficient of the KL penalty.

As the value function employed in PPO is typically another model of comparable size as
the policy model, it brings a substantial memory and computational burden. Additionally,
during RL training, the value function is treated as a baseline in the calculation of the advantage
for variance reduction. While in the LLM context, usually only the last token is assigned a
reward score by the reward model, which may complicate the training of a value function that is
accurate at each token. To address this, as shown in Figure 4, we propose Group Relative Policy
Optimization (GRPO), which obviates the need for additional value function approximation as
in PPO, and instead uses the average reward of multiple sampled outputs, produced in response
to the same question, as the baseline. More specifically, for each question 𝑄, GRPO samples a
group of outputs {𝑅1, 𝑅2, · · · , 𝑅𝑋} from the old policy 𝑇𝑈𝑅𝑌𝑍 and then optimizes the policy model
by maximizing the following objective:

J𝑋𝑎𝑏𝑐 (𝑈) = E[𝑄 ↔ 𝑏(𝑑), {𝑅𝑒}𝑋𝑒=1 ↔ 𝑇𝑈𝑅𝑌𝑍 (𝑐|𝑄)]

1
𝑋

𝑋∑
𝑒=1

1
|𝑅𝑒 |

|𝑅𝑒 |∑
𝑀=1

{
min

[
𝑇𝑈 (𝑅𝑒,𝑀 |𝑄, 𝑅𝑒,<𝑀)
𝑇𝑈𝑅𝑌𝑍 (𝑅𝑒,𝑀 |𝑄, 𝑅𝑒,<𝑀)

�̂�𝑒,𝑀 , clip
(

𝑇𝑈 (𝑅𝑒,𝑀 |𝑄, 𝑅𝑒,<𝑀)
𝑇𝑈𝑅𝑌𝑍 (𝑅𝑒,𝑀 |𝑄, 𝑅𝑒,<𝑀)

, 1 ↓ 𝑔, 1 + 𝑔

)
�̂�𝑒,𝑀

]
↓ 𝑆D𝑖𝑗

[
𝑇𝑈 | |𝑇𝐿𝑉 𝑊

]}
,

(3)

where 𝑔 and 𝑆 are hyper-parameters, and �̂�𝑒,𝑀 is the advantage calculated based on relative
rewards of the outputs inside each group only, which will be detailed in the following subsec-
tions. The group relative way that GRPO leverages to calculate the advantages, aligns well with
the comparative nature of rewards models, as reward models are typically trained on datasets
of comparisons between outputs on the same question. Also note that, instead of adding KL
penalty in the reward, GRPO regularizes by directly adding the KL divergence between the
trained policy and the reference policy to the loss, avoiding complicating the calculation of �̂�𝑒,𝑀.

13

Instead of estimating value, use a group (non-parametric approach)
Notation: q = s, o = a

COMP579, Lecture 23 10

GRPO Objective (DeepSeek, 2025)

• Generate G answers and estimate their reward (no regularization towards
reference policy)
• Compute a normalized advantage based on the mean r̄t and standard

deviation of the rewards:

Âi,t =
ri,t − r̄t

std(r1,t, . . . rG,t)

• GRPO objective - very similar to PPO!

JGRPO(θ) = Es∼Psft,ai∼πθold(·|s),i=1,...G

 1

G

G∑
i=1

1

|ai|

|ai|∑
k=1

πθ(ak|s, ai<k)
πθold

(ak|s, ai<k)
Âi,t − βDKL(πθ, πθold

)

• DKL is also estimated a bit differently (cf Shulman et al, 2020):

DKL(πθ, πθold
) =

πθold
(ak|s, ai<k)

πθ(ak|s, ai<k)
− log

πθold
(ak|s, ai<k)

πθ(ak|s, ai<k)
− 1

COMP579, Lecture 23 11

The Advantage of RL over SFT (DeepSeek, 2025)

Methods Data Source Reward Function Gradient Coefficient

SFT 𝐿, 𝑀 → 𝑁𝑂 𝑃 𝑄 (𝑅,𝑆) - 1

RFT 𝐿 → 𝑁𝑂 𝑃 𝑄 (𝑅), 𝑀 → 𝑇𝑂 𝑃 𝑄 (𝑆|𝐿) Rule Equation 10
DPO 𝐿 → 𝑁𝑂 𝑃 𝑄 (𝑅), 𝑀+, 𝑀↑ → 𝑇𝑂 𝑃 𝑄 (𝑆|𝐿) Rule Equation 14

Online RFT 𝐿 → 𝑁𝑂 𝑃 𝑄 (𝑅), 𝑀 → 𝑇𝑈(𝑆|𝐿) Rule Equation 10
PPO 𝐿 → 𝑁𝑂 𝑃 𝑄 (𝑅), 𝑀 → 𝑇𝑈(𝑆|𝐿) Model Equation 18
GRPO 𝐿 → 𝑁𝑂 𝑃 𝑄 (𝑅), {𝑀𝑉}𝑊𝑉=1 → 𝑇𝑈(𝑆|𝐿) Model Equation 21

Table 10 | The data source and gradient coefficient of different methods. 𝑁𝑂 𝑃 𝑄 denotes the data
distribution of supervised fine-tuning datasets. 𝑇𝑈𝑂 𝑃 𝑄 and 𝑇𝑈 denote the supervised fine-tuned
model and the real-time policy model during the online training process, respectively.

Figure 5 | Performance of the DeepSeekMath-Instruct 1.3B model, which was further trained
using various methods, on two benchmarks.

• Rejection Sampling Fine-tuning (RFT): RFT further fine-tunes the SFT model on the
filtered outputs sampled from the SFT model based on SFT questions. RFT filters the
outputs based on the correctness of their answers.

• Direct Preference Optimization (DPO): DPO further refines the SFT model by fine-tuning
it on augmented outputs sampled from the SFT model, using pair-wise DPO loss.

• Online Rejection Sampling Fine-tuning (Online RFT): Different from RFT, Online RFT
initiates the policy model using the SFT model and refines it by fine-tuning with the
augmented outputs sampled from the real-time policy model.

• PPO/GRPO: PPO/GRPO initializes the policy model using the SFT model and reinforces
it with the outputs sampled from the real-time policy model.

We summarize the components of these methods in Table 10. Please refer to Appendix A.1 for a
more detailed derivation process.

Observation about Data Source We divide the data source into two categories, online sam-
pling, and offline sampling. Online sampling denotes that the training data is from the explo-
ration results of the real-time training policy model, while offline sampling denotes that the

19

COMP579, Lecture 23 12

DeepSeek Overall Results (DeepSeek, 2025)

DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via
Reinforcement Learning

DeepSeek-AI

research@deepseek.com

Abstract

We introduce our first-generation reasoning models, DeepSeek-R1-Zero and DeepSeek-R1.
DeepSeek-R1-Zero, a model trained via large-scale reinforcement learning (RL) without super-
vised fine-tuning (SFT) as a preliminary step, demonstrates remarkable reasoning capabilities.
Through RL, DeepSeek-R1-Zero naturally emerges with numerous powerful and intriguing
reasoning behaviors. However, it encounters challenges such as poor readability, and language
mixing. To address these issues and further enhance reasoning performance, we introduce
DeepSeek-R1, which incorporates multi-stage training and cold-start data before RL. DeepSeek-
R1 achieves performance comparable to OpenAI-o1-1217 on reasoning tasks. To support the
research community, we open-source DeepSeek-R1-Zero, DeepSeek-R1, and six dense models
(1.5B, 7B, 8B, 14B, 32B, 70B) distilled from DeepSeek-R1 based on Qwen and Llama.

Figure 1 | Benchmark performance of DeepSeek-R1.

ar
X

iv
:2

50
1.

12
94

8v
1

 [c
s.C

L]
 2

2
Ja

n
20

25

Model
AIME 2024 MATH-500

GPQA LiveCode
CodeForces

Diamond Bench

pass@1 cons@64 pass@1 pass@1 pass@1 rating

OpenAI-o1-mini 63.6 80.0 90.0 60.0 53.8 1820
OpenAI-o1-0912 74.4 83.3 94.8 77.3 63.4 1843

DeepSeek-R1-Zero 71.0 86.7 95.9 73.3 50.0 1444

Table 2 | Comparison of DeepSeek-R1-Zero and OpenAI o1 models on reasoning-related
benchmarks.

Figure 2 | AIME accuracy of DeepSeek-R1-Zero during training. For each question, we sample
16 responses and calculate the overall average accuracy to ensure a stable evaluation.

DeepSeek-R1-Zero to attain robust reasoning capabilities without the need for any supervised
fine-tuning data. This is a noteworthy achievement, as it underscores the model’s ability to
learn and generalize effectively through RL alone. Additionally, the performance of DeepSeek-
R1-Zero can be further augmented through the application of majority voting. For example,
when majority voting is employed on the AIME benchmark, DeepSeek-R1-Zero’s performance
escalates from 71.0% to 86.7%, thereby exceeding the performance of OpenAI-o1-0912. The
ability of DeepSeek-R1-Zero to achieve such competitive performance, both with and without
majority voting, highlights its strong foundational capabilities and its potential for further
advancements in reasoning tasks.

Self-evolution Process of DeepSeek-R1-Zero The self-evolution process of DeepSeek-R1-Zero
is a fascinating demonstration of how RL can drive a model to improve its reasoning capabilities
autonomously. By initiating RL directly from the base model, we can closely monitor the model’s
progression without the influence of the supervised fine-tuning stage. This approach provides
a clear view of how the model evolves over time, particularly in terms of its ability to handle
complex reasoning tasks.

As depicted in Figure 3, the thinking time of DeepSeek-R1-Zero shows consistent improve-

7

SOTA results back in January!

COMP579, Lecture 23 13

Direct Preference OptimizationRemoving the ‘RL’ from RLHF

• You can replace the complex RL part with a very simple weighted MLE objective
• Other variants (KTO, IPO) now emerging too [Rafailov+ 2023]

COMP579, Lecture 23 14

Learning with non-transitive preferences: NashLLM

• Objective:find a policy π∗ which is preferred over any other policy

π∗ = arg max
π

min
π′

P(π′ � π)

• Think of this as a game: one player picks π the other picks π′

• When both players use π∗ this is a Nash equilibrium for the game

• For this game an equilibrium exists (even if eg preferences are not
transitive)

• Cf. Munos et al, 2024 (https://arxiv.org/pdf/2312.00886.pdf)

COMP579, Lecture 23 15

NashLLM-style algorithms

• Fit a two-argument preference function by supervised learning

• Decide what is the set of opponent policies

• Ideally, the max player should play against a mixture of past policies

• Optimize using eg online mirror descent, convex-concave optimization...

• A lot of algorithmic variations to explore!

COMP579, Lecture 23 16

NashLLM results

Nash Learning from Human Feedback

Figure 1 | Learning curves showing the accuracy of preference models of di�erent sizes on the train
set (left) and on the test set (right).

Figure 2 | Learning curves showing the accuracy of a preference model versus the accuracy of a reward
model of the same size on the train set (left) and on the test set (right).

15

Using preferences instead of rewards leads to less overfitting

COMP579, Lecture 23 17

General blueprint of RLHF training

42

This is a penalty which prevents us from diverging too far from
the pretrained model. In expectation, it is known as the
Kullback-Leibler (KL) divergence between !!"#(#) and !$% # .

RLHF: Putting it all together [Christiano et al., 2017; Stiennon et al., 2020]

Pay a price when
0*/5 ! > 067 !

• Finally, we have everything we need:
• A pretrained (possibly instruction-finetuned) LM 067(!)
• A reward model	"9.(!) that produces scalar rewards for LM outputs, trained on a

dataset of human comparisons
• A method for optimizing LM parameters towards an arbitrary reward function.

• Now to do RLHF:
• Initialize a copy of the model 0*/5(!) , with parameters) we would like to optimize
• Optimize the following reward with RL:

" ! = "9.(!) − ?	log
0*/5(!)
067(!)

COMP579, Lecture 23 18

RLHF resultsRLHF provides gains over pretraining + finetuning

[Stiennon et al., 2020]

/$%(!)
/&'%(!)

/()(!)

43

COMP579, Lecture 23 19

Problem: reward hacking

" ! = "9.(!) − ?	log
0*/5(!)
067(!)

56

Limitations of RL + Reward Modeling

• Human preferences are unreliable!
• ”Reward hacking” is a common

problem in RL
• Chatbots are rewarded to

produce responses that seem
authoritative and helpful,
regardless of truth

• This can result in making up facts
+ hallucinations

• Models of human preferences are
even more unreliable!

Reward model over-optimization

[Stiennon et al., 2020]

COMP579, Lecture 23 20

More important methods

• Self-improvement

• Chain-of-thought prompting

• Distillation from large models to small

• Utilizing more inference time using search (cool new work)

COMP579, Lecture 23 21

Open directionsWhat’s next?

• RLHF is still a very underexplored and fast-
moving area!

• RLHF gets you further than instruction
finetuning, but is (still!) data expensive.

• Recent work aims to alleviate such data
requirements:
• RL from AI feedback [Bai et al., 2022]
• Finetuning LMs on their own outputs

[Huang et al., 2022; Zelikman et al.,
2022]

• However, there are still many limitations of
large LMs (size, hallucination) that may not
be solvable with RLHF!

64

[Huang et al., 2022]

LM chain of thought

Self-Taught Reasoner (STaR)
[Zelikman et al., 2022]

COMP579, Lecture 23 22

More open directions

• Multi-turm

• Exploration

•

COMP579, Lecture 23 23

