
More on Hierarchical Reinforcement Learning

With thanks to Rich Sutton, Satinder Singh, Gheorghe Comanici, Anna Harutyunyan, Andre Barreto, David

Silver, Pierre-Luc Bacon, Jean Harb, Shibl Mourad, Khimya Khetarpal, Zafarali Ahmed, David Abel, Sasha

Vezhnevets, Shaobo Hou, Philippe Hamel, Eser Aygun, Diana Borsa, Justin Novosad, Will Dabney, Nicholas

Heess, Remi Munos

COMP579 Lecture 18, 2025

Recall: Options

• An option ω consists of 3 components

– An initiation set Iω ⊆ S (aka precondition)
– A policy πω : S ×A → [0, 1]
πω(a|s) is the probability of taking a in s when following option ω

– A termination condition βω : S → [0, 1]:
βω(s) is the probability of terminating the option ω upon entering s

• Eg., robot navigation: if there is no obstacle in front (Iω), go forward
(πω) until you get too close to another object (βω)

• Inspired from macro-actions / behaviors in robotics / hybrid planning
and control

Cf. Sutton, Precup & Singh, 1999; Precup, 2000

COMP579 Lecture 18, 2025 1

Recall: Decision-Making with Options

SMDP

Time

MDP
State

Options

over MDP

Fig. 1. The state trajectory of an MDP is made up of small, discrete-time transitions,
whereas that of an SMDP comprises larger, continuous-time transitions. Options
enable an MDP trajectory to be analyzed in either way.

tion 4 considers the problem of effectively combining a given set of options
into a single overall policy. For example, a robot may have pre-designed con-
trollers for servoing joints to positions, picking up objects, and visual search,
but still face a difficult problem of how to coordinate and switch between
these behaviors [17,22,38,48,50,65–67]. Sections 5 and 6 concern intra-option
learning—looking inside options to learn simultaneously about all options con-
sistent with each fragment of experience. Finally, in Section 7 we illustrate a
notion of subgoal that can be used to improve existing options and learn new
ones.

1 The Reinforcement Learning (MDP) Framework

In this section we briefly review the standard reinforcement learning frame-
work of discrete-time, finite Markov decision processes , or MDPs , which forms
the basis for our extension to temporally extended courses of action. In this
framework, a learning agent interacts with an environment at some discrete,
lowest-level time scale, t = 0, 1, 2, . . . On each time step, t, the agent perceives
the state of the environment, st ∈ S, and on that basis chooses a primitive
action, at ∈ Ast . In response to each action, at, the environment produces one
step later a numerical reward, rt+1, and a next state, st+1. It is convenient to
suppress the differences in available actions across states whenever possible;
we let A =

�
s∈S As denote the union of the action sets. If S and A, are fi-

nite, then the environment’s transition dynamics can be modeled by one-step
state-transition probabilities,

pa
ss� = Pr{st+1 = s� | st = s, at = a},

4

Learning and planning algorithms are the same at all levels of abstraction!

COMP579 Lecture 18, 2025 2

How Should Options Be Created?

• Options can be given by a system designer (eg robotics)

• If subgoals / secondary reward structure is given, the option policy can be
obtained, by solving a smaller planning or learning problem (cf. Precup,
2000)

– Eg. acquiring certain objects in a game
– Eg. Intrinsic motivation

• What is a good set of subgoals / options?

• This is a representation discovery problem

• Studied a lot over the last 20 years

• Bottleneck states and change point detection currently the most
successful methods

COMP579 Lecture 18, 2025 3

Bottleneck States

• Perhaps the most explored idea in options construction

• A bottleneck allows “circulating” between many different states

• Lots of different approaches!

– Frequency of states (McGovern et al, 2001, Stolle & Precup, 2002)
– Graph partitioning / state graph analysis (Simsek et al, 2004, Menache

et al, 2004, Bacon & Precup, 2013) / graph Laplacian (eg Klissarov
and Machado, 2023)

– Information-theoretic ideas (Peters et al., 2010)

• People seem quite good at generating these (cf. Botvinick, 2001, Solway
et al, 2014)

• Main drawback: expensive both in terms of sample size and computation

COMP579 Lecture 18, 2025 4

Simpler Idea: Random Subgoals

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
LAVI

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
PFVI

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
OFVI

Figure 6: Example trajectories for policies derived from the last (K = 30) iteration of PFVI, OFVI, and
LAVI on the continuous two rooms domain. For LAVI, the landmark hyperspheres are drawn as black ovals.

0 5 10 15 20 25 30

Iteration #
0.0

0.5

1.0

1.5

2.0

2.5

Pe
rfo

rm
an

ce

LAVI(100)
LOFVI(100)
OFVI
PFVI

PFVI
OFVI

LO
FVI(1

00
)

LA
VI(1

00
)

0

5

10

15

20

25

30

Ti
m

e
(s

)p
er

Ite
ra

tio
n

(a) (b)

Figure 7: Two-Rooms: Comparison of planning with PFVI, OFVI, and LAVI with 100 landmarks in the
continuous two rooms domain. (a) Performance of policies derived from each iteration of PFVI, OFVI, and
LAVI. (b) Time in seconds to compute each iteration of PFVI, OFVI, and LAVI.

inventory requires making large jumps in the state-space (e.g., going from 0 inventory to maximum inventory
levels) in a single timestep.

5.3 Continuous Two Rooms Domain

We implemented a continuous-state version of the two rooms domain introduced by Şimşek and Barto
[2004]. Given the agent’s current state as a point hx, yi, the new state after executing a primitive action was
obtained by hx, yi+N (µ,�) where N (µ,�) is an instance of the normal distribution with mean µ = (�x,�y)
depending on the action (up, down, left, or right) and standard deviation � = (0.05, 0.05). If the agent was
blocked by a wall or boundary then it did not move. OFVI was given a single additional option (in addition
to the primitive actions), which transitions the agent from the doorway to the goal region. Landmarks for
LAVI and LOFVI were uniformly sampled from the state-space and di↵erent landmarks sets were sampled
for each trial.

We used Euclidean distance as a metric over the state-space and selected ⌘ = 0.05 and d+ = 15. We used
a greedy local planner that chose the action transitioning the agent closest to the landmark state, unless the
landmark and agent were in di↵erent rooms. In that case, the planner selected the action that transitioned
the closest to the doorway region. We ran all conditions for K = 30 iterations.

For the continuous Two-Rooms domain Figure 6 shows sample trajectories for the final policy derived
by PFVI, OFVI, and LAVI. Even with K = 30 iterations, PFVI was not able to derive a successful policy.
However, with additional iterations (not shown), PFVI does eventually learn a path to the goal region.
The policy derived by OFVI moves more directly toward the goal state, while the policy derived by LAVI
transitions from landmark to landmark. Although this results in a longer path to goal, LAVI is still able to
solve the task.

13

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
LAVI

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
PFVI

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
OFVI

Figure 6: Example trajectories for policies derived from the last (K = 30) iteration of PFVI, OFVI, and
LAVI on the continuous two rooms domain. For LAVI, the landmark hyperspheres are drawn as black ovals.

0 5 10 15 20 25 30

Iteration #
0.0

0.5

1.0

1.5

2.0

2.5

Pe
rfo

rm
an

ce

LAVI(100)
LOFVI(100)
OFVI
PFVI

PFVI
OFVI

LO
FVI(1

00
)

LA
VI(1

00
)

0

5

10

15

20

25

30

Ti
m

e
(s

)p
er

Ite
ra

tio
n

(a) (b)

Figure 7: Two-Rooms: Comparison of planning with PFVI, OFVI, and LAVI with 100 landmarks in the
continuous two rooms domain. (a) Performance of policies derived from each iteration of PFVI, OFVI, and
LAVI. (b) Time in seconds to compute each iteration of PFVI, OFVI, and LAVI.

inventory requires making large jumps in the state-space (e.g., going from 0 inventory to maximum inventory
levels) in a single timestep.

5.3 Continuous Two Rooms Domain

We implemented a continuous-state version of the two rooms domain introduced by Şimşek and Barto
[2004]. Given the agent’s current state as a point hx, yi, the new state after executing a primitive action was
obtained by hx, yi+N (µ,�) where N (µ,�) is an instance of the normal distribution with mean µ = (�x,�y)
depending on the action (up, down, left, or right) and standard deviation � = (0.05, 0.05). If the agent was
blocked by a wall or boundary then it did not move. OFVI was given a single additional option (in addition
to the primitive actions), which transitions the agent from the doorway to the goal region. Landmarks for
LAVI and LOFVI were uniformly sampled from the state-space and di↵erent landmarks sets were sampled
for each trial.

We used Euclidean distance as a metric over the state-space and selected ⌘ = 0.05 and d+ = 15. We used
a greedy local planner that chose the action transitioning the agent closest to the landmark state, unless the
landmark and agent were in di↵erent rooms. In that case, the planner selected the action that transitioned
the closest to the doorway region. We ran all conditions for K = 30 iterations.

For the continuous Two-Rooms domain Figure 6 shows sample trajectories for the final policy derived
by PFVI, OFVI, and LAVI. Even with K = 30 iterations, PFVI was not able to derive a successful policy.
However, with additional iterations (not shown), PFVI does eventually learn a path to the goal region.
The policy derived by OFVI moves more directly toward the goal state, while the policy derived by LAVI
transitions from landmark to landmark. Although this results in a longer path to goal, LAVI is still able to
solve the task.

13

Cf. Mann, Mannor & Precup, 2015

COMP579 Lecture 18, 2025 5

Inventory management application

• Manage a warehouse that can stock 8 different commodities

• At most 500 items can be stored at any given time

• Demand is stochastic and depends on time of year

• Negative rewards are given for unfulfilled orders and for the cost of
ordered items

• Hand-crafted options: order nothing until some threshold is crossed

• Primitive actions: specify amount of order for each item

COMP579 Lecture 18, 2025 6

Inventory management results

• Comparing a random policy and a 1-step greedy choice with using just
primitives (PFVI) using primitives and hand-crafted options (OFVI),
using “landmarks” (LOFVI) and using landmarks and only computing
values for landmarks states (LAVI)

Approximate Value Iteration with Mixed-Timescale Actions

Inventory Management Task

0 5 10 15 20

Iteration #

1000

2000

3000

4000

5000

6000

7000

D
is

co
un

te
d

C
um

ul
at

iv
e

R
ew

ar
d

LOFVI(100)
LAVI(100)
OFVI
PFVI
1-Step Greedy
Rand

0 5 10 15 20

Iteration #

1000

2000

3000

4000

5000

6000

7000

D
is

co
un

te
d

C
um

ul
at

iv
e

R
ew

ar
d

LOFVI(100)
LAVI(100)
OFVI
PFVI
1-Step Greedy
Rand

(a) Optimistic (V0 > V ⇤) (b) Pessimistic (V0 V ⇤)

Figure 11: Performance of policies at each iteration of OFVI and PFVI starting from a
state with no inventory. Results were averaged over 20 trials.

Ran
d

PFVI 1

PFVI 20
OFVI 1

OFVI 20

LO
FVI(1

00
) 1

LO
FVI(1

00
) 20

LA
VI(1

00
) 1

LA
VI(1

00
) 20

0

1000

2000

3000

4000

5000

6000

7000

Pe
rfo

rm
an

ce

PFVI
OFVI

LO
FVI(1

00
)

LA
VI(1

00
)

0

5

10

15

20

25

30

Ti
m

e
(s

)p
er

Ite
ra

tio
n

(a) (b)

Figure 12: Inventory Management: (a) Comparison of performance of the first and last
policies derived by PFVI, OFVI, and LAVI. (b) Comparison of time per iteration
in seconds. Results were averaged over 20 trials.

local planner that used a deterministic instance of the problem to transition as close as
possible to landmark states. We used Euclidean distance and set ⌘ = 0.05⇥ 500 where 500
was the maximum inventory level and d+ = 1. The reason we set d+ = 1 was because
successfully managing inventory requires making large jumps in the state-space (e.g., going
from 0 inventory to maximum inventory levels) in a single timestep.

Figure 12a compares the performance of a policy that selects primitive actions uniformly
at random and policies derived from the first and last iterates of PFVI, OFVI, LOFVI, and
LAVI. In this task, LAVI and LOFVI are able to outperform PFVI and OFVI after their first

55

• Randomly generated landmarks/subgoals perform much better

COMP579 Lecture 18, 2025 7

Performance and time evaluation

• Performance of initial and final policy (left) and running time (right)
averaged offer 20 independent runs

Approximate Value Iteration with Mixed-Timescale Actions

Inventory Management Task

0 5 10 15 20

Iteration #

1000

2000

3000

4000

5000

6000

7000

D
is

co
un

te
d

C
um

ul
at

iv
e

R
ew

ar
d

LOFVI(100)
LAVI(100)
OFVI
PFVI
1-Step Greedy
Rand

0 5 10 15 20

Iteration #

1000

2000

3000

4000

5000

6000

7000

D
is

co
un

te
d

C
um

ul
at

iv
e

R
ew

ar
d

LOFVI(100)
LAVI(100)
OFVI
PFVI
1-Step Greedy
Rand

(a) Optimistic (V0 > V ⇤) (b) Pessimistic (V0 V ⇤)

Figure 11: Performance of policies at each iteration of OFVI and PFVI starting from a
state with no inventory. Results were averaged over 20 trials.

Ran
d

PFVI 1

PFVI 20
OFVI 1

OFVI 20

LO
FVI(1

00
) 1

LO
FVI(1

00
) 20

LA
VI(1

00
) 1

LA
VI(1

00
) 20

0

1000

2000

3000

4000

5000

6000

7000

Pe
rfo

rm
an

ce

PFVI
OFVI

LO
FVI(1

00
)

LA
VI(1

00
)

0

5

10

15

20

25

30

Ti
m

e
(s

)p
er

Ite
ra

tio
n

(a) (b)

Figure 12: Inventory Management: (a) Comparison of performance of the first and last
policies derived by PFVI, OFVI, and LAVI. (b) Comparison of time per iteration
in seconds. Results were averaged over 20 trials.

local planner that used a deterministic instance of the problem to transition as close as
possible to landmark states. We used Euclidean distance and set ⌘ = 0.05⇥ 500 where 500
was the maximum inventory level and d+ = 1. The reason we set d+ = 1 was because
successfully managing inventory requires making large jumps in the state-space (e.g., going
from 0 inventory to maximum inventory levels) in a single timestep.

Figure 12a compares the performance of a policy that selects primitive actions uniformly
at random and policies derived from the first and last iterates of PFVI, OFVI, LOFVI, and
LAVI. In this task, LAVI and LOFVI are able to outperform PFVI and OFVI after their first

55

• Computing values only at landmark states yields a good policy almost
immediately
• Handcrafted options are better than primitives in the beginning but

slightly worse in the long run but randomly generated landmarks are
much better

COMP579 Lecture 18, 2025 8

Option-Critic: Learn Options that Optimize Return

• Explicitly state an optimization objective and then solve it to find a set
of options

• Handle both discrete and continuous set of state and actions

• Learning options should be continual (avoid combinatorially-flavored
computations)

• Options should provide improvement within one task (or at least not
cause slow-down...)

COMP579 Lecture 18, 2025 9

Actor-Critic Architecture

Value
function

Environment

Policy

at+1st

Actor

rt

Gradient

Critic TD error

• Clear optimization objective: average or discounted return

• Continual learning

• Handles both discrete and continuous states and actions

COMP579 Lecture 18, 2025 10

Option-Critic Architecture

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

The Option-Critic Architecture

where �QU,w(s,!, a) is the difference between the ap-
proximation and its true target. We can guarantee equal-
ity under two conditions: 1) The learning algorithm under-
lying QU,w minimizes the squared error distance and has
reached convergence 2) The gradient of the function ap-
proximator satisfies the equality:

@

@w
QU,w(s,!, a) =

@

@✓
⇡!,✓ (a | s)

1

⇡!,✓ (a | s)
(8)

This conditions simply mirror their MDP counterpart in the
original policy gradient theorem. The same conditions also
hold for the advantage function, used in the termination
gradient. This time however, we have:

@

@⇠
A⌦,⇠(s,!) =

@

@#
�!,#(s)

For more details, we invite you to consult the supplemen-
tary material.

4. Option-critic architecture

⇡⌦

QU , A⌦

Environment

atst

⇡!0
, �!0

rt

Gradients

Critic
TD error

!t

Options

Behavior policy

Figure 1: The option-critic architecture consists of a set of
options, a policy over them and a critic. Gradients can be
derived from the critic for both the intra-option policies and
termination functions. The execution model is suggested
pictorially by a switch ? over the contacts (. Switching
can only take place when a termination event is encoun-
tered.

The algorithmic implementation of theorems 1 and 2 gives
rise to the option-critic learning architecture (fig. 1), in
reference to the gradient-based actor-critic architectures
(Sutton, 1984; Peters et al., 2005; Degris et al., 2012).
Although option-critic is conceptually identical to actor-
critic, we sought to make a distinction between our holis-
tic approach to learning options and one in which intra-
option policies would be learned with regular policy gradi-
ent methods in a pseudo-reward context.

Since two types of gradients are needed to learn the options,
the critic part of the option-critic architecture consists in

Figure 2: Layout of the four-rooms domain and value func-
tion obtained by option-critic

.

QU (s,!, a) or the negative advantage function (or both).
In this work, we do not seek to use a critic for learning
the policy over options. Note that the problem of learning
a parametrized policy over options can be solved readily
using the policy gradient theorem (see section 2). Using
options has the advantage of reducing a large (potentially
continuous) set of primitive actions to a potentially much
smaller set of discrete options. In this case, the policy over
options can be found using planning methods over the op-
tions models.

5. Experiments
In order to illustrate our approach, we present some pre-
liminary experiments in the four-rooms domain (Sutton et
al., 1999). We fixed the initial state in the upper left cor-
ner and defined a terminal state in the lower right corner.
A penalty of -1 was incurred at every step and for every
action taken in the direction of a wall (resulting in a non-
elastic collision) and a terminal reward of 100 was obtained
upon taking an action leading to the goal state. Primitive
actions were defined as the one-step transitions to the next
cell in each of the four cardinal directions: north, east, west,
south. Any action could fail with probability 0.1, in which
case the agent would simply remain in the same state. The
discount factor for this MDP was set to to 0.9.

We chose to parametrize the intra-option policies using the
softmax distribution:

⇡! (a | s) =
exp✓|

!�(s,a)

P
a0 exp✓|

!�(s,a)

@

@✓
log ⇡! (a | s) = �(s, a)�

X

b

⇡! (b | s)�(s, b)

where � is a state-action basis function. In this experiment,
we used a simple a one-hot encoding of state-action pairs
as basis functions. We defined the termination through the

• Given a number of desired options, optimize internal policies and
termination conditions using the cumulative reward signal

cf. Bacon et al, AAAI’2017

COMP579 Lecture 18, 2025 11

Results: Transfer in Rooms Domain
Hallways

Walls

Initial goal Uniformly random goal

1000 ep.

0 500 1000 1500 2000

Episodes

0

100

200

300

400

500

S
te

p
s

AC

Sarsa

OC 2 options

OC 4 options

OC 6 options

OC 8 options

COMP579 Lecture 18, 2025 12

Option-Critic Architecture

Qθ(·|s)

βθ(s, ·)
πθ(·|s, ·)

32 filters
8× 8

64 filters
4× 4

64 filters
3× 3

Last 4 frames
84× 84 pixels

Dense layer
512 units

• Given a number of desired options, optimize internal policies and
termination conditions using the reward signal

• DQN-style or advantage asynchronous option-critic (A2OC) (other
choices possible)

COMP579 Lecture 18, 2025 13

Quantitative results in Atari games
Policy over options

Termination functions

Internal policies

Shared representationConvolutional layersLast 4 frames

Figure 3: Network architecture for option-critic in the ALE
environment. The penultimate layer is shared across option
policies, termination functions and value outputs.

Therefore, the gradient for option policies takes into account
how a local change in the action choices would impact per-
formance of the entire system.

The gradient theorem for termination functions also ad-
mits a clear interpretation but involves a different critic feed-
back than for option policies. The termination gradient
makes the odds of terminating more likely if there is no
longer an advantage in maintaining an option. Conversely
if committing to an option is deemed advantageous by the
critic, its probability of terminating should be decreased so
as to lengthen that option. The expression advantageous,
loosely used up to now, is defined precisely in terms of the
advantage function (Baird 1993): the difference between the
value of a given option at a state and the expected value over
all options. Interestingly, the termination gradient theorem
for options can be seen as another instantiation of the inter-
ruption execution model (Sutton et al. 1999b) whereby the
policy over option commits to an option unless a better one
can be taken.

Deep Options
In addition to options, a state abstraction can also be learned
end-to-end under the option-critic architecture. Having
the Arcade Learning Environment (ALE) (Bellemare et al.
2013) in mind, we designed a parameterization around the
deep network architecture of the DQN algorithm (Mnih et
al. 2015). The observations fed to the agent being pixel-
based, the first few layers of the network (fig. 3) apply con-
volutions to a concatenation of the last four frames. In the
penultimate layer, the high level visual features extracted be-
low are combined in a shared representation across all op-
tions, termination functions and values outputs.

While we could have chosen to also parameterized the
policy over options, we decided to use instead an epsilon-
greedy (Sutton and Barto 1998) policy over options derived
from the value outputs. Therefore the stream of computation
going from input to value output and epsilon-greedy policy
mirrors the same design as DQN . However, the second path
of computation ending in the option policies and termination
functions necessitates randomization per the gradient theo-
rems for options. Because the action space is discrete, we
chose the softmax (Sutton et al. 1999a) for the options poli-
cies and sigmoid functions for the termination functions.

Different kinds of parameters updates are also necessary
in each of the two stream. For the value updates and control
over options, we used the idea of a target network of DQN

(a) Asterix (b) Ms. Pacman

Option-Critic
DQN

Option-Critic
DQN

A
vg

.S
co

re

Epoch Epoch
50 100 150 2000 50 100 150 2000

0

2000

4000

6000

8000

10000

500

1000

1500

2000

2500

(c) Seaquest (d) Zaxxon

Option-Critic
DQN

Option-Critic
DQN

Epoch Epoch
50 100 150 2000 50 100 150 2000

0

2000

4000

6000

8000

10000

0

2000

4000

6000

8000

Figure 4: Option-critic can learn options (8 in this case)
within a single task in the Arcade Learning Environment.

but in combination with the intra-option Q-learning algo-
rithm (Sutton et al. 1999b) By freezing the network for a
fixed interval, the target for the values update becomes more
stationary learning becomes more stable. Both kinds of up-
dates would be computed at every step with samples com-
ing from an experience replay buffer (Lin 1992) for learning
values but using only fresh online samples for the options
updates. The reason for not using replayed samples with op-
tions gradients (or policy gradients in general) was to ensure
that our gradient estimates would truly come the distribution
of interest : the stationary distribution of the online process.

From Zero to Options : Results in ALE
Could we learn from scratch a set of options and their state
abstraction within a single task ? We set out to answer this
question in four representative tasks of the ALE domain :
Asterix, Ms. Pacman, Seaquest in Zaxxon. Even for simple
grid environments, discovering options in complete auton-
omy had either required excessively large amounts of data
and computation or some form of prior experience in related
tasks. Hence, learning options in ALE without any prespec-
ification other than the goal of maximizing the discounted
return would be a formidable challenge.

Despite the complexity of this endeavour, the combina-
tion of option-critic and our deep architecture outperformed
the best reported DQN performance (fig. 4) for the same to-
tal number of frames in the games Asterix, Ms. Pacman and
Seaquest. It is important to remember that all learning took
place entirely within the same task at a rate and computa-
tional cost comparable to DQN. Beside the options param-
eterization the only parameter that we had to provide to our
system was the number of desired options.

With the end-to-end approach behind the option-critic ar-
chitecture, the question “what options were discovered ?”
can be answered in general by : any kind of options that

• Performance matching or better than DQN learning within a single task

• Out of 8 games tested, option-critic does better that published results in
7, with A3C version superior to DQN - mainly due to exploration

COMP579 Lecture 18, 2025 14

Qualitative results in Atari games

(a) Asterix (b) Ms. Pacman (c) Seaquest (d) Zaxxon

Testing
Moving avg.10
DQN

Testing
Moving avg.10
DQN

Testing
Moving avg.10
DQN

Testing
Moving avg.10
DQN

A
vg

.S
co

re

Epoch Epoch Epoch Epoch
50 100 150 2000 50 100 150 2000 50 100 150 2000 50 100 150 2000

0

2000

4000

6000

8000

10000

500

1000

1500

2000

2500

0

2000

4000

6000

8000

10000

0

2000

4000

6000

8000

Figure 8: Learning curves in the Arcade Learning Environment. The same set of parameters was used across all four games: 8
options, 0.01 termination regularization, 0.01 entropy regularization, and a baseline for the intra-option policy gradients.

Option 0 Option 1

Time

Figure 9: Up/down specialization in the solution found by option-critic when learning with 2 options in Seaquest. The top bar
shows a trajectory in the game, with “white” representing a segment during which option 1 was active and “black” for option 2.

use the DQN framework to implement a gradient-based op-
tion learner, which uses intrinsic rewards to learn the internal
policies of options, and extrinsic rewards to learn the pol-
icy over options. As opposed to our framework, descriptions
of the subgoals are given as inputs to the option learners.
Option-critic is conceptually general and does not require
intrinsic motivation for learning the options.

Discussion
We developed a general gradient-based approach for learn-
ing simultaneously the intra-option policies and termination
functions, as well as the policy over options, in order to opti-
mize a performance objective for the task at hand. Our ALE
experiments demonstrate successful end-to-end learning of
options in the presence of nonlinear function approxima-
tion. As noted, our approach only requires specifying the
number of options. However, if one wanted to use additional
pseudo-rewards, the option-critic framework would easily
accommodate it. In this case, the internal policies and ter-
mination function gradients would simply need to be taken
with respect to the pseudo-rewards instead of the task re-
ward. A simple instance of this idea, which we used in some
of the experiments, is to use additional rewards to encour-
age options that are indeed temporally extended by adding
a penalty whenever a switching event occurs. Our approach
can work seamlessly with any other heuristic for biasing the
set of options towards some desirable property (e.g. compo-
sitionality or sparsity), as long as it can be expressed as an
additive reward structure. However, as seen in the results,
such biasing is not necessary to produce good results.

The option-critic architecture relies on the policy gradient

theorem, and as discussed in (Thomas 2014), the gradient
estimators can be biased in the discounted case. By intro-
ducing factors of the form �t

Qt
i=1(1 � �i) in our updates

(Thomas 2014, eq (3)), it would be possible to obtain un-
biased estimates. However, we do not recommend this ap-
proach since the sample complexity of the unbiased esti-
mators is generally too high and the biased estimators per-
formed well in our experiments.

Perhaps the biggest remaining limitation of our work is
the assumption that all options apply everywhere. In the case
of function approximation, a natural extension to initiation
sets is to use a classifier over features, or some other form of
function approximation. As a result, determining which op-
tions are allowed may have similar cost to evaluating a pol-
icy over options (unlike in the tabular setting, where options
with sparse initiation sets lead to faster decisions). This is
akin to eligibility traces, which are more expensive than us-
ing no trace in the tabular case, but have the same complex-
ity with function approximation. If initiation sets are to be
learned, the main constraint that needs to be added is that the
options and the policy over them lead to an ergodic chain in
the augmented state-option space. This can be expressed as
a flow condition that links initiation sets with terminations.
The precise description of this condition, as well as sparsity
regularization for initiation sets, is left for future work.

Acknowledgements
The authors gratefully acknowledge financial support for
this work by the National Science and Engineering Research
Council of Canada (NSERC) and the Fonds de recherche du
Quebec - Nature et Technologies (FRQNT).

• In Seaquest, separate options are learned to go up and down

COMP579 Lecture 18, 2025 15

Preserving Procedural Knowledge over Time

• Successful simultaneous learning of terminations and option policies

• But, as expected, options shrink over time unless additional regularization
is imposed

Cf. time-regularized options, Mann et al, (2014)

• Intuitively, using longer options increase the speed of learning and
planning (but may lead to a worse result in call-and-return execution)

• Diverse options are useful for exploration in continual learning setting

COMP579 Lecture 18, 2025 16

Bounded Rationality as Regularization

• Problem: optimizing return leads to option collapse (primitive actions
are sufficient for optimal behaviour)

• Bounded rationality: reasoning about action choices is expensive (energy
consumption and missed-opportunity cost)

Eg Russell, 1995, Lieder & Griffiths, 2018

• Idea: switching options incurs an additional cost

Bacon, Harb & Precup

Time

Base MDP + Options

Deliberation Costs

Figure 1: The switching cost is incurred upon entering SMDP decision points, represented
by open circles. The average decision cost per primitive step (filled circle) is represented by
the intensity of the subtrajectory.

Furthermore, if c✓(s
0, o) = ��✓(s

0, o) – which we call a switching cost function – we have :

Qc
✓(s, o) =

X

a

⇡ (a | s, o)

r(s, a) + �
X

s0
P
�
s0
�� s, a

� ⇥
Q✓(s

0, o)� �✓(s0, o)
�
Ac

✓(s
0, o) + ⌘

�⇤
!

,

(19)

where Ac
✓(s

0, o)=̇Qc
✓(s

0, o)�V c
✓ (s0). The introduction of the switching cost to the base MDP

reward therefore leads to a di↵erent form for the intra-option Bellman equations (5) where
a scalar ⌘ is now added to the advantage function. This suggests that the e↵ect of using a
switching cost ⌘ is to set a baseline on how good an option is believed to be compared to v✓.
By increasing ⌘, we e↵ectively express that persisting with an option might be preferable
to reconsidering the current course of actions immediately. This preference for committing
to the same option might be motivated by computational or metabolic limitations (Simon,
1957), or by the inherent approximation error (due to finite predictive capacity) or to the
uncertainty in the value estimates.

5.3 Di↵erent Horizons for Cost and Reward

The generality of the regularized objective (18) allows a decoupling of the internal horizon
on the expected discounted cost with the discount factor of the external environment. In
this case, the unconstrained objective becomes:

J�,⌧
↵ (✓)=̇

X

s,o

↵(s, o)
�
Q�

✓ (s, o)�D⌧
✓ (s, o)

�
. (20)

where D⌧
✓ is the expected ⌧ -discounted cost and Q�

✓ the expected discount sum of rewards
in the base MDP. The intra-option Bellan equations over the switching cost being:

D⌧
✓ (s, o) =

X

a

⇡ (a | s, o)
X

s0
P
�
s0
�� s, a

� �
c✓(s

0, o) + ⌧Q✓(s
0, o)� ⌧�✓(s0, o)A✓(s

0, o)
�
,

setting ⌧ = 0 with c✓(s
0, o) = ��✓(s

0, o) leads to :

D⌧=0
✓ (s, o) =

X

a

⇡ (a | s, o)
X

s0
P
�
s0
�� s, a

�
c✓(s, o, s

0) .

16

• Can be shown equivalent to requiring that advantage exceeds a threshold
before switching

COMP579 Lecture 18, 2025 17

Illustration: Amidar

(a) Without a deliberation cost, options ter-
minate instantly and are used in any scenario
without specialization.

(b) Options are used for extended periods
and in specific scenarios through a trajectory,
when using a deliberation cost.

(c) Termination is sparse when using the
deliberation cost. The agent terminates op-
tions at intersections requiring high level de-
cisions.

Figure 2: We show the effects of using deliberation costs on both the option termination and policies. In figures (a) and (b),
every color in the agent trajectory represents a different option being executed. This environment is the game Amidar, of the
Atari 2600 suite.

of deliberation cost with previous notions of regularization
from (Mann et al. 2014) and (Bacon et al. 2017).

The deliberation cost goes beyond only the idea of pe-
nalizing for lengthy computation. It can also be used to in-
corporate other forms of bounds intrinsic to an agent in its
environment. One interesting direction for future work is to
also think of deliberation cost in terms of missed opportunity
and opening the way for an implicit form of regularization
when interacting asynchronously with an environment. An-
other interesting form of limitation inherent to reinforcement
learning agents has to do with their representational capaci-
ties when estimating action values. Preliminary work seems
to indicate that the error decomposition for the action values
could be also be expressed in the form of a deliberation cost.

References
[Altman 1999] E. Altman. Constrained Markov Decision
Processes. Chapman and Hall, 1999.

[Andreas et al. 2017] Jacob Andreas, Dan Klein, and Sergey
Levine. Modular multitask reinforcement learning with pol-
icy sketches. In ICML, pages 166–175, 2017.

[Bacon et al. 2017] Pierre-Luc Bacon, Jean Harb, and Doina
Precup. The option-critic architecture. In AAAI, pages 1726–
1734, 2017.

[Baird 1993] Leemon C. Baird. Advantage updating. Tech-
nical Report WL–TR-93-1146, Wright Laboratory, 1993.

[Bellemare et al. 2013] M. G. Bellemare, Y. Naddaf, J. Ve-
ness, and M. Bowling. The arcade learning environment: An
evaluation platform for general agents. Journal of Artificial
Intelligence Research, 47:253–279, 06 2013.

[Botvinick et al. 2009] Matthew M. Botvinick, Yael Niv, and
Andrew C. Barto. Hierarchically organized behavior and its

neural foundations: A reinforcement learning perspective.
Cognition, 113(3):262 – 280, 2009.

[Branavan et al. 2012] S. R. K. Branavan, Nate Kushman,
Tao Lei, and Regina Barzilay. Learning high-level planning
from text. In ACL, pages 126–135, 2012.

[Daniel et al. 2016] C. Daniel, H. van Hoof, J. Peters, and
G. Neumann. Probabilistic inference for determining op-
tions in reinforcement learning. Machine Learning, Special
Issue, 104(2):337–357, 2016.

[Dayan and Hinton 1992] Peter Dayan and Geoffrey E. Hin-
ton. Feudal reinforcement learning. In NIPS, pages 271–
278, 1992.

[Dietterich 1998] Thomas G. Dietterich. The MAXQ
method for hierarchical reinforcement learning. In ICML,
pages 118–126, 1998.

[Drescher 1991] Gary L. Drescher. Made-up Minds: A Con-
structivist Approach to Artificial Intelligence. MIT Press,
Cambridge, MA, USA, 1991.

[Fikes et al. 1972] Richard Fikes, Peter E. Hart, and Nils J.
Nilsson. Learning and executing generalized robot plans.
Artif. Intell., 3(1-3):251–288, 1972.

[Gigerenzer and Selten 2001] Gerd Gigerenzer and R. Sel-
ten. Bounded Rationality: The adaptive toolbox. Cam-
bridge: The MIT Press, 2001.

[Guo et al. 2014] Xiaoxiao Guo, Satinder Singh, Honglak
Lee, Richard L Lewis, and Xiaoshi Wang. Deep learning
for real-time atari game play using offline monte-carlo tree
search planning. In Z. Ghahramani, M. Welling, C. Cortes,
N. D. Lawrence, and K. Q. Weinberger, editors, Advances
in Neural Information Processing Systems 27, pages 3338–
3346. Curran Associates, Inc., 2014.

[Howard 1963] Ronald A. Howard. Semi-markovian deci-

• Deliberation costs prevent options from becoming too short

• Terminations are intuitive

COMP579 Lecture 18, 2025 18

Leveraging Large Models to Construct Options
Code as Reward: Empowering Reinforcement Learning with VLMs

Figure 1. Complete pipeline of VLM-CaR, describing how code blocks for sub-tasks and rewards are generated. The top portion is the
reward script generation pipeline, which uses the VLM, and the bottom portion is the RL training loop. The feedback loop is shown on
the right and is used to determine if the task and goal code blocks are correct. The middle portion in green represents the generated scripts
from the VLM. The task completion scripts are applied to random and expert trajectories to compute if the task was completed or not. All
tasks should be completed in expert trajectories and rarely completed in random trajectories.

that are actionable by the agent and will result in the final
goal completion. An example set of tasks is shown in Figure
1. For each sub-task, we prompt the VLM to infer the sub-
set of objects that are relevant for verifying the completion
of this particular sub-task, followed by generating a pro-
gram for identifying the relevant objects. We finally ask the
VLM to provide a program for identifying if the sub-task
is complete. We verify this program using the verification
pipeline in Subsection 4.2. This serves as an initial set of
functions that can be thought of as implementing both initi-
ation and termination conditions for options corresponding
to each sub-task. In other words, the objects in the image,
identified by the VLM, determine both which options are
affordable (Khetarpal et al., 2020b; Ahn et al., 2022) as well
as when options terminate. For reaching the final goal, we
utilize the same approach to determine the relevant objects
and a program to identify if the final goal is completed. We
show the full prompting pipeline in Appendix A and B as
well as an example interaction with the VLM in Appendix
C.

4.2. Verification using Expert and Random trajectories

A possibility for obtaining reliable programs is to ask hu-
mans to visually inspect the correctness of the code through
a set of observations from the environments. While human
expertise can be invaluable, it can limit the scaling of this
approach, as generated scripts are complex, especially in
real world environments. Therefore, we automate the verifi-
cation of generated scripts through a verification pipeline.

To automatically verify the correctness of the generated
programs described in the previous section, we use 2 tra-
jectories generated by an expert agent and 100 randomly
generated trajectories. We execute the generated object iden-
tification and sub-task programs on the random and expert
trajectories. Every sub-task must be completed in the expert
trajectories and completed in less than p% of the random tra-
jectories (where p is a tune-able parameter). It is important
to note that it is very important to use random trajectories as
negative data, in order to catch any false positive sub-tasks
generated by the model. This verification stage is shown
on the right in Figure 1. If the generated programs do not
pass this verification stage, the VLM is prompted anew and
asked to refine the program for sub-tasks which did not pass
the automated verification test. This allows us to ensure the
correctness of the sub-tasks and reward functions.

4.3. Using Generated Programs in the RL loop

Once the generated programs are verified, we use them
to improve the learning efficiency of an RL agent. The
programs generated for sub-task completion are added as
auxiliary reward functions in addition to the original envi-
ronment reward. Specifically, once the proposed sub-task is
determined to be completed, an additional auxiliary reward
(raux) is provided to the agent and we move to the determin-
ing if the next task is completed or not. Once all sub-tasks
are completed, we call the final goal completion script. The
assembly of all of the VLM’s proposed sub-goals scripts
leads to a dense reward model. These sub-task completion

4

Cf. Venuto et al, ICML’2024

COMP579 Lecture 18, 2025 19

Illustration: Generated Code Options Improve RL!

Code as Reward: Empowering Reinforcement Learning with VLMs

Figure 2. The online episodic mean reward evaluated over 5 episodes every 250 steps for MiniGrid RL tasks. We show the average over
3 random seeds. 1M environment step interactions are used. The shaded area shows the standard error. Agents trained using rewards
generated by VLM-CaR perform better than the sparse environment reward. In some tasks, sparse rewards are not sufficient for any
meaningful performance whereas VLM-CaR rewards allow the agent to solve the task.

Figure 3. The success rate in completing the final task in Pandas-Gym environments. 5 random seeds are shown. The shaded area is the
standard deviation. RL agent trained on dense reward generated by VLM-CaR generally performs better than RL agent trained on sparse
environment rewards.

For robotic tasks, we ask the VLM to give an incremental
reward model if it determines that is more appropriate. For
the Robotic Goal Completion Pipeline, we only provide a
reward function for completing the final goal. This reward
function is usually dense in many robotic tasks, where for
example the agent must move multiple objects to a target
location. We observe that it is common for the VLM to
propose the Euclidean distance of the targets from the goal
location as the goal reward model in this case.

The setup provides a complex environment for evaluating
the ability to ground natural language concepts like colors
and object categories. The input is a top-down RGB-D
image from 3 cameras positioned around a rectangular ta-
ble: one in the front, one on the left, and one on the right,
all pointing towards the center of the table. For VLM-
CaR, we use the camera overlooking the center of the table
from a 45 degree angle to provide images of the initial
and goal state. We examine 3 tasks in this UR5e environ-
ment. The first, separating-piles, the agent must
sort blue blocks into a yellow square shaped region. In
put-blocks-in-bowls, the agent must move 2 or 3
red blocks into the green bowls. In packing-shapes,
the agent must move a blue ”M” shaped object into a large
brown box. For simplicity, we fix the colours and shapes of
the relevant objects in each task, since a component of our
VLM generated reward function utilizes the identification of

colours as well as shapes. CLIPort is trained utilizing textual
descriptions of the task, for example “sort the red blocks
into the green square”. For utilizing different coloured ob-
jects, it is easy to see that we could modify VLM-CaR to
correctly identify different coloured objects using the textual
descriptions.

Reward Strategies: For separating-piles, VLM-
CaR generates a reward function that first identifies the
yellow square from the initial frame and saves its contour
for future use. VLM-CaR then identifies all the blue block
contours in the image and give a numerical reward that is
the fraction of blue blocks inside the yellow square to the
portion outside. For put-blocks-in-bowls, VLM-
CaR first identifies the red cubic shaped objects. The green
circular shaped bowls are then identified and the contours
are stored from the initial image. VLM-CaR then gives a
reward of 1 for each red block that is identified in the green
bowl contour. For packing-shapes, VLM-CaR first
identifies the blue ”M” shaped object by checking if the
shape is more complex than a rectangle (with vertices > 4)
and identifying it by it’s blue color and a relatively large
size. VLM-CaR then identifies the brown box by size, if it
is rectangular and by color. The reward is 1 for identifying
the ”M” shaped object inside a bounding contour of the
box. We utilize the robotic-goal-completion pipeline for
these experiments. Our experiments in Figure 4 indicate

7

Cf. Venuto et al, ICML’2024, Klissarov et al, ICLR’2025

COMP579 Lecture 18, 2025 20

Predictive knowledge: Value Function

• Given a policy π, a discount factor γ and a reward function r, the value
function of the policy is given by:

vπ(s) = E[

∞∑

k=t

r(Sk, Ak)γ
k−t|St = s,At:∞ ∼ π]

= E[

∞∑

k=t

r(Sk, Ak)

k∏

i=t+1

γ|St = s,At:∞ ∼ π]

• r is the signal of interest for the prediction

• γ defines the time scale over which we want to make the prediction (in
a very crude way)

• Optimal value function: given a discount factor γ and a reward function
r, compute vπ∗ and π∗, the optimal policy wrt γ, r

COMP579 Lecture 18, 2025 21

Focusing on value function

• Definition allows us to leverage great tools: bootstrapping (as in dynamic
programming) and sampling

• We have good ideas for how to learn value functions from data using
temporal-difference methods, off-policy learning...

• Usual objection: this is restricted to one reward function and usually a
fixed time scale (discount)

• An agent may need to make predictions about many different things and
at many different time scales

COMP579 Lecture 18, 2025 22

There are many things to learn! (Adam White’s thesis)

Sensory stream of Critterbot robot about different sensors for different policies
Can we learn about all these signals in parallel from one stream of data?

COMP579 Lecture 18, 2025 23

Temporally Abstract Predictions: General Value
Functions (GVFs)

• Given a cumulant function c, state-dependent continuation function γ
and policy π, the General Value Function vπ,γ,c is defined as:

vπ,c,γ(s) = E

[∞∑

k=t

c(Sk, Ak, Sk+1)

k∏

i=t+1

γ(Si)|St = s,At:∞ ∼ π
]

• Cumulant c can output a vector (even a matrix)

• Continuation function γ maps states to [0,1] (further generalizations are
possible)

• Cf. Horde architecture (Sutton et al, 2011); Adam White’s thesis;
inspiration from Pandemonium architecture

• Special case: policy is optimal wrt c, γ, v∗c,γ - Universal Value Function
approximation (UVFA) (Schaul et al, 2015)

COMP579 Lecture 18, 2025 24

Special case: Successor States

©
 2

01
8

N
at

ur
e

A
m

er
ic

a,
 In

c.
, p

ar
t o

f S
pr

in
ge

r N
at

ur
e.

 A
ll

rig
ht

s
re

se
rv

ed
.

1644 VOLUME 20 | NUMBER 11 | NOVEMBER 2017 NATURE NEUROSCIENCE

A R T I C L E S

where � (st = s`) = 1 if st = s` and 0 otherwise. Thus, we decompose the
expected discounted reward into expected discounted future state
occupancy and the reward at each state. An estimate of the SR (denoted
M̂) can be incrementally updated using a form of the temporal difference
learning algorithm (equation (8))4,11.

The SR combines the advantages of model-free and model-based
algorithms. Like model-free algorithms, policy evaluation is com-
putationally efficient with the SR. Additionally, factoring the value
function into a state expectation SR term and a reward term confers
some of the flexibility usually associated with model-based meth-
ods12. Separating the terms for state dynamics and reward permits
rapid recomputation of new value functions when reward is intro-
duced, moved, or changed, without relearning state dynamics, as
demonstrated in Figure 1. A model-free agent would have to relearn
value estimates for each location in order to make value predictions,
and a model-based agent would need to aggregate the results of time-
consuming searches through its model before it could produce an
updated value prediction1,4. In Supplementary Figure 1, we demon-
strate that, while changing the reward function completely disrupts
model-free learning of a value function in a two-step tree maze, SR
learning can quickly adjust.

Two states that predict similar successor states are necessarily simi-
larly valuable13. This makes the SR a good representational space
for generalizing value. As adjacent states will frequently lead to each
other, the SR will naturally represent adjacent states similarly and
therefore be smooth over time and space in spatial tasks. As the SR
is well defined for any Markov decision process, we can use the same
architecture for spatial and nonspatial tasks alike.

Hippocampal encoding of the successor representation
We now turn to our main theoretical claim: that the SR is encoded
by the hippocampus. This hypothesis is based on the central role of
the hippocampus in representing space and context5, as well as its
contribution to sequential decision making7. Although the SR can
be applied to arbitrary state spaces, we focus here on spatial domains
where states index locations.

Place cells in the hippocampus have traditionally been viewed as
encoding an animal’s current location. In contrast, the predictive
map theory views these cells as encoding an animal’s future locations.
Crucially, an animal’s future locations depend on its policy, which is
constrained by a variety of factors such as the environmental topol-
ogy and the locations of rewards. We demonstrate that these factors
shape place cell receptive field properties in a manner consistent with
a predictive map.

According to our model, the hippocampus represents the SR as a rate
code across the population. Each neuron represents some possible future
state (for example, future spatial position) in the environment. At any
current state s, the population will encode a row of the SR matrix, M(s:).
The firing rate of a single neuron encoding state s` in the population
is proportional to the discounted expected number of times it will be
visited under the present policy given the current position s. An SR
place field refers to the firing rate of a single SR-encoding neuron at
each state in the task and corresponds to a column of the SR matrix
M(:,s`). This vector contains the expected number of times a single
encoded state s` will be visited under the current policy, starting from
any state s. In general, we will refer to place fields simulated under our
model as ‘SR receptive fields’ or ‘SR place fields’.

In an open, two-dimensional (2D) environment, the canonical
place cell has a gradually decaying, roughly circular firing field. In
such an environment, the SR place fields look the same; each has a
peak of high firing surrounded by a radius of gradually reduced firing.

The SR model makes this prediction because under a random walk,
the animal is likely to visit its current location and nearby locations
immediately and visit more distant locations later. Thus, the states
closer to the encoded location of an SR place cell will predict a higher
expected discounted number of visits to the encoded location and will
elicit higher firing of the encoding cell.

Figure 2a–c illustrates the experimental conditions in which the
predictions of the SR model (Fig. 2c) depart from the predictions
of two alternative models (Fig. 2a,b). As examples, we implement
the three models for a 2D room containing an obstacle and for a
one-dimensional track with an established preferred direction of
travel. The first alternative model is a Euclidean Gaussian place field
in which firing is related to the Euclidean distance from the field
center (Fig. 2a); this model is usually invoked for modeling place field
activity in open spatial domains14. The second alternative model is
a topologically sensitive place field in which firing is related to the
length of the shortest path around obstacles from the field center9
(Fig. 2b). Like the geodesic place fields and unlike the Gaussian place
fields, the SR place fields respect obstacles in the 2D environment,

1

s1 s2 s3 s4 s5 s6 s7

R
ew

ar
d

1:
W

at
er

 r
ew

ar
d

at
 s

1
R

ew
ar

d
2:

F
oo

d
re

w
ar

d
at

 s
6

R
ew

ar
d

3:
M

ul
tip

le
 r

ew
ar

ds

1.5

0.1
0.4

0.7

0.1
0.4

0.7

1

0 0 0 0 0 0

0 0 0 0 0 0

0.1 0.1 0.1

0.5

0.7 0.9
0.6

Recomputing value for changing rewarda

b

c

d

State (si)

s1 s2 s3 s4 s5 s6 s7

s1 s2 s3 s4 s5 s6 s7

s1 s2 s3 s4 s5 s6 s7

R
ew

ar
d

R
1(

si)
Compute value of state s4 using SR

Recompute value of state s4 using SR

State (si)

State (si)

State (si)

R
ew

ar
d

R
3(

si)

S
R

 a
t s

4

M
(s

4 , s
i)

V(s4) = � M(s4, si) R1(si) = 0.1
7

i = 1

R
ew

ar
d

R
2(

si) V(s4) = � M(s4, si) R2(si) = 0.4
i = 1

7

Recompute value of state s4 using SR

V(s4) = � M(s4, si) R3(si) = 0.98
7

i = 1

Figure 1 Updating value with the SR following change in reward. As the
representations of state and reward are decoupled, value functions can
be rapidly recomputed for new reward functions without changing the
SR. M(s,s`) gives the expected number of visits to state s` given a current
location of s (equation (3)). (a) Successor representation of state s4,
which corresponds to a row M(s4,:) of the SR matrix. (b–d) Illustration of
how the value of s4 changes under different reward functions.

• Successor states (Dayan, 1992): expected occupancy of future states,
for a given policy

• Allow the value function for any reward to be quickly computed

• Evidence linking to the hippocampus (Stachenfeld et al, 2018)

COMP579 Lecture 18, 2025 25

Special case: Successor Features

• Successor features (Barreto et al, 2017, 2018) are a natural extension of
successor states

• If states are defined by a feature vector φ(s), successor features are GVFs
where the cumulant is c = φ, and there is a fixed policy and discount

• Interesting property highlighted in Barreto et al:

vπ,wT c,γ(s) = wTvπ,c,γ(s)

which leads to one-shot computation of new GVFs

COMP579 Lecture 18, 2025 26

Cpecial case: Option models

• The reward model for an option ω is defined as:

rω(s) = Eω[r(St, At) + γ(1− βω(St+1))rω(St+1)|St = s]

• This means the option reward model is a GVF:

– policy is πω
– cumulant is the environment reward r
– continuation function is γ(1− βω)

• Option transition model can be similarly written as a GVF

COMP579 Lecture 18, 2025 27

Many other approaches that can be expressed as GVFs

• Option-value functions (Precup, 2000; Sutton, Precup & Singh, 1999)

• Feudal networks (Dayan, 1994; Vezhnevets et al, 2017)

• Value transport (Hung et al, 2018)

• Auxilliary tasks (Jaderberg et al, 2016)

• Are GVFs just an interesting insight or can they be useful?

COMP579 Lecture 18, 2025 28

GVFs for synthesizing new behaviors

Option-keyboard - Barreto et al, 2019, based on ideas of Rich Sutton

COMP579 Lecture 18, 2025 29

Policy Evaluation and Policy Improvement

• Consider a Markov Decision Process 〈S,A, P, r〉 and a policy π : S →
Dist(A)

• Classic dynamic programming relies on two basic operations:

– Policy evaluation: given policy π, compute the value function V πr
and/or Qπr

– Policy improvement: given value function Qπr , compute an improved
policy: π′(s) = arg maxa′∈AQπr (s, a′)

• Policy improvement guarantee:

Qπ
′
r (s, a) ≥ Qπr (s, a), ∀s ∈ S,∀a ∈ A

• Dynamic programming: interleave these steps (executed exactly)

• Reinforcement learning: carry out these steps approximately

COMP579 Lecture 18, 2025 30

Visualizing Policy Evaluation and Policy Improvement

reduce the amount of data needed to solve the problem.
Together, these two strategies give rise to a divide-and-conquer
approach to RL that can potentially help scale our agents to
problems that are currently intractable.

RL

We consider the RL framework outlined in the Introduction: an
agent interacts with an environment by selecting actions to get
as much reward as possible in the long run (1). This interaction
happens at discrete time steps, and, as usual, we assume it can be
modeled as a Markov decision process (MDP) (18).

An MDP is a tuple M ⌘ (S, A, p, r , �) whose components are
defined as follows. The sets S and A are the state space and
action space, respectively (we will consider that A is finite to
simplify the exposition, but most of the ideas extend to infinite
action spaces). At every time step t , the agent finds itself in a
state s 2S and selects an action a 2A. The agent then transi-
tions to a next state s 0, where a new action is selected, and so
on. The transitions between states can be stochastic: the dynam-
ics of the MDP, p(·|s, a), give the next-state distribution upon
taking action a in state s . In RL, we assume that the agent does
not know p, and thus it must learn based on transitions sampled
from the environment.

A sample transition is a tuple (s, a, r 0, s 0) where r 0 is the
reward given by the function r(s, a, s 0), also unknown to the
agent. As discussed, here we adopt the view that different reward
functions give rise to distinct tasks. Given a task r , the agent’s
goal is to find a policy ⇡ : S 7!A, that is, a mapping from states
to actions, that maximizes the value of every state–action pair,
defined as

Q⇡
r (s, a)⌘E⇡

" 1X

i=0

�ir(St+i ,At+i ,St+i+1) |St = s,At = a

#
,

[1]
where St and At are random variables indicating the state occu-
pied and the action selected by the agent at time step t , E⇡[·]
denotes expectation over the trajectories induced by ⇡, and � 2
[0, 1) is the discount factor, which gives less weight to rewards
received further into the future. The function Q⇡

r (s, a) is usu-
ally referred to as the “action-value function” of policy ⇡ on
task r ; sometimes, it will be convenient to also talk about the
“state-value function” of ⇡, defined as V ⇡

r (s)⌘Q⇡
r (s,⇡(s)).

Given an MDP representing a task r , there exists at least one
optimal policy ⇡⇤

r that attains the maximum possible value at
all states; the associated optimal value function V ⇤

r is shared
by all optimal policies (18). Solving a task r can thus be seen
as the search for an optimal policy ⇡⇤

r or an approximation
thereof. Since the number of possible policies grows exponen-
tially with the size of S and A, a direct search in the space of
policies is usually infeasible. One way to circumvent this difficulty
is to resort to methods based on dynamic programming, which
exploit the properties of MDPs to reduce the cost of searching
for a policy (19).

Policy Updates. RL algorithms based on dynamic programming
build on two fundamental operations (1).
Definition 1. “Policy evaluation” is the computation of Q⇡

r , the
value function of policy ⇡ on task r .
Definition 2. Given a policy ⇡ and a task r , “policy improvement”
is the definition of a policy ⇡0 such that

Q⇡0
r (s, a)�Q⇡

r (s, a) for all (s, a)2S ⇥A. [2]

We call one application of policy evaluation followed by one
application of policy improvement a “policy update.” Given an
arbitrary initial policy ⇡, successive policy updates give rise to
a sequence of improving policies that will eventually reach an

optimal policy ⇡⇤
r (18). Even when policy evaluation and policy

improvement are not performed exactly, it is possible to derive
guarantees on the performance of the resulting policy based on
the approximation errors introduced in these steps (20, 21). Fig. 1
illustrates the basic intuition behind policy updates.

What makes policy evaluation tractable is a recursive relation
between state-action values known as the Bellman equation:

Q⇡
r (s, a) = ES 0⇠p(·|s,a)

⇥
r(s, a,S 0) + �Q⇡

r (S 0,⇡(S 0))
⇤
. [3]

Expression (Exp.) 3 induces a system of linear equations whose
solution is Q⇡

r . This immediately suggests ways of performing
policy evaluation when the MDP is known (18). Importantly, the
Bellman equation also facilitates the computation of Q⇡

r with-
out knowledge of the dynamics of the MDP. In this case, one
estimates the expectation on the right-hand side of Exp. 3 based
on samples from p(·|s, a), leading to the well-known method of
temporal differences (22, 23). It is also often the case that in
problems of interest the state space S is too big to allow for a
tabular representation of the value function, and hence Q⇡

r is
replaced by an approximation Q̃⇡

r .
As for policy improvement, it is in fact simple to define a policy

⇡0 that performs at least as well as, and generally better than, a
given policy ⇡. Once the value function of ⇡ on task r is known,
one can compute an improved policy ⇡0 as

⇡0(s)2 arg max
a2A

Q⇡
r (s, a). [4]

In words, the action selected by policy ⇡0 on state s is the one that
maximizes the action-value function of policy ⇡ on that state. The
fact that policy ⇡0 satisfies Definition 2 is one of the fundamen-
tal results in dynamic programming and the driving force behind
many algorithms used in practice (18).

The specific way policy updates are carried out gives rise to
different dynamic programming algorithms. For example, value
iteration and policy iteration can be seen as the extremes of a
spectrum of algorithms defined by the extent of the policy evalua-
tion step (19, 24). RL algorithms based on dynamic programming
can be understood as stochastic approximations of these methods
or other instantiations of policy updates (25).

Generalized Policy Updates

From the discussion above, one can see that an important
branch of the field of RL depends fundamentally on the notions
of policy evaluation and policy improvement. We now discuss
generalizations of these operations.
Definition 3. “Generalized policy evaluation” (GPE) is the com-
putation of the value function of a policy ⇡ on a set of
tasks R.

A B

Fig. 1. (A) Sequence of policy updates as a trajectory that alternates
between the policy and value spaces and eventually converges to an optimal
solution (1). (B) Detailed view of the trajectory across the value space for a
state space with two states only. The shadowed rectangles associated with
each value function represent the region of the value space containing the
value function that will result from one application of policy improvement
followed by policy evaluation (cf. Exp. 2).

2 of 9 | www.pnas.org/cgi/doi/10.1073/pnas.1907370117 Barreto et al.

D
ow

nl
oa

de
d

by
 g

ue
st

 o
n

O
ct

ob
er

 1
, 2

02
0

• Generalize this process to multiple reward functions (ie tasks) r ∈ R and
multiple policies π ∈ Π

COMP579 Lecture 18, 2025 31

Generalized Policy Updates

• Generalized policy evaluation (GPE): compute the value of a policy π on
a set of reward functions R
• Generalized policy improvement (GPI): given a set of policies Π and a

reward function r, compute a new policy such that:

Qπ
′
r (s, a) ≥ sup

π∈Π
Qπr (s, a), ∀s ∈ S∀a ∈ A

• If we have only one r and one π, we recover usual policy evaluation and
policy improvement

COMP579 Lecture 18, 2025 32

Visualizing Generalized Policy Updates

C
O

L
L
O

Q
U

IU
M

P
A

P
E
R

C
O

M
P

U
T
E
R

S
C

IE
N

C
E
S

Definition 4. Given a set of policies ⇧ and a task r , “generalized
policy improvement” (GPI) is the definition of a policy ⇡0 such
that

Q⇡0
r (s, a)� sup

⇡2⇧
Q⇡

r (s, a) for all (s, a)2S ⇥A. [5]

GPE and GPI are strict generalizations of their standard coun-
terparts, which are recovered when R has a single task and ⇧
has a single policy. However, it is when R and ⇧ are not single-
tons that GPE and GPI reach their full potential. In this case,
they become a mechanism to quickly construct a solution for a
task, as we now explain. Suppose we are interested in one of
the tasks r 2R, and we have a set of policies ⇧ available. The
origin of these policies is not important: they may have come
up as solutions for specific tasks or have been defined in any
other arbitrary way. If the policies ⇡ 2⇧ are submitted to GPE,
we have their value functions on the task r 2R. We can then
apply GPI over these value functions to obtain a policy ⇡0 that
represents an improvement over all policies in ⇧. Clearly, this
reasoning applies without modification to any task in R. There-
fore, by applying GPE and GPI to a set of policies ⇧ and a set
of tasks R, one can compute a policy for any task in R that will
in general outperform every policy in ⇧. Fig. 2 shows a graphical
depiction of GPE and GPI.

Obviously, in order for GPE and GPI to be useful in practice,
we must have efficient ways of performing these operations. Con-
sider GPE, for example. If we were to individually evaluate the
policies ⇡ 2⇧ over the set of tasks r 2R, it is unlikely that the
scheme above would result in any gains in terms of computa-
tion or consumption of data. To see why this is so, suppose again
that we are interested in a particular task r . Computing the value
functions of policies ⇡ 2⇧ on task r would require |⇧| policy
evaluations with a naive form of GPE (here, | · | denotes the car-
dinality of a set). Although the resulting GPI policy ⇡0 would
compare favorably to all policies in ⇧, this guarantee would be
vacuous if these policies are not competent at task r . There-
fore, a better allocation of resources might be to use the policy
evaluations for standard policy updates, which would generate a
sequence of |⇧| policies with increasing performance on task r
(compare Figs. 1 and 2). This difficulty in using generalized pol-

Fig. 2. Depiction of generalized policy updates on a state space with two
states only. With GPE each policy ⇡ 2⇧ is evaluated on all tasks r 2R. The
state-value function of policy ⇡ on task r, V

⇡
r

, delimits a region in the value
space where the next value function resulting from policy improvement
will be (cf. Fig. 1). The analogous space induced by GPI corresponds to the
intersection of the regions associated with the individual value functions
(represented as dark gray rectangles in the figure). The smaller the space of
value functions associated with GPI, the stronger the guarantees regarding
the performance of the resulting policy.

icy updates in practice is further aggravated if we do not have a
fast way to carry out GPI. Next, we discuss efficient instantiations
of GPE and GPI.

Fast GPE with Successor Features. Conceptually, we can think of
GPE as a function associated with a policy ⇡ that takes a task
r as input and outputs a value function Q⇡

r (26). Hence, a
practical way of implementing GPE would be to define a suit-
able representation for tasks and then learn a mapping from r
to value functions Q⇡

r (27). This is feasible when such a map-
ping can be reasonably approximated by the choice of function
approximator and enough examples (r ,Q⇡

r) are available to
characterize the relation underlying these pairs. Here, we will
focus on a form of GPE that is based on a similar premise but
leads to a form of generalization over tasks that is correct by
definition.

Let � : S ⇥A⇥S 7!Rd be an arbitrary function whose output
we will see as “features.” Then, for any w2Rd , we have a task
defined as

rw(s, a, s 0) =�(s, a, s 0)>w, [6]

where > denotes the transpose of a vector. Let

R� ⌘ {rw =�>w | w2Rd}

be the set of tasks induced by all possible instantiations of w2Rd .
We now show how to carry out an efficient form of GPE over R�.

Following Barreto et al. (28), we define the “successor
features” (SFs) of policy ⇡ as

 ⇡(s, a)⌘E⇡

" 1X

i=0

�i�(St+i ,At+i ,St+i+1) |St = s,At = a

#
.

The ith component of ⇡(s, a) gives the expected discounted
sum of �i when following policy ⇡ starting from (s, a). Thus, ⇡

can be seen as a d -dimensional value function in which the fea-
tures �i(s, a, s 0) play the role of reward functions (cf. Exp. 1).
As a consequence, SFs satisfy a Bellman equation analogous to
Exp. 3, which means that they can be computed using standard
RL methods like temporal differences (22).

Given the SFs of a policy ⇡, ⇡ , we can quickly evaluate ⇡ on
task rw 2R� by computing

 ⇡(s, a)>w = E⇡

"1X

i=0

�i�(St+i ,At+i ,St+i+1)
>w|St = s,At = a

#

= E⇡

" 1X

i=0

�irw(St+i ,At+i ,St+i+1) |St = s,At = a

#

=Q⇡
rw(s, a)⌘Q⇡

w (s, a). [7]

That is, the computation of the value function of policy ⇡ on task
rw is reduced to the inner product ⇡(s, a)>w. Since this is true
for any task rw, SFs provide a mechanism to implement a very
efficient form of GPE over the set R� (cf. Definition 3).

The question then arises as to how inclusive the set R� is.
Since R� is fully determined by �, the answer to this question
lies in the definition of these features. Mathematically speak-
ing, R� is the linear space spanned by the d features �i . This
view suggests ways of defining � that result in a R� contain-
ing all possible tasks. A simple example can be given for when
both the state space S and the action space A are finite. In this
case, we can recover any possible reward function by making
d = |S |2 ⇥ |A| and having each �i be an indicator function asso-
ciated with the occurrence of a specific transition (s, a, s 0). This

Barreto et al. PNAS Latest Articles | 3 of 9

D
ow

nl
oa

de
d

by
 g

ue
st

 o
n

O
ct

ob
er

 1
, 2

02
0

COMP579 Lecture 18, 2025 33

Fast Generalized Policy Evaluation

• If we had a nice map from r to Qπr , GPE could be efficient
• Consider the class of reward functions that are linear in some feature

space φ(s, a):

rw(s, a) = w
T
φ(s, a) and Rφ = {rw|w ∈ Rd}

Note that φ can be learned and non-linear
• Successor features: ψπ(s, a) = Eπ[

∑∞
t=1 γ

tφ(st, at)|s0 = s, a0 = a]

• Then the value function for a specified reward function can be easily
computed as a function of the successor features:

Qπw(s, a) = wTψπ(s, a)

• Successor features can be pre-computed for π once and re-used thereafter
(a form of model!)
• Connections to hippocampus representations

COMP579 Lecture 18, 2025 34

Fast Generalized Policy Improvement

• Compute the improved policy as:

π′(s) = arg max
a∈A

max
π∈Π

Qπr (s, a)

• Note that π′ could choose actions that are not chosen by any of the π

• The process takes only one iteration, after which no further change to
the policy π′ would happen

• In contrast with iterative policy improvement...

COMP579 Lecture 18, 2025 35

Illustration

C
O

L
L
O

Q
U

IU
M

P
A

P
E
R

C
O

M
P

U
T
E
R

S
C

IE
N

C
E
S

of arithmetic over features provides a rich interface for the agent
to interact with the environment at a higher level of abstraction
in which decisions correspond to preferences encoded as a vec-
tor w. Next, we discuss how this can be leveraged to speed up the
solution of an RL task.

Fast RL with GPE and GPI

We now describe how to build and use the adaptable policy
⇡ implemented by GPE and GPI. To make the discussion
more concrete, we consider a simple RL environment depicted
in Fig. 4. The environment consists of a 10⇥ 10 grid with four
actions available: A = {up, down, left, right}. The agent occu-
pies one of the grid cells, and there are also 10 objects spread
across the grid. Each object belongs to one of two types. At each
time step t , the agent receives an image showing its position and
the position and type of each object. Based on this information,
the agent selects an action a 2A, which moves it one cell along
the desired direction. The agent can pick up an object by moving
to the cell occupied by it; in this case, it gets a reward defined by
the type of the object. A new object then pops up in the grid, with
both its type and location sampled uniformly at random (more
details are in SI Appendix).

This simple environment can be seen as a prototypical mem-
ber of the class of problems in which GPE and GPI could be
useful. This becomes clear if we think of objects as instances of
(potentially abstract) concepts, here symbolized by their types,
and note that the navigation dynamics are a proxy for any sort
of dynamics that mediate the interaction of the agent with the
world. In addition, despite its small size, the number of possible
configurations of the grid is actually quite large, of the order of
1015. This precludes an exact representation of value functions
and illustrates the need for approximations that inevitably arises
in many realistic scenarios.

By changing the rewards associated with each object type, one
can create different tasks. We will consider that the agent wants
to build a set of SFs that give rise to a generalized policy
⇡ (s; w) that can adapt to different tasks through the vector of
preferences w. This can be either because the agent does not
know in advance the task it will face or because it will face more
than one task.

Defining a Basis for Behavior. In order to build the SFs , the
agent must define two things: features � and a set of policies ⇧.
Since � should be associated with rewarding events, we define

Fig. 4. Depiction of the environment used in the experiments. The shape of
the objects (square or triangle) represents their type; the agent is depicted
as a circle. We also show the first 10 steps taken by 3 policies, ⇡1, ⇡2, and
⇡3, that would perform optimally on tasks w1 = [1, 0], w2 = [0, 1], and w3 =

[1, �1] for any discount factor �� 0.5.

each feature �i as an indicator function signaling whether an
object of type i has been picked up by the agent (i.e., �2R2).
To be precise, we have that �i(s, a, s 0) = 1 if the transition from
state s to state s 0 is associated with the agent picking up an object
of type i , and �i(s, a, s 0) = 0 otherwise. These features induce a
set R� where task rw 2R� is characterized by how desirable or
undesirable each type of object is.

Now that we have defined �, we turn to the question of how to
determine an appropriate set of policies ⇧. We will restrict the
policies in ⇧ to be solutions to tasks rw 2R�. We start with what
is perhaps the simplest choice in this case: a set ⇧12 = {⇡1,⇡2}
whose two elements are solutions to the tasks w1 = [1, 0]> and
w2 = [0, 1]> (henceforth, we will drop the transpose superscript
to avoid clutter). Note that the goal in tasks w1 and w2 is to pick
up objects of one type while ignoring objects of the other type.

We are now ready to compute the SFs induced by our
choices of � and ⇧. In our experiments, we used an algorithm
analogous to Q-learning to compute approximate SFs ̃

⇡1 and
 ̃

⇡2 (pseudocode in SI Appendix). We represented the SFs using
multilayer perceptrons with two hidden layers (33).

The set of SFs ̃ yields a generalized policy ⇡ ̃(s; w) param-
eterized by w. We now evaluate ⇡ ̃ on the task whose goal is
to pick up objects of the first type while avoiding objects of
the second type. Using � defined above, this task can be rep-
resented as rw3(s, a, s 0) =�(s, a, s 0)>w3, with w3 = [1,�1]. We
thus evaluate the generalized policy instantiated as ⇡ ̃(s; w3).

Results are shown in Fig. 5A. As a reference, we also show
the learning curve of Q-learning (23) using the same architec-
ture to directly approximate Q⇡

w3
. GPE and GPI allow one to

compute an instantaneous solution for a new task, without any
learning on the task itself, that is competitive with the policies
found by Q-learning when using around 6⇥ 104 sample tran-
sitions. The performance of the policy ⇡ ̃ synthesized by GPE
and GPI corresponds to more than 70% of the performance
eventually achieved by Q-learning after processing 106 transi-
tions. This is quite an impressive result when we note that ⇡ ̃
managed to avoid objects of the second type even though its con-
stituents policies ⇡1 and ⇡2 were never trained to actively avoid
objects.

We used a total of 106 sample transitions to learn both SFs
 ̃

⇡1 and ̃
⇡2 , which is the same amount of data used by Q-

learning to achieve its final performance. The advantage of doing
the former is that, once we have the SFs, we can use GPE
and GPI to instantaneously compute a solution for any task in
R�. However, how well do GPE and GPI actually perform on
R�? To answer this question, we ran a second round of exper-
iments to assess the generalization of ⇡ ̃ over the entire set
R�. Since this evaluation clearly depends on the set of policies
used, we consider two other sets in addition to ⇧12 = {⇡1,⇡2}.
The new sets are ⇧34 = {⇡3,⇡4} and ⇧5 = {⇡5}, where the poli-
cies ⇡i are solutions to the tasks w3 = [1,�1], w4 = [�1, 1], and
w5 = [1, 1]. We repeated the previous experiment with each pol-
icy set and evaluated the resulting policies ⇡ ̃ over 19 tasks w
evenly spread over the nonnegative quadrants of the unit cir-
cle (tasks in the negative quadrant are uninteresting because
all of the agent must do is to avoid hitting objects). Results
are shown in Fig. 6A. As expected, the generalization ability of
GPE and GPI depends on the set of policies used. Perhaps more
surprising is how well the generalized policy ⇡ ̃ induced by some
of these sets perform across the entire space of tasks R�, some-
times matching the best performance of Q-learning when solving
each task individually.

These experiments show that a proper choice of base policies
⇧ can lead to good generalization over the entire set of tasks
R�. In general, though, it is unclear how to define an appropri-
ate⇧. Fortunately, we can refer to our theoretical understanding
of GPE and GPI to have some guidance. First, we know from

Barreto et al. PNAS Latest Articles | 5 of 9

D
ow

nl
oa

de
d

by
 g

ue
st

 o
n

O
ct

ob
er

 1
, 2

02
0

• The three policies correspond to three weight vectors: like red (w1 =
[1, 0]T), like blue (w2 = [0, 1]T) and like red not blue (w3 = [1,−1]T)
• Note that w can be viewed as a preference function over features!
• We can pre-train the policies that optimize for each preference, and train

their successor features as well
• Then just do GPE/GPI!

COMP579 Lecture 18, 2025 36

Illustration: Results

A B

Fig. 5. Average sum of rewards on task w3 = [1, �1]. GPE and GPI used ⇧12 = {⇡1,⇡2} as the base policies and the corresponding SFs consumed 5 ⇥ 105

sample transitions to be trained each. B is a zoomed-in version of A showing the early performance of GPE and GPI under different setups. The results reflect
the best performance of each algorithm over multiple parameter configurations (SI Appendix). Shadowed regions are one standard error over 100 runs.

the discussion above that the larger the number of policies in
⇧ the stronger the guarantees regarding the performance of
the resulting policy ⇡ ̃ (Exp. 5). In addition to that, Barreto
et al. have shown that it is possible to guarantee a minimum
performance level for ⇡ ̃ on task w based on minikw�wik,
where k · k is some norm and wi are the tasks associated with
the policies ⇡i 2⇧ used for GPE and GPI (theorem 2 in ref.
28). Together, these two insights suggest that, as we increase
the size of ⇧, the performance of the resulting policy ⇡ ̃ should
improve across R�, especially on tasks that are close to the tasks
wi . To test this hypothesis empirically, we repeated the previous
experiment, but now, instead of comparing disjoint policy sets,
we compared a sequence of sets formed by adding one by one
the policies ⇡2, ⇡5, ⇡1, and ⇡3, in this order, to the initial set
{⇡4}. The results, in Fig. 6B, confirm the trend implied by the
theory.

Task Inference. So far, we have assumed that the agent knows the
vector w that describes the task of interest. Although this can
be the case in some scenarios, ideally we would be able to apply
GPE and GPI even when w is not provided. In this section and
in Preferences as Actions, we describe two possible ways for the
agent to learn w.

Given a task r , we are looking for a w2Rd that leads to good
performance of the generalized policy ⇡ (s; w). We could in
principle approach this problem as an optimization over w2Rd

whose objective is to maximize the value of ⇡ (s; w) across
(a subset of) the state space. It turns out that we can exploit
the structure underlying SFs to efficiently determine w with-
out ever looking at the value of ⇡ . Suppose we have a set
of m sample transitions from a given task, {(si , ai , r

0
i , s

0
i)}m

i=1.
Then, based on Exp. 6, we can infer w by solving the following
minimization:

min
w̃

mX

i=1

|�(si , ai , s
0
i)

>w̃� r 0
i |p , [9]

where p � 1 (one may also want to consider the inclusion of a
regularization term, see ref. 33). Observe that, once we have a
solution w̃ for the problem above, we can plug it in Exp. 7 and
use GPE and GPI as we did before—that is, we have just turned
an RL task into an easier linear regression problem.

To illustrate the potential of this approach, we revisited the
task w3 = [1,�1] tackled above, but now, instead of assuming
we knew w3, we solved the problem in Exp. 9 using p = 2. We
collected sample transitions using a policy ⇡̂ that picks actions

A B

Fig. 6. Results on the space of tasks R� induced by a two-dimensional �. The sets of policies ⇧ used in A are disjoint; in B these sets overlap. The evaluation
of an algorithm on a task is represented as a vector whose direction indicates the task w and whose magnitude gives the average sum of rewards over 10
runs with 250 trials each. Q-learning learned each task individually, from scratch; the dotted curves correspond to its performance after having processed
5 ⇥ 104, 1 ⇥ 105, 2 ⇥ 105, 5 ⇥ 105, and 1 ⇥ 106 sample transitions. Our method only learned the policies in the sets ⇧ and then generalized across all others
tasks through GPE and GPI. The SFs used for GPE and GPI consumed 5⇥ 105 sample transitions to be trained each.

6 of 9 | www.pnas.org/cgi/doi/10.1073/pnas.1907370117 Barreto et al.

D
ow

nl
oa

de
d

by
 g

ue
st

 o
n

O
ct

ob
er

 1
, 2

02
0

• Training the successor features for w1, w2 over 5 × 105 samples then
GPE/GPI for w3

• GPE/GPI with successor features achieves 75x improvement in sample
size compared to Q-learning

• Obtaining w, φ by learning almost as good as knowing these in advance

COMP579 Lecture 18, 2025 37

Option-Keyboard for Moving Target Arena

General way to synthesize quickly new behavior for combinations of reward functions!
How to efficiently compute many GVFs/successor features form one stream of experience?

COMP579 Lecture 18, 2025 38

