
Multi-arm Bandits
Sutton and Barto, Chapter 2

The simplest 
reinforcement learning 

problem



Recall: Sequential Decision Making
Sequential decision making

• At time t, agent receives an observation from set X and can choose an
action from set A (think finite for now)

• Goal of the agent is to maximize long-term return
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Simple case: One step!
• No x, take an action, observe a reward immediately

• So, a degenerate tree (not truly sequential)

• This is what we call a simple bandit problem

• No credit assignment, only exploration / exploitation

• Later: contextual bandits (there’s x, feedback still immediate)

• Lots of applications in ad placement, more recently in large 
language models 



What is a bandit?
• The simplest kind of structure: every node is a copy of every 

other node, and they are not connected!

• Which means there are no delayed action effects, simplifying 
credit assignment!

• Therefore, the main problem in bandits is exploration

• Vanilla multi-arm bandits: nodes do not have any observation

• Contextual bandits have observations (more on that later)



Let’s play a bandit!
• Imagine you have two actions

• You play action 1 and get a reward of 0

• You play action 2 and get a reward of 1

• Which action should you prefer?

• Which action should you try next?



Let’s play a bandit!
• Imagine you have two actions

• You played action 1 three times and got rewards of 0, 1, -1

• You played action 2 three times and got a rewards of 1, 10, -10

• Which action should you prefer?

• Which action should you try next?



Let’s play a bandit!
• Imagine you have two actions

• You played action 1 for 300 times and got rewards of 0 (200 
times), 1 (50 times), -1 (50 times)

• You played action 2 for 300 times and got a rewards of 1 (200 
times), 10 (50 times), -10 (50 times)

• Which action should you prefer?

• Which action should you try next?



Let’s play a bandit!
• Imagine you have two actions

• You played action 1 for 3000 times and got rewards of 0 (300 
times), 1 (2000 times), -1 (600 times), +10 (100 times)

• You played action 2 for 3000 times and got a rewards of 1 
(2000 times), 10 (500 times), -10 (500 times)

• Which action should you prefer?

• Which action should you try next?



Main Principles
• Optimize Expected Value 

• Other criteria are possible, eg conditional value at risk (CVaR)

• Need to balance exploration (trying all actions) vs exploitation

• Reduce uncertainty in the mean of each action
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• Action 1 — Reward is always 8

• value of action 1 is

• Action 2 — 88% chance of 0, 12% chance of 100!

• value of action 2 is

• Action 3 — Randomly between -10 and 35, equiprobable

• Action 4 — a third 0, a third 20, and a third from {8,9,…, 18}

q⇤(1) = 8

You are the algorithm! (bandit1)

q⇤(2) = .88⇥ 0 + .12⇥ 100 = 12

q⇤(3) = 12.5-10 350 q⇤(3)



The k-armed Bandit Problem
• On each of an infinite sequence of time steps, t=1, 2, 3, …,  

you choose an action At from k possibilities, and receive a real-
valued reward Rt

• The reward depends only on the action taken; 
it is identically, independently distributed (i.i.d.):

• These true values are unknown. The distribution is unknown

• Nevertheless, you must maximize your total reward

• You must both try actions to learn their values (explore),  
and prefer those that appear best (exploit)

true valuesq⇤(a)
.
= E[Rt|At = a] , 8a 2 {1, . . . , k}



A⇤
t
.
= argmax

a
Qt(a)

The Exploration/Exploitation Dilemma
• Suppose you form estimates

• Define the greedy action at time t as

• If                   then you are exploiting 
If                   then you are exploring

• You can’t do both, but you need to do both

• You can never stop exploring, but maybe you should explore 
less with time. Or maybe not.

Qt(a) ⇡ q⇤(a), 8a action-value estimates

At = A⇤
t

At 6= A⇤
t



Action-Value Methods
• Methods that learn action-value estimates and nothing else

• For example, estimate action values as sample averages:

• The sample-average estimates converge to the true values 
If the action is taken an infinite number of times

lim
Nt(a)!1

Qt(a) = q⇤(a)
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and to exploit with any single action selection, one often refers to the “conflict”
between exploration and exploitation.

In any specific case, whether it is better to explore or exploit depends in a com-
plex way on the precise values of the estimates, uncertainties, and the number of
remaining steps. There are many sophisticated methods for balancing exploration
and exploitation for particular mathematical formulations of the k-armed bandit and
related problems. However, most of these methods make strong assumptions about
stationarity and prior knowledge that are either violated or impossible to verify in
applications and in the full reinforcement learning problem that we consider in sub-
sequent chapters. The guarantees of optimality or bounded loss for these methods
are of little comfort when the assumptions of their theory do not apply.

In this book we do not worry about balancing exploration and exploitation in a
sophisticated way; we worry only about balancing them at all. In this chapter we
present several simple balancing methods for the k-armed bandit problem and show
that they work much better than methods that always exploit. The need to balance
exploration and exploitation is a distinctive challenge that arises in reinforcement
learning; the simplicity of the k-armed bandit problem enables us to show this in a
particularly clear form.

2.2 Action-Value Methods

We begin by looking more closely at some simple methods for estimating the values
of actions and for using the estimates to make action selection decisions. Recall that
the true value of an action is the mean reward when that action is selected. One
natural way to estimate this is by averaging the rewards actually received:

Qt(a)
.
=

sum of rewards when a taken prior to t

number of times a taken prior to t
=

P
t�1
i=1 Ri · 1Ai=aP

t�1
i=1 1Ai=a

(2.1)

where 1predicate denotes the random variable that is 1 if predicate is true and 0 if it is
not. If the denominator is zero, then we instead define Qt(a) as some default value,
such as Q1(a) = 0. As the denominator goes to infinity, by the law of large numbers,
Qt(a) converges to q⇤(a). We call this the sample-average method for estimating
action values because each estimate is an average of the sample of relevant rewards.
Of course this is just one way to estimate action values, and not necessarily the best
one. Nevertheless, for now let us stay with this simple estimation method and turn
to the question of how the estimates might be used to select actions.

The simplest action selection rule is to select the action (or one of the actions)
with highest estimated action value, that is, to select at step t one of the greedy
actions, A⇤

t , for which Qt(A⇤
t ) = maxa Qt(a). This greedy action selection method

can be written as

At

.
= argmax

a

Qt(a), (2.2)

The number of times action a
has been taken by time t



ε-Greedy Action Selection

• In greedy action selection, you always exploit

• In 𝜀-greedy, you are usually greedy, but with probability 𝜀 you 
instead pick an action at random (possibly the greedy action 
again)

• This is perhaps the simplest way to balance exploration and 
exploitation
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As you might suspect, this is not really necessary. It is easy to devise incremental
formulas for updating averages with small, constant computation required to process
each new reward. Given Qn and the nth reward, Rn, the new average of all n rewards
can be computed by
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i
, (2.3)

which holds even for n = 1, obtaining Q2 = R1 for arbitrary Q1. This implemen-
tation requires memory only for Qn and n, and only the small computation (2.3)
for each new reward. Pseudocode for a complete bandit algorithm using incremen-
tally computed sample averages and "-greedy action selection is shown below. The
function bandit(a) is assumed to take an action and return a corresponding reward.

A simple bandit algorithm

Initialize, for a = 1 to k:
Q(a) 0
N(a) 0

Repeat forever:

A 
⇢

arg maxa Q(a) with probability 1� " (breaking ties randomly)
a random action with probability "

R bandit(A)
N(A) N(A) + 1
Q(A) Q(A) + 1

N(A)

⇥
R�Q(A)

⇤

The update rule (2.3) is of a form that occurs frequently throughout this book.
The general form is

NewEstimate OldEstimate + StepSize
h
Target�OldEstimate

i
. (2.4)

The expression
⇥
Target�OldEstimate

⇤
is an error in the estimate. It is reduced by

taking a step toward the “Target.” The target is presumed to indicate a desirable
direction in which to move, though it may be noisy. In the case above, for example,
the target is the nth reward.
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ε-Greedy Methods on the 10-Armed Testbed
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Averaging ⟶ learning rule
• To simplify notation, let us focus on one action

• We consider only its rewards, and its estimate after n-1 rewards:

• How can we do this incrementally (without storing all the rewards)?

• Could store a running sum and count (and divide), or equivalently:

• This is a standard form for learning/update rules:

Qn+1 = Qn +
1

n

h
Rn �Qn

i
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where here R1, . . . , RNt(a) are all the rewards received following all selections of action
a prior to play t. A problem with this straightforward implementation is that its
memory and computational requirements grow over time without bound. That is,
each additional reward following a selection of action a requires more memory to
store it and results in more computation being required to determine Qt(a).

As you might suspect, this is not really necessary. It is easy to devise incremental
update formulas for computing averages with small, constant computation required
to process each new reward. For some action, let Qn denote the estimate for its nth
reward, that is, the average of its first n� 1 rewards. Given this average and a nth
reward for the action, Rn, then the average of all n rewards can be computed by

Qn+1
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which holds even for n = 1, obtaining Q2 = R1 for arbitrary Q1. This implementation
requires memory only for Qn and n, and only the small computation (2.3) for each
new reward.

The update rule (2.3) is of a form that occurs frequently throughout this book.
The general form is

NewEstimate OldEstimate + StepSize
h
Target�OldEstimate

i
. (2.4)

The expression
⇥
Target�OldEstimate

⇤
is an error in the estimate. It is reduced by

taking a step toward the “Target.” The target is presumed to indicate a desirable
direction in which to move, though it may be noisy. In the case above, for example,
the target is the nth reward.

Note that the step-size parameter (StepSize) used in the incremental method
described above changes from time step to time step. In processing the nth reward
for action a, that method uses a step-size parameter of 1

n
. In this book we denote

the step-size parameter by the symbol ↵ or, more generally, by ↵t(a). We sometimes
use the informal shorthand ↵ = 1

n
to refer to this case, leaving the dependence of n

on the action implicit.
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their chances of recognizing the optimal action. The " = 0.1 method explores more,
and usually finds the optimal action earlier, but never selects it more than 91% of
the time. The " = 0.01 method improves more slowly, but eventually would perform
better than the " = 0.1 method on both performance measures. It is also possible to
reduce " over time to try to get the best of both high and low values.

The advantage of "-greedy over greedy methods depends on the task. For example,
suppose the reward variance had been larger, say 10 instead of 1. With noisier
rewards it takes more exploration to find the optimal action, and "-greedy methods
should fare even better relative to the greedy method. On the other hand, if the
reward variances were zero, then the greedy method would know the true value of
each action after trying it once. In this case the greedy method might actually
perform best because it would soon find the optimal action and then never explore.
But even in the deterministic case, there is a large advantage to exploring if we
weaken some of the other assumptions. For example, suppose the bandit task were
nonstationary, that is, that the true values of the actions changed over time. In this
case exploration is needed even in the deterministic case to make sure one of the
nongreedy actions has not changed to become better than the greedy one. As we
will see in the next few chapters, e↵ective nonstationarity is the case most commonly
encountered in reinforcement learning. Even if the underlying task is stationary and
deterministic, the learner faces a set of banditlike decision tasks each of which changes
over time as learning proceeds and the agent’s policy changes. Reinforcement learning
requires a balance between exploration and exploitation.

Exercise 2.1 In the comparison shown in Figure 2.2, which method will perform best
in the long run in terms of cumulative reward and cumulative probability of selecting
the best action? How much better will it be? Express your answer quantitatively.

2.3 Incremental Implementation

The action-value methods we have discussed so far all estimate action values as
sample averages of observed rewards. We now turn to the question of how these
averages can be computed in a computationally e�cient manner, in particular, with
constant memory and per-time-step computation.

To simplify notation we concentrate on a single action. Let Ri now denote the
reward received after the ith selection of this action, and let Qn denote the estimate
of its action value after it has been selected n � 1 times, which we can now write
simply as

Qn

.
=

R1 + R2 + · · · + Rn�1

n � 1
.

The obvious implementation would be to maintain a record of all the rewards and
then perform this computation whenever the estimated value was needed. However,
in this case the memory and computational requirements would grow over time as
more rewards are seen. Each additional reward would require more memory to store
it and more computation to compute the sum in the numerator.



Derivation of incremental update
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their chances of recognizing the optimal action. The " = 0.1 method explores more,
and usually finds the optimal action earlier, but never selects it more than 91% of
the time. The " = 0.01 method improves more slowly, but eventually would perform
better than the " = 0.1 method on both performance measures. It is also possible to
reduce " over time to try to get the best of both high and low values.

The advantage of "-greedy over greedy methods depends on the task. For example,
suppose the reward variance had been larger, say 10 instead of 1. With noisier
rewards it takes more exploration to find the optimal action, and "-greedy methods
should fare even better relative to the greedy method. On the other hand, if the
reward variances were zero, then the greedy method would know the true value of
each action after trying it once. In this case the greedy method might actually
perform best because it would soon find the optimal action and then never explore.
But even in the deterministic case, there is a large advantage to exploring if we
weaken some of the other assumptions. For example, suppose the bandit task were
nonstationary, that is, that the true values of the actions changed over time. In this
case exploration is needed even in the deterministic case to make sure one of the
nongreedy actions has not changed to become better than the greedy one. As we
will see in the next few chapters, e↵ective nonstationarity is the case most commonly
encountered in reinforcement learning. Even if the underlying task is stationary and
deterministic, the learner faces a set of banditlike decision tasks each of which changes
over time as learning proceeds and the agent’s policy changes. Reinforcement learning
requires a balance between exploration and exploitation.

Exercise 2.1 In the comparison shown in Figure 2.2, which method will perform best
in the long run in terms of cumulative reward and cumulative probability of selecting
the best action? How much better will it be? Express your answer quantitatively.

2.3 Incremental Implementation

The action-value methods we have discussed so far all estimate action values as
sample averages of observed rewards. We now turn to the question of how these
averages can be computed in a computationally e�cient manner, in particular, with
constant memory and per-time-step computation.

To simplify notation we concentrate on a single action. Let Ri now denote the
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The obvious implementation would be to maintain a record of all the rewards and
then perform this computation whenever the estimated value was needed. However,
in this case the memory and computational requirements would grow over time as
more rewards are seen. Each additional reward would require more memory to store
it and more computation to compute the sum in the numerator.
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As you might suspect, this is not really necessary. It is easy to devise incremental
formulas for updating averages with small, constant computation required to process
each new reward. Given Qn and the nth reward, Rn, the new average of all n rewards
can be computed by
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which holds even for n = 1, obtaining Q2 = R1 for arbitrary Q1. This implemen-
tation requires memory only for Qn and n, and only the small computation (2.3)
for each new reward. Pseudocode for a complete bandit algorithm using incremen-
tally computed sample averages and "-greedy action selection is shown below. The
function bandit(a) is assumed to take an action and return a corresponding reward.

A simple bandit algorithm

Initialize, for a = 1 to k:
Q(a) 0
N(a) 0

Repeat forever:

A 
⇢

arg maxa Q(a) with probability 1� " (breaking ties randomly)
a random action with probability "

R bandit(A)
N(A) N(A) + 1
Q(A) Q(A) + 1

N(A)

⇥
R�Q(A)

⇤

The update rule (2.3) is of a form that occurs frequently throughout this book.
The general form is

NewEstimate OldEstimate + StepSize
h
Target�OldEstimate

i
. (2.4)

The expression
⇥
Target�OldEstimate

⇤
is an error in the estimate. It is reduced by

taking a step toward the “Target.” The target is presumed to indicate a desirable
direction in which to move, though it may be noisy. In the case above, for example,
the target is the nth reward.



Averaging ⟶ learning rule
• To simplify notation, let us focus on one action

• We consider only its rewards, and its estimate after n+1 rewards:

• How can we do this incrementally (without storing all the rewards)?

• Could store a running sum and count (and divide), or equivalently:

• This is a standard form for learning/update rules:

Qn+1 = Qn +
1

n

h
Rn �Qn

i
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where here R1, . . . , RNt(a) are all the rewards received following all selections of action
a prior to play t. A problem with this straightforward implementation is that its
memory and computational requirements grow over time without bound. That is,
each additional reward following a selection of action a requires more memory to
store it and results in more computation being required to determine Qt(a).

As you might suspect, this is not really necessary. It is easy to devise incremental
update formulas for computing averages with small, constant computation required
to process each new reward. For some action, let Qn denote the estimate for its nth
reward, that is, the average of its first n� 1 rewards. Given this average and a nth
reward for the action, Rn, then the average of all n rewards can be computed by

Qn+1
.
=

1

n

nX

i=1

Ri

=
1

n

 
Rn +

n�1X

i=1

Ri

!

=
1

n

⇣
Rn + (n� 1)Qn + Qn �Qn

⌘

=
1

n

⇣
Rn + nQn �Qn

⌘

= Qn +
1

n

h
Rn �Qn

i
, (2.3)

which holds even for n = 1, obtaining Q2 = R1 for arbitrary Q1. This implementation
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new reward.
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taking a step toward the “Target.” The target is presumed to indicate a desirable
direction in which to move, though it may be noisy. In the case above, for example,
the target is the nth reward.

Note that the step-size parameter (StepSize) used in the incremental method
described above changes from time step to time step. In processing the nth reward
for action a, that method uses a step-size parameter of 1

n
. In this book we denote

the step-size parameter by the symbol ↵ or, more generally, by ↵t(a). We sometimes
use the informal shorthand ↵ = 1

n
to refer to this case, leaving the dependence of n

on the action implicit.
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But even in the deterministic case, there is a large advantage to exploring if we
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case exploration is needed even in the deterministic case to make sure one of the
nongreedy actions has not changed to become better than the greedy one. As we
will see in the next few chapters, e↵ective nonstationarity is the case most commonly
encountered in reinforcement learning. Even if the underlying task is stationary and
deterministic, the learner faces a set of banditlike decision tasks each of which changes
over time as learning proceeds and the agent’s policy changes. Reinforcement learning
requires a balance between exploration and exploitation.

Exercise 2.1 In the comparison shown in Figure 2.2, which method will perform best
in the long run in terms of cumulative reward and cumulative probability of selecting
the best action? How much better will it be? Express your answer quantitatively.

2.3 Incremental Implementation

The action-value methods we have discussed so far all estimate action values as
sample averages of observed rewards. We now turn to the question of how these
averages can be computed in a computationally e�cient manner, in particular, with
constant memory and per-time-step computation.

To simplify notation we concentrate on a single action. Let Ri now denote the
reward received after the ith selection of this action, and let Qn denote the estimate
of its action value after it has been selected n � 1 times, which we can now write
simply as

Qn

.
=

R1 + R2 + · · · + Rn�1

n � 1
.

The obvious implementation would be to maintain a record of all the rewards and
then perform this computation whenever the estimated value was needed. However,
in this case the memory and computational requirements would grow over time as
more rewards are seen. Each additional reward would require more memory to store
it and more computation to compute the sum in the numerator.



Tracking a Non-stationary Problem
• Suppose the true action values change slowly over time

• then we say that the problem is non-stationary

• In this case, sample averages are not a good idea (Why?)

• Better is an “exponential, recency-weighted average”:

• There is bias due to      that becomes smaller over time Q1

Qn+1
.
= Qn + ↵

h
Rn �Qn

i

= (1� ↵)nQ1 +
nX

i=1

↵(1� ↵)n�iRi,

where ↵ is a constant step-size parameter, ↵ 2 (0, 1]



Standard stochastic approximation 
convergence conditions

• To assure convergence with probability 1:

• e.g., 

• not 
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nth selection of action a. As we have noted, the choice ↵n(a) = 1
n

results in the
sample-average method, which is guaranteed to converge to the true action values by
the law of large numbers. But of course convergence is not guaranteed for all choices
of the sequence {↵n(a)}. A well-known result in stochastic approximation theory
gives us the conditions required to assure convergence with probability 1:

1X

n=1

↵n(a) = 1 and
1X

n=1

↵2
n(a) < 1. (2.7)

The first condition is required to guarantee that the steps are large enough to even-
tually overcome any initial conditions or random fluctuations. The second condition
guarantees that eventually the steps become small enough to assure convergence.

Note that both convergence conditions are met for the sample-average case, ↵n(a) =
1
n
, but not for the case of constant step-size parameter, ↵n(a) = ↵. In the latter case,

the second condition is not met, indicating that the estimates never completely con-
verge but continue to vary in response to the most recently received rewards. As
we mentioned above, this is actually desirable in a nonstationary environment, and
problems that are e↵ectively nonstationary are the norm in reinforcement learn-
ing. In addition, sequences of step-size parameters that meet the conditions (2.7)
often converge very slowly or need considerable tuning in order to obtain a satisfac-
tory convergence rate. Although sequences of step-size parameters that meet these
convergence conditions are often used in theoretical work, they are seldom used in
applications and empirical research.

Exercise 2.2 If the step-size parameters, ↵n, are not constant, then the estimate
Qn is a weighted average of previously received rewards with a weighting di↵erent
from that given by (2.6). What is the weighting on each prior reward for the general
case, analogous to (2.6), in terms of the sequence of step-size parameters?

Exercise 2.3 (programming) Design and conduct an experiment to demonstrate
the di�culties that sample-average methods have for nonstationary problems. Use a
modified version of the 10-armed testbed in which all the q⇤(a) start out equal and
then take independent random walks. Prepare plots like Figure 2.2 for an action-
value method using sample averages, incrementally computed by ↵ = 1

n
, and another

action-value method using a constant step-size parameter, ↵ = 0.1. Use " = 0.1 and,
if necessary, runs longer than 1000 steps.

2.5 Optimistic Initial Values

All the methods we have discussed so far are dependent to some extent on the initial
action-value estimates, Q1(a). In the language of statistics, these methods are biased
by their initial estimates. For the sample-average methods, the bias disappears once
all actions have been selected at least once, but for methods with constant ↵, the bias
is permanent, though decreasing over time as given by (2.6). In practice, this kind
of bias is usually not a problem and can sometimes be very helpful. The downside is
that the initial estimates become, in e↵ect, a set of parameters that must be picked

↵n =
1

n

↵n =
1

n2

O(1/
p
n)

↵n = n�p, p 2 (0, 1)if
then convergence is  
at the optimal rate:

.

.

.



Optimistic Initial Values
• All methods so far depend on          , i.e., they are biased. 

So far we have used 

• Suppose we initialize the action values optimistically (               ),   
e.g., on the 10-armed testbed (with             )
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Upper Confidence Bound (UCB) action selection
• A clever way of reducing exploration over time

• Estimate an upper bound on the true action values

• Select the action with the largest (estimated) upper bound
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Figure 2.2: The e↵ect of optimistic initial action-value estimates on the 10-armed testbed.
Both methods used a constant step-size parameter, ↵ = 0.1.

example, it is not well suited to nonstationary problems because its drive for ex-
ploration is inherently temporary. If the task changes, creating a renewed need for
exploration, this method cannot help. Indeed, any method that focuses on the initial
state in any special way is unlikely to help with the general nonstationary case. The
beginning of time occurs only once, and thus we should not focus on it too much.
This criticism applies as well to the sample-average methods, which also treat the
beginning of time as a special event, averaging all subsequent rewards with equal
weights. Nevertheless, all of these methods are very simple, and one of them or some
simple combination of them is often adequate in practice. In the rest of this book
we make frequent use of several of these simple exploration techniques.

2.6 Upper-Confidence-Bound Action Selection

Exploration is needed because the estimates of the action values are uncertain. The
greedy actions are those that look best at present, but some of the other actions
may actually be better. "-greedy action selection forces the non-greedy actions to
be tried, but indiscriminately, with no preference for those that are nearly greedy or
particularly uncertain. It would be better to select among the non-greedy actions
according to their potential for actually being optimal, taking into account both how
close their estimates are to being maximal and the uncertainties in those estimates.
One e↵ective way of doing this is to select actions as

At

.
= argmax

a

"
Qt(a) + c

s
log t

Nt(a)

#
, (2.8)

where log t denotes the natural logarithm of t (the number that e ⇡ 2.71828 would
have to be raised to in order to equal t), and the number c > 0 controls the degree
of exploration. If Nt(a) = 0, then a is considered to be a maximizing action.

The idea of this upper confidence bound (UCB) action selection is that the square-
root term is a measure of the uncertainty or variance in the estimate of a’s value.

1

!-greedy  ! = 0.1

UCB  c = 2

Average
reward

Steps



Gradient-Bandit Algorithms
• Let           be a learned preference for taking action aHt(a)
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of one action over another is important; if we add 1000 to all the preferences there is
no e↵ect on the action probabilities, which are determined according to a soft-max
distribution (i.e., Gibbs or Boltzmann distribution) as follows:

Pr{At =a} .
=

eHt(a)

P
k

b=1 eHt(b)

.
= ⇡t(a), (2.9)

where here we have also introduced a useful new notation ⇡t(a) for the probability of
taking action a at time t. Initially all preferences are the same (e.g., H1(a) = 0, 8a)
so that all actions have an equal probability of being selected.

There is a natural learning algorithm for this setting based on the idea of stochastic
gradient ascent. On each step, after selecting the action At and receiving the reward
Rt, the preferences are updated by:

Ht+1(At)
.
= Ht(At) + ↵

�
Rt � R̄t

��
1 � ⇡t(At)

�
, and

Ht+1(a)
.
= Ht(a) � ↵

�
Rt � R̄t

�
⇡t(a), 8a 6= At,

(2.10)

where ↵ > 0 is a step-size parameter, and R̄t 2 R is the average of all the rewards
up through and including time t, which can be computed incrementally as described
in Section 2.3 (or Section 2.4 if the problem is nonstationary). The R̄t term serves
as a baseline with which the reward is compared. If the reward is higher than the
baseline, then the probability of taking At in the future is increased, and if the reward
is below baseline, then probability is decreased. The non-selected actions move in
the opposite direction.

Figure 2.4 shows results with the gradient-bandit algorithm on a variant of the
10-armed testbed in which the true expected rewards were selected according to a
normal distribution with a mean of +4 instead of zero (and with unit variance as
before). This shifting up of all the rewards has absolutely no a↵ect on the gradient-
bandit algorithm because of the reward baseline term, which instantaneously adapts
to the new level. But if the baseline were omitted (that is, if R̄t was taken to be
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Figure 2.4: Average performance of the gradient-bandit algorithm with and without a
reward baseline on the 10-armed testbed with E[q(a)] = 4.

Note that this allows us to work with unnormalized preferences and turn 
them into probabilities!

Same idea as using potentials in graphical models
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where ↵ > 0 is a step-size parameter, and R̄t 2 R is the average of all the rewards
up through and including time t, which can be computed incrementally as described
in Section 2.3 (or Section 2.4 if the problem is nonstationary). The R̄t term serves
as a baseline with which the reward is compared. If the reward is higher than the
baseline, then the probability of taking At in the future is increased, and if the reward
is below baseline, then probability is decreased. The non-selected actions move in
the opposite direction.
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Derivation of gradient-bandit algorithm
In exact gradient ascent:

Ht+1(a)
.
= Ht(a) + ↵

@ E [Rt ]

@Ht(a)
, (1)

where:
E[Rt ]

.
=

X

b

⇡t(b)q⇤(b),

@ E[Rt ]

@Ht(a)
=

@

@Ht(a)

"
X

b

⇡t(b)q⇤(b)

#

=
X

b

q⇤(b)
@ ⇡t(b)

@Ht(a)

=
X

b

�
q⇤(b)� Xt

�@ ⇡t(b)

@Ht(a)
,

where Xt does not depend on b, because
P

b

@ ⇡t(b)
@Ht(a)

= 0.



@ E[Rt ]

@Ht(a)
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X
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q⇤(b)� Xt
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@Ht(a)

=
X
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⇡t(b)
�
q⇤(b)� Xt
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= E
�
q⇤(At)� Xt
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/⇡t(At)

�

= E
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Rt � R̄t

�@ ⇡t(At)

@Ht(a)
/⇡t(At)

�
,

where here we have chosen Xt = R̄t and substituted Rt for q⇤(At),
which is permitted because E[Rt |At ] = q⇤(At).

For now assume: @ ⇡t(b)
@Ht(a)

= ⇡t(b)
�
1a=b � ⇡t(a)

�
. Then:
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�
, (from (1), QED)



Thus it remains only to show that

@ ⇡t(b)

@Ht(a)
= ⇡t(b)

�
1a=b � ⇡t(a)

�
.

Recall the standard quotient rule for derivatives:
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g(x)2
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Using this, we can write...
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Softmax (Boltzmann) Exploration
• Let           be a learned preference for taking action aHt(a)
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of one action over another is important; if we add 1000 to all the preferences there is
no e↵ect on the action probabilities, which are determined according to a soft-max
distribution (i.e., Gibbs or Boltzmann distribution) as follows:

Pr{At =a} .
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eHt(a)

P
k

b=1 eHt(b)

.
= ⇡t(a), (2.9)

where here we have also introduced a useful new notation ⇡t(a) for the probability of
taking action a at time t. Initially all preferences are the same (e.g., H1(a) = 0, 8a)
so that all actions have an equal probability of being selected.

There is a natural learning algorithm for this setting based on the idea of stochastic
gradient ascent. On each step, after selecting the action At and receiving the reward
Rt, the preferences are updated by:

Ht+1(At)
.
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where ↵ > 0 is a step-size parameter, and R̄t 2 R is the average of all the rewards
up through and including time t, which can be computed incrementally as described
in Section 2.3 (or Section 2.4 if the problem is nonstationary). The R̄t term serves
as a baseline with which the reward is compared. If the reward is higher than the
baseline, then the probability of taking At in the future is increased, and if the reward
is below baseline, then probability is decreased. The non-selected actions move in
the opposite direction.

Figure 2.4 shows results with the gradient-bandit algorithm on a variant of the
10-armed testbed in which the true expected rewards were selected according to a
normal distribution with a mean of +4 instead of zero (and with unit variance as
before). This shifting up of all the rewards has absolutely no a↵ect on the gradient-
bandit algorithm because of the reward baseline term, which instantaneously adapts
to the new level. But if the baseline were omitted (that is, if R̄t was taken to be
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Figure 2.4: Average performance of the gradient-bandit algorithm with and without a
reward baseline on the 10-armed testbed with E[q(a)] = 4.

Consider 

This is Boltzmann or softmax exploration!

If the temperature T is very large (towards infinity) - same as uniform

If temperature T goes to 0, same as greedy

Ht(a) = Qt(a)/T
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