
Hierarchical Reinforcement Learning

With thanks to Rich Sutton, Satinder Singh, Gheorghe Comanici, Anna Harutyunyan, Andre Barreto, David

Silver, Pierre-Luc Bacon, Jean Harb, Shibl Mourad, Khimya Khetarpal, Zafarali Ahmed, David Abel, Sasha

Vezhnevets, Shaobo Hou, Philippe Hamel, Eser Aygun, Diana Borsa, Justin Novosad, Will Dabney, Nicholas

Heess, Remi Munos

COMP579 Lecture 18, 2025

Knowledge in AlphaGo

• Policy: what to do (probability of action given current “state”) - ie
procedural knowledge

• Value function: estimation of expected long-term return - ie predictive
knowledge

COMP579 Lecture 18, 2025 1

From Reinforcement Learning to AI

• Growing knowledge and abilities in an environment

• Learning efficiently from one stream of data

• Reasoning at multiple levels of abstraction

• Adapting quickly to new situations

COMP579 Lecture 18, 2025 2

Building Knowledge with Reinforcement Learning

• Focusing on two types of knowledge:

– Procedural knowledge: skills, goal-driven behavior
– Predictive, empirical knowledge: predicting effects of actions

• Knowledge must be:

– Expressive: able to represent many things, including abstractions
(objects, places, high-level strategies...)

– Learnable: from data, ideally without supervision (for scalability)
– Composable: suitable for fast planning by assembling existing pieces

COMP579 Lecture 18, 2025 3

Abstraction and generalization

• An abstract representation ignores low-level details of the problem, or
modifies the problem representation altogether

Eg. addresses vs exact coordinates

• Generalization is the ability to take knowledge acquired in some
circumstances and applying it in different circumstances

Eg. Being good at some games helps us learn other games faster

• These two concepts are related but not identical: an abstract
representation may helps us to generalize

• Generalization is often achieved in AI/ML by using function
approximation (eg deep nets)

• In RL, we have an extra important dimension: time/action - can we build
abstraction/generalization here too?

COMP579 Lecture 18, 2025 4

Motivating Example: Learning to Manipulate Complex
Interfaces

AndroidEnv: A Reinforcement Learning Platform for Android

down their dimensionality, e.g. with wrappers). The timedelta component captures the amount of
time passed since AndroidEnv fetched the last observation. The orientation, even though it does not
a�ect the layout of the RGB image in the observation, might carry relevant information for the agent. For
example, if there is text on the screen, its orientation is useful for automatic processing. As mentioned
above, observations often carry spatial cues and are suggestive of meaningful gestures to perform in a
given state. The fact that the observation space is the same across all tasks is what makes it useful for
agents, and creates the opportunity to generalize across tasks.

Figure 3 | Information avail-
able to the agent.

Task extras. In addition to default observations, ({pixels, timedelta,
orientation}), some tasks might expose structured information after
each step (see Sec. 3). An extra in AndroidEnv is any information that
the environment sends to aid the understanding of the task. The infor-
mation sent through this channel is typically very useful for learning,
yet di�cult to extract from raw pixels. For example, extras may include
signals indicating events such as a button press or opening of a menu,
text displayed on the screen in string format, or a simple numerical
representations of the displayed state. Note that extras are a standard
mechanism for communicating information used in Android apps.

We note that, unlike the observation and raw action space, which
are the same across all AndroidEnv, task extras are specific to individual
tasks, are entirely optional, and may not be available at all. Furthermore,
task extras, even if provided, are not part of the default observation;
rather AndroidEnv returns them upon explicit request (see detailed
documentation).

3. Tasks

While Android is an operating system with no inherent rewards or episodes, AndroidEnv provides
a simple mechanism for defining tasks on it. Tasks capture information such as episode termination
conditions, rewards, or the apps with which the agent can interact. Together, these define a specific RL
problem for the agent.

(a) Android menu (b) Google Maps (c) Calendar (d) Chrome (e) Clock

Figure 4 | Examples of Android OS apps and use cases.

Task structure. We capture aspects that make up a task definition in a Task protocol bu�er message.
These include information on:

4

AndroidEnv: A Reinforcement Learning Platform for Android

(a) Catch (b) Rocket Sleigh (c) Press Button (d) Apple Flinger (e) 2048 (f) Blockinger

Figure 5 | Small selection of tasks used in the experiments.

showing that the same agents can have drastically di�erent performance depending on each of these
factors. For example, most agents perform well on tasks such as catch that have a simple action interface
and dense rewards, whereas the combination of a highly structured interface, time sensitivity and sparse
rewards render blockinger particularly di�cult to solve.

Since none of these tasks require high-resolution inputs to achieve optimal behavior, we down-
sampled the image observation to 80 ⇥ 120 pixels. Since this size is comparable to the resolution
commonly used in the ATARI Learning Environment, we were able to run all agents using the network
architectures reported by the authors of each corresponding agent. We generated training data using
128 distributed actors and we compiled results for each hyper-parameter configuration by averaging the
performance of 4 independent runs using di�erent seeds. See Figure 6 for an overview of the results of
these experiments.

Figure 6 | Agent performance: The baseline continuous and discrete control agents ran on selection of
AndroidEnv tasks, covering games where the action interface requires interactions including localised
touches (catch), swiping (classic_2048), and drag-and-drop (apple_flinger). Continuous control
agents perform well only in tasks where the interface does not expect complex gestures, but fail to
achieve reasonable performance otherwise. Discrete control agents display better overall performance.
We compiled the results above by averaging human-normalized scores (with 1.0 corresponding to
average human performance) over four di�erent seeds for each agent configuration. Note the clear
di�erence in task di�culty, highlighted by the performance of baseline agents, with catch being solved
by almost all agents, while no agents can generate useful behavior on blockinger.

6

• Agent interacting with a phone screen, learning how to control apps

• Native action space: touch anywhere on the screen

Toyama, Hamel, Gergely, Comanici et al (2021), https://arxiv.org/pdf/2105.13231.pdf

COMP579 Lecture 18, 2025 5

Example: Using Abstraction to Structure LearningLearning how to Interact with a Complex Interface using Hierarchical Reinforcement Learning

Figure 1 | Gesture Hierarchy. The architecture used for the Android applications is based on a 3-layer
hierarchy: (1) The lowest level operates over GVFs corresponding to all supported gestures; (2) The
middle layer selects a gesture GVF given the latest pixel image in AndroidEnv and its agent is trained
to maximize the return associated with the task that the agent is trained on; and (3) The top layer
selects a single gesture class for the task and the agent is trained to maximize the average per step
reward. All levels are operated by distributed DQN agents.

for optimization based algorithms, such as gradient descent over deep networks. For simplicity, we
describe below the Bellman equation for the optimal cumulant-based ?-value:

?⇤W,⇠ (A, 0) =
’
A02(

>(A0 |A, 0)
h
⇠(A, 0, A0) + W(A) max

00
?⇤W,⇠ (A0, 00)

i
.

Options. The options framework is a popular formalism for temporally extended actions. A option
l can start execution in any of the states in the initialization set Il ✓ S, and it used policy cl to
select actions and Vl : S ! [0, 1] to determine whether to terminate execution or not. Sutton et al.
(1999) demonstrate that using options along side actions turns an MDP problem into a Semi Markov
Decision Process, which itself can be equipped with optimality value functions and equivalent Bellman
equations, i.e. options can be interchangeably used as actions.

Hierarchy of GVFs. We present a general approach to implement hierarchical decompositions of
complex problems into a multi-layered hierarchy of sub-tasks, where each level is trained to maximize
GVFs: given a fixed cumulant-continuation pair (⇠, W), agents maintain estimates for the value of the
corresponding optimal policy, i.e. ?⇤W,⇠ (A, 0) = maxc ?c,W,⇠ (A, 0). Instead of solving the problem with a
single RL agent operating on the “raw” action space of an environment, we prioritize modularity and
comprehension to build a hierarchy of “problems” that are solved by independent agents, working
at di�erent levels of space and temporal abstraction. A hierarchical decomposition on levels 0 to #
works under the assumption that each level 7 operates over a set of control GVFs, ⌦7 := {(⇠7, W7)}"7=1
and, at each timestep, the corresponding RL agent follows the policy maximizing one of these GVFs.
The selection of the active GVF at every timestep comes as a signal l = (⇠, W) 2 ⌦7 from the level 7 + 1.
For all levels, except for the lowest level 0, the corresponding agent selects an abstract action 07 by
maximizing ?⇤W,⇠ (A, 07), and propagates it down as a GVF selection for level 7 � 1. In other words, the
level is always maximizing one of the many signals that it is designed to predict. Lastly, temporal
abstraction can be achieved within this framework by using the continuation function W of the selected
GVF to determine the temporal extent of its execution. See Figure 1 for the concrete three-level
hierarchy we used in our work. The main advantage of the hierarchical decomposition is that RL
agents operating at di�erent levels can be designed in isolation and perhaps can be trained either

3

• Instead of primitive actions, learn and use gestures (tap, swipe, fling)

• Value functions predict reward associated with different gesture goals

• Learning happens in parallel at all levels of abstraction

Comanici, Glaese, Gergely, Toyama et al (2022) https://arxiv.org/pdf/2204.10374.pdf

COMP579 Lecture 18, 2025 6

Learning knowledge at multiple levels of abstraction
drastically improves performanceLearning how to Interact with a Complex Interface using Hierarchical Reinforcement Learning

Figure 3 | Empirical results. We tested our agents on a number of AndroidEnv tasks of di�erent levels
and with varying complexity in the action interface. We report results on tasks where at least one of the
agents was able to improve its behavior. For tasks such as classic_2048 and nostalgic_racer,
using any fling or tap gesture, correspondingly, incurs significant changes in the score outcome. On the
other hand, for tasks such as apple_flinger_M_1_1, blockinger_squares, and floodit_easy,
the agent can only operate by direct interaction with specific buttons or objects and rewards are very
sparse, making all of these tasks intractable for most agents.

of AndroidEnv tasks for which we report results are available on AndroidEnv’s Github Repository.3

Figures 3 and 4 provide a summary of the observed empirical results. The rest of this section provides
a detailed description of the hierarchy used to obtain these results.

Level 0: gesture execution. The lowest level in the hierarchy is designed to execute gestures by
operating on a set of GVFs composed of tap, swipe, and fling gestures. To fully define these GVFs,
level 0 maintains a sequence of all touch positions in a trajectory, denoted by (p0,p1 · · · ,pB), with all
p7 either positions on the screen for tap actions or p7 = 0 for lift actions. For example, to capture a
swipe gesture from location q1 to q2 we use a cumulant

⇠q1,q2
(p0,p1 · · · ,pB) =

8>>><
>>>:

1 if 97 < B with [p7,p7+1, . . . ,pB�1,pB] = [0, q1,p7+2, . . . ,pB�2, q2, 0]
and p 8 < 0,87 < 8 < B,

0 otherwise.

The continuation function is set to Wq1,q2
= 1 � ⇠q1,q2

. In all experiments, we use tap locations and
swipe start/end locations based on the 9 by 6 discretization described above, resulting in 54F54 swipe
GVFs and 54 tap GVFs. We additionally define 8 fling GVFs corresponding to #, #⇢, ⇢, (⇢, (, (,,,
and #, cardinal directions.

As illustrated in Figure 1, the signal from above fully define individual gestures: l0 2 ⌦0 contains
both a gesture class and a gesture parameter, e.g. l0 = (swipe, q1, q2) for a swipe from q1 to q2.
To train the corresponding agent, we concatenate one-hot encodings for the gesture class, gesture
parameters, and the last tap location. Each class of gestures was trained separately, hence the

3https://github.com/deepmind/android_env

5

Comanici, Glaese, Gergely, Toyama et al (2022) https://arxiv.org/pdf/2204.10374.pdf

COMP579 Lecture 18, 2025 7

What is temporal abstraction?

• Consider an activity such as cooking dinner

– High-level steps: choose a recipe, make a grocery list, get groceries,
cook,...

– Medium-level steps: get a pot, put ingredients in the pot, stir until
smooth, check the recipe ...

– Low-level steps: wrist and arm movement while driving the car,
stirring, ...

• All have to be seamlessly integrated!

COMP579 Lecture 18, 2025 8

Temporal abstraction in AI

• A cornerstone of AI planning since the 1970’s:

– Fikes et al. (1972), Newell (1972, Kuipers (1979), Korf (1985), Laird
(1986), Iba (1989), Drescher (1991) etc.

• It has been shown to :

– Generate shorter plans
– Reduce the complexity of choosing actions
– Provide robustness against model misspecification
– Allows taking shortcuts in the environment

• In robotics and hybrid systems, the use of controllers provides similar
benefits, and also improves interpretability and allows specifying prior
knowledge

COMP579 Lecture 18, 2025 9

Recall: RL cartoon

£8
It
cieat assignment

ft
H v.Exploration
D ⑤
^
O O

-

- - - -
-

Goals of temporal abstraction:

• Reduce tree width - helps exploration!

• Reduce tree depth - helps make planning/reasoning faster

• Generalize between different branches of the tree - improves learning

COMP579 Lecture 18, 2025 10

Options Intuition

·
• Package a whole sub-tree as an option ω

• Jumps are to the state at the end of the sub-tree

• Primitive actions are a special case (one-step tree)

• Two components: (sub)policy and model

COMP579 Lecture 18, 2025 11

Both abstraction and generalization!

COMP579 Lecture 18, 2025 12

Procedural, Temporally Abstract Knowledge: Options

• An option ω consists of 3 components

– An initiation set Iω ⊆ S (aka precondition)
– A policy πω : S ×A → [0, 1]
πω(a|s) is the probability of taking a in s when following option ω

– A termination condition βω : S → [0, 1]:
βω(s) is the probability of terminating the option ω upon entering s

• Eg., robot navigation: if there is no obstacle in front (Iω), go forward
(πω) until you get too close to another object (βω)

• Inspired from macro-actions / behaviors in robotics / hybrid planning
and control

Cf. Sutton, Precup & Singh, 1999; Precup, 2000

COMP579 Lecture 18, 2025 13

Options as Behavioral Programs

• Call-and-return execution

– When called, option ω is pushed onto the execution stack
– During the option execution, the program looks at certain variables

(aka state) and executes an instruction (aka action) until a termination
condition is reached

– The option can keep track of additional local variables, eg counting
number of steps, saturation in certain features (e.g. Comanici, 2010)

– Options can invoke other options

• Interruption

– At each step, one can check if a better alternative has become available
– If so, the option currently executing is interrupted (special form of

concurrency)

COMP579 Lecture 18, 2025 14

Option models

• Option model has two parts:

1. Expected reward rω(s): the expected return during ω’s execution from
state s

2. Transition model Pω(s′|s): specifies where the agent will end up after
the option/program execution and when termination will happen

• Models are predictions about the future, conditioned on the option being
executed

• Programming languages: preconditions (initiation set) and postconditions

• Models of options represent (probabilistic) post-conditions

• “Jumpy” planning is better for temporal credit assignment, accurate
value estimation

COMP579 Lecture 18, 2025 15

What type of planning?

• Models that are compositional can be used to plan through value iteration

• Sequencing

rω1ω2 = rω1 + Pω1rω2

Pω1ω2 = Pω1Pω2

Cf. Sutton et al, 1999, Sorg & Singh, 2011

• Stochastic choice: can take expectations of reward and transition models

• These are sufficient conditions to allow Bellman equations to hold

• Silver & Ciosek (2012): re-write model in one matrix, compose models
to construct programs

• Model-predictive control (receding horizon planning) is also possible

COMP579 Lecture 18, 2025 16

Option Models Provide Semantics

• Models of actions consist of immediate reward and transition probability
to next state

• Models of options consist of reward until termination and (discounted)
transition to termination state

• Models are predictions about the future

COMP579 Lecture 18, 2025 17

Illustration: Navigation

Room s Ex am ple

Iteration #0 Iteration #1 Iteration #2

with ce ll-to-ce ll
primit ive act ions

Iteration #0 Iteration #1 Iteration #2

with room-to-room
opt ions

V (goal)=1

V (goal)=1

COMP579 Lecture 18, 2025 18

Illustration: Options and Primitives

Ex am ple w i t h Goal≠Subgoal ,
bot h pr im i t ive ac t ions and opt ions

Iteration #1Initial values Iteration #2

Iteration #3 Iteration #4 Iteration #5

COMP579 Lecture 18, 2025 19

Benefits of options (cf Botvinick & Weinstein, 2014)

COMP579 Lecture 18, 2025 20

Decision-Making with Options

SMDP

Time

MDP
State

Options

over MDP

Fig. 1. The state trajectory of an MDP is made up of small, discrete-time transitions,
whereas that of an SMDP comprises larger, continuous-time transitions. Options
enable an MDP trajectory to be analyzed in either way.

tion 4 considers the problem of effectively combining a given set of options
into a single overall policy. For example, a robot may have pre-designed con-
trollers for servoing joints to positions, picking up objects, and visual search,
but still face a difficult problem of how to coordinate and switch between
these behaviors [17,22,38,48,50,65–67]. Sections 5 and 6 concern intra-option
learning—looking inside options to learn simultaneously about all options con-
sistent with each fragment of experience. Finally, in Section 7 we illustrate a
notion of subgoal that can be used to improve existing options and learn new
ones.

1 The Reinforcement Learning (MDP) Framework

In this section we briefly review the standard reinforcement learning frame-
work of discrete-time, finite Markov decision processes , or MDPs , which forms
the basis for our extension to temporally extended courses of action. In this
framework, a learning agent interacts with an environment at some discrete,
lowest-level time scale, t = 0, 1, 2, . . . On each time step, t, the agent perceives
the state of the environment, st ∈ S, and on that basis chooses a primitive
action, at ∈ Ast . In response to each action, at, the environment produces one
step later a numerical reward, rt+1, and a next state, st+1. It is convenient to
suppress the differences in available actions across states whenever possible;
we let A =

�
s∈S As denote the union of the action sets. If S and A, are fi-

nite, then the environment’s transition dynamics can be modeled by one-step
state-transition probabilities,

pa
ss� = Pr{st+1 = s� | st = s, at = a},

4

Learning and planning algorithms are the same at all levels of abstraction!

COMP579 Lecture 18, 2025 21

Option-value function

• The option-value function of a policy over options πΩ is defined as:

qπΩ
(s, ω) = EπΩ

[
Rt+1 + γβω(St+1)qπΩ

(St+1, ωt+1))

+ γ((1− βω(St+1))qπΩ
(St+1, ω)|St = s

]

• One can use eg Q-learning, actor-critic,... to learn this!

• Note that if we learn/plan in an SMDP, the contraction factor will be
lower than γ

• So fixing a set of options may allow solving the problem faster, but
maybe in a slightly sub-optimal way

• Intuitively, models are more self-contained than option-value functions

COMP579 Lecture 18, 2025 22

Advantages

• Easy to learn using temporal-difference-style methods, from a single
stream of experience

• Planning with option models is done just like planning with primitives -
no explicit hierarchy

• Result of planning with a set of options Ω is an option-value function,
e.g. VΩ, QΩ

• But we can also use the underlying MDP structure to help in learning
the options

COMP579 Lecture 18, 2025 23

How Should Options Be Created?

• Options can be given by a system designer (eg robotics)

• If subgoals / secondary reward structure is given, the option policy can be
obtained, by solving a smaller planning or learning problem (cf. Precup,
2000)

– Eg. acquiring certain objects in a game
– Eg. Intrinsic motivation

• What is a good set of subgoals / options?

• This is a representation discovery problem

• Studied a lot over the last 20 years

• Bottleneck states and change point detection currently the most
successful methods

COMP579 Lecture 18, 2025 24

Bottleneck States

• Perhaps the most explored idea in options construction

• A bottleneck allows “circulating” between many different states

• Lots of different approaches!

– Frequency of states (McGovern et al, 2001, Stolle & Precup, 2002)
– Graph partitioning / state graph analysis (Simsek et al, 2004, Menache

et al, 2004, Bacon & Precup, 2013) / graph Laplacian (eg Klissarov
and Machado, 2023)

– Information-theoretic ideas (Peters et al., 2010)

• People seem quite good at generating these (cf. Botvinick, 2001, Solway
et al, 2014)

• Main drawback: expensive both in terms of sample size and computation

COMP579 Lecture 18, 2025 25

Random Subgoals Also Help

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
LAVI

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
PFVI

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
OFVI

Figure 6: Example trajectories for policies derived from the last (K = 30) iteration of PFVI, OFVI, and
LAVI on the continuous two rooms domain. For LAVI, the landmark hyperspheres are drawn as black ovals.

0 5 10 15 20 25 30

Iteration #
0.0

0.5

1.0

1.5

2.0

2.5

Pe
rfo

rm
an

ce

LAVI(100)
LOFVI(100)
OFVI
PFVI

PFVI
OFVI

LO
FVI(1

00
)

LA
VI(1

00
)

0

5

10

15

20

25

30

Ti
m

e
(s

)p
er

Ite
ra

tio
n

(a) (b)

Figure 7: Two-Rooms: Comparison of planning with PFVI, OFVI, and LAVI with 100 landmarks in the
continuous two rooms domain. (a) Performance of policies derived from each iteration of PFVI, OFVI, and
LAVI. (b) Time in seconds to compute each iteration of PFVI, OFVI, and LAVI.

inventory requires making large jumps in the state-space (e.g., going from 0 inventory to maximum inventory
levels) in a single timestep.

5.3 Continuous Two Rooms Domain

We implemented a continuous-state version of the two rooms domain introduced by Şimşek and Barto
[2004]. Given the agent’s current state as a point hx, yi, the new state after executing a primitive action was
obtained by hx, yi+N (µ, �) where N (µ, �) is an instance of the normal distribution with mean µ = (�x,�y)
depending on the action (up, down, left, or right) and standard deviation � = (0.05, 0.05). If the agent was
blocked by a wall or boundary then it did not move. OFVI was given a single additional option (in addition
to the primitive actions), which transitions the agent from the doorway to the goal region. Landmarks for
LAVI and LOFVI were uniformly sampled from the state-space and di↵erent landmarks sets were sampled
for each trial.

We used Euclidean distance as a metric over the state-space and selected ⌘ = 0.05 and d+ = 15. We used
a greedy local planner that chose the action transitioning the agent closest to the landmark state, unless the
landmark and agent were in di↵erent rooms. In that case, the planner selected the action that transitioned
the closest to the doorway region. We ran all conditions for K = 30 iterations.

For the continuous Two-Rooms domain Figure 6 shows sample trajectories for the final policy derived
by PFVI, OFVI, and LAVI. Even with K = 30 iterations, PFVI was not able to derive a successful policy.
However, with additional iterations (not shown), PFVI does eventually learn a path to the goal region.
The policy derived by OFVI moves more directly toward the goal state, while the policy derived by LAVI
transitions from landmark to landmark. Although this results in a longer path to goal, LAVI is still able to
solve the task.

13

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
LAVI

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
PFVI

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
OFVI

Figure 6: Example trajectories for policies derived from the last (K = 30) iteration of PFVI, OFVI, and
LAVI on the continuous two rooms domain. For LAVI, the landmark hyperspheres are drawn as black ovals.

0 5 10 15 20 25 30

Iteration #
0.0

0.5

1.0

1.5

2.0

2.5

Pe
rfo

rm
an

ce

LAVI(100)
LOFVI(100)
OFVI
PFVI

PFVI
OFVI

LO
FVI(1

00
)

LA
VI(1

00
)

0

5

10

15

20

25

30

Ti
m

e
(s

)p
er

Ite
ra

tio
n

(a) (b)

Figure 7: Two-Rooms: Comparison of planning with PFVI, OFVI, and LAVI with 100 landmarks in the
continuous two rooms domain. (a) Performance of policies derived from each iteration of PFVI, OFVI, and
LAVI. (b) Time in seconds to compute each iteration of PFVI, OFVI, and LAVI.

inventory requires making large jumps in the state-space (e.g., going from 0 inventory to maximum inventory
levels) in a single timestep.

5.3 Continuous Two Rooms Domain

We implemented a continuous-state version of the two rooms domain introduced by Şimşek and Barto
[2004]. Given the agent’s current state as a point hx, yi, the new state after executing a primitive action was
obtained by hx, yi+N (µ, �) where N (µ, �) is an instance of the normal distribution with mean µ = (�x,�y)
depending on the action (up, down, left, or right) and standard deviation � = (0.05, 0.05). If the agent was
blocked by a wall or boundary then it did not move. OFVI was given a single additional option (in addition
to the primitive actions), which transitions the agent from the doorway to the goal region. Landmarks for
LAVI and LOFVI were uniformly sampled from the state-space and di↵erent landmarks sets were sampled
for each trial.

We used Euclidean distance as a metric over the state-space and selected ⌘ = 0.05 and d+ = 15. We used
a greedy local planner that chose the action transitioning the agent closest to the landmark state, unless the
landmark and agent were in di↵erent rooms. In that case, the planner selected the action that transitioned
the closest to the doorway region. We ran all conditions for K = 30 iterations.

For the continuous Two-Rooms domain Figure 6 shows sample trajectories for the final policy derived
by PFVI, OFVI, and LAVI. Even with K = 30 iterations, PFVI was not able to derive a successful policy.
However, with additional iterations (not shown), PFVI does eventually learn a path to the goal region.
The policy derived by OFVI moves more directly toward the goal state, while the policy derived by LAVI
transitions from landmark to landmark. Although this results in a longer path to goal, LAVI is still able to
solve the task.

13

Cf. Mann, Mannor & Precup, 2015

COMP579 Lecture 18, 2025 26

Inventory management application

• Manage a warehouse that can stock 8 different commodities

• At most 500 items can be stored at any given time

• Demand is stochastic and depends on time of year

• Negative rewards are given for unfulfilled orders and for the cost of
ordered items

• Hand-crafted options: order nothing until some threshold is crossed

• Primitive actions: specify amount of order for each item

COMP579 Lecture 18, 2025 27

Inventory management results

• Comparing a random policy and a 1-step greedy choice with using just
primitives (PFVI) using primitives and hand-crafted options (OFVI),
using “landmarks” (LOFVI) and using landmarks and only computing
values for landmarks states (LAVI)

Approximate Value Iteration with Mixed-Timescale Actions

Inventory Management Task

0 5 10 15 20

Iteration #

1000

2000

3000

4000

5000

6000

7000

D
is

co
un

te
d

C
um

ul
at

iv
e

R
ew

ar
d

LOFVI(100)
LAVI(100)
OFVI
PFVI
1-Step Greedy
Rand

0 5 10 15 20

Iteration #

1000

2000

3000

4000

5000

6000

7000

D
is

co
un

te
d

C
um

ul
at

iv
e

R
ew

ar
d

LOFVI(100)
LAVI(100)
OFVI
PFVI
1-Step Greedy
Rand

(a) Optimistic (V0 > V ⇤) (b) Pessimistic (V0  V ⇤)

Figure 11: Performance of policies at each iteration of OFVI and PFVI starting from a
state with no inventory. Results were averaged over 20 trials.

Ran
d

PFVI 1

PFVI 20
OFVI 1

OFVI 20

LO
FVI(1

00
) 1

LO
FVI(1

00
) 20

LA
VI(1

00
) 1

LA
VI(1

00
) 20

0

1000

2000

3000

4000

5000

6000

7000

Pe
rfo

rm
an

ce

PFVI
OFVI

LO
FVI(1

00
)

LA
VI(1

00
)

0

5

10

15

20

25

30

Ti
m

e
(s

)p
er

Ite
ra

tio
n

(a) (b)

Figure 12: Inventory Management: (a) Comparison of performance of the first and last
policies derived by PFVI, OFVI, and LAVI. (b) Comparison of time per iteration
in seconds. Results were averaged over 20 trials.

local planner that used a deterministic instance of the problem to transition as close as
possible to landmark states. We used Euclidean distance and set ⌘ = 0.05⇥ 500 where 500
was the maximum inventory level and d+ = 1. The reason we set d+ = 1 was because
successfully managing inventory requires making large jumps in the state-space (e.g., going
from 0 inventory to maximum inventory levels) in a single timestep.

Figure 12a compares the performance of a policy that selects primitive actions uniformly
at random and policies derived from the first and last iterates of PFVI, OFVI, LOFVI, and
LAVI. In this task, LAVI and LOFVI are able to outperform PFVI and OFVI after their first

55

• Randomly generated landmarks/subgoals perform much better

COMP579 Lecture 18, 2025 28

Performance and time evaluation

• Performance of initial and final policy (left) and running time (right)
averaged offer 20 independent runs

Approximate Value Iteration with Mixed-Timescale Actions

Inventory Management Task

0 5 10 15 20

Iteration #

1000

2000

3000

4000

5000

6000

7000

D
is

co
un

te
d

C
um

ul
at

iv
e

R
ew

ar
d

LOFVI(100)
LAVI(100)
OFVI
PFVI
1-Step Greedy
Rand

0 5 10 15 20

Iteration #

1000

2000

3000

4000

5000

6000

7000

D
is

co
un

te
d

C
um

ul
at

iv
e

R
ew

ar
d

LOFVI(100)
LAVI(100)
OFVI
PFVI
1-Step Greedy
Rand

(a) Optimistic (V0 > V ⇤) (b) Pessimistic (V0  V ⇤)

Figure 11: Performance of policies at each iteration of OFVI and PFVI starting from a
state with no inventory. Results were averaged over 20 trials.

Ran
d

PFVI 1

PFVI 20
OFVI 1

OFVI 20

LO
FVI(1

00
) 1

LO
FVI(1

00
) 20

LA
VI(1

00
) 1

LA
VI(1

00
) 20

0

1000

2000

3000

4000

5000

6000

7000

Pe
rfo

rm
an

ce

PFVI
OFVI

LO
FVI(1

00
)

LA
VI(1

00
)

0

5

10

15

20

25

30

Ti
m

e
(s

)p
er

Ite
ra

tio
n

(a) (b)

Figure 12: Inventory Management: (a) Comparison of performance of the first and last
policies derived by PFVI, OFVI, and LAVI. (b) Comparison of time per iteration
in seconds. Results were averaged over 20 trials.

local planner that used a deterministic instance of the problem to transition as close as
possible to landmark states. We used Euclidean distance and set ⌘ = 0.05⇥ 500 where 500
was the maximum inventory level and d+ = 1. The reason we set d+ = 1 was because
successfully managing inventory requires making large jumps in the state-space (e.g., going
from 0 inventory to maximum inventory levels) in a single timestep.

Figure 12a compares the performance of a policy that selects primitive actions uniformly
at random and policies derived from the first and last iterates of PFVI, OFVI, LOFVI, and
LAVI. In this task, LAVI and LOFVI are able to outperform PFVI and OFVI after their first

55

• Computing values only at landmark states yields a good policy almost
immediately
• Handcrafted options are better than primitives in the beginning but

slightly worse in the long run but randomly generated landmarks are
much better

COMP579 Lecture 18, 2025 29

Option-Critic: Learn Options that Optimize Return

• Explicitly state an optimization objective and then solve it to find a set
of options

• Handle both discrete and continuous set of state and actions

• Learning options should be continual (avoid combinatorially-flavored
computations)

• Options should provide improvement within one task (or at least not
cause slow-down...)

COMP579 Lecture 18, 2025 30

Actor-Critic Architecture

Value
function

Environment

Policy

at+1st

Actor

rt

Gradient

Critic TD error

• Clear optimization objective: average or discounted return

• Continual learning

• Handles both discrete and continuous states and actions

COMP579 Lecture 18, 2025 31

Option-Critic Architecture

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

The Option-Critic Architecture

where �QU,w(s, !, a) is the difference between the ap-
proximation and its true target. We can guarantee equal-
ity under two conditions: 1) The learning algorithm under-
lying QU,w minimizes the squared error distance and has
reached convergence 2) The gradient of the function ap-
proximator satisfies the equality:

@

@w
QU,w(s, !, a) =

@

@✓
⇡!,✓ (a | s)

1

⇡!,✓ (a | s)
(8)

This conditions simply mirror their MDP counterpart in the
original policy gradient theorem. The same conditions also
hold for the advantage function, used in the termination
gradient. This time however, we have:

@

@⇠
A⌦,⇠(s, !) =

@

@#
�!,#(s)

For more details, we invite you to consult the supplemen-
tary material.

4. Option-critic architecture

⇡⌦

QU , A⌦

Environment

atst

⇡!0
, �!0

rt

Gradients

Critic
TD error

!t

Options

Behavior policy

Figure 1: The option-critic architecture consists of a set of
options, a policy over them and a critic. Gradients can be
derived from the critic for both the intra-option policies and
termination functions. The execution model is suggested
pictorially by a switch ? over the contacts (. Switching
can only take place when a termination event is encoun-
tered.

The algorithmic implementation of theorems 1 and 2 gives
rise to the option-critic learning architecture (fig. 1), in
reference to the gradient-based actor-critic architectures
(Sutton, 1984; Peters et al., 2005; Degris et al., 2012).
Although option-critic is conceptually identical to actor-
critic, we sought to make a distinction between our holis-
tic approach to learning options and one in which intra-
option policies would be learned with regular policy gradi-
ent methods in a pseudo-reward context.

Since two types of gradients are needed to learn the options,
the critic part of the option-critic architecture consists in

Figure 2: Layout of the four-rooms domain and value func-
tion obtained by option-critic

.

QU (s, !, a) or the negative advantage function (or both).
In this work, we do not seek to use a critic for learning
the policy over options. Note that the problem of learning
a parametrized policy over options can be solved readily
using the policy gradient theorem (see section 2). Using
options has the advantage of reducing a large (potentially
continuous) set of primitive actions to a potentially much
smaller set of discrete options. In this case, the policy over
options can be found using planning methods over the op-
tions models.

5. Experiments
In order to illustrate our approach, we present some pre-
liminary experiments in the four-rooms domain (Sutton et
al., 1999). We fixed the initial state in the upper left cor-
ner and defined a terminal state in the lower right corner.
A penalty of -1 was incurred at every step and for every
action taken in the direction of a wall (resulting in a non-
elastic collision) and a terminal reward of 100 was obtained
upon taking an action leading to the goal state. Primitive
actions were defined as the one-step transitions to the next
cell in each of the four cardinal directions: north, east, west,
south. Any action could fail with probability 0.1, in which
case the agent would simply remain in the same state. The
discount factor for this MDP was set to to 0.9.

We chose to parametrize the intra-option policies using the
softmax distribution:

⇡! (a | s) =
exp✓|

!�(s,a)

P
a0 exp✓|

!�(s,a)

@

@✓
log ⇡! (a | s) = �(s, a)�

X

b

⇡! (b | s)�(s, b)

where � is a state-action basis function. In this experiment,
we used a simple a one-hot encoding of state-action pairs
as basis functions. We defined the termination through the

• Given a number of desired options, optimize internal policies and
termination conditions using the cumulative reward signal

cf. Bacon et al, AAAI’2017

COMP579 Lecture 18, 2025 32

Results: Transfer in Rooms Domain
Hallways

Walls

Initial goal Uniformly random goal

1000 ep.

0 500 1000 1500 2000

Episodes

0

100

200

300

400

500

S
te

p
s

AC

Sarsa

OC 2 options

OC 4 options

OC 6 options

OC 8 options

COMP579 Lecture 18, 2025 33

Option-Critic Architecture

Qθ(·|s)

βθ(s, ·)
πθ(·|s, ·)

32 filters
8× 8

64 filters
4× 4

64 filters
3× 3

Last 4 frames
84× 84 pixels

Dense layer
512 units

• Given a number of desired options, optimize internal policies and
termination conditions using the reward signal

• DQN-style or advantage asynchronous option-critic (A2OC) (other
choices possible)

COMP579 Lecture 18, 2025 34

Quantitative results in Atari games
Policy over options

Termination functions

Internal policies

Shared representationConvolutional layersLast 4 frames

Figure 3: Network architecture for option-critic in the ALE
environment. The penultimate layer is shared across option
policies, termination functions and value outputs.

Therefore, the gradient for option policies takes into account
how a local change in the action choices would impact per-
formance of the entire system.

The gradient theorem for termination functions also ad-
mits a clear interpretation but involves a different critic feed-
back than for option policies. The termination gradient
makes the odds of terminating more likely if there is no
longer an advantage in maintaining an option. Conversely
if committing to an option is deemed advantageous by the
critic, its probability of terminating should be decreased so
as to lengthen that option. The expression advantageous,
loosely used up to now, is defined precisely in terms of the
advantage function (Baird 1993): the difference between the
value of a given option at a state and the expected value over
all options. Interestingly, the termination gradient theorem
for options can be seen as another instantiation of the inter-
ruption execution model (Sutton et al. 1999b) whereby the
policy over option commits to an option unless a better one
can be taken.

Deep Options
In addition to options, a state abstraction can also be learned
end-to-end under the option-critic architecture. Having
the Arcade Learning Environment (ALE) (Bellemare et al.
2013) in mind, we designed a parameterization around the
deep network architecture of the DQN algorithm (Mnih et
al. 2015). The observations fed to the agent being pixel-
based, the first few layers of the network (fig. 3) apply con-
volutions to a concatenation of the last four frames. In the
penultimate layer, the high level visual features extracted be-
low are combined in a shared representation across all op-
tions, termination functions and values outputs.

While we could have chosen to also parameterized the
policy over options, we decided to use instead an epsilon-
greedy (Sutton and Barto 1998) policy over options derived
from the value outputs. Therefore the stream of computation
going from input to value output and epsilon-greedy policy
mirrors the same design as DQN . However, the second path
of computation ending in the option policies and termination
functions necessitates randomization per the gradient theo-
rems for options. Because the action space is discrete, we
chose the softmax (Sutton et al. 1999a) for the options poli-
cies and sigmoid functions for the termination functions.

Different kinds of parameters updates are also necessary
in each of the two stream. For the value updates and control
over options, we used the idea of a target network of DQN

(a) Asterix (b) Ms. Pacman

Option-Critic
DQN

Option-Critic
DQN

A
vg

.S
co

re

Epoch Epoch
50 100 150 2000 50 100 150 2000

0

2000

4000

6000

8000

10000

500

1000

1500

2000

2500

(c) Seaquest (d) Zaxxon

Option-Critic
DQN

Option-Critic
DQN

Epoch Epoch
50 100 150 2000 50 100 150 2000

0

2000

4000

6000

8000

10000

0

2000

4000

6000

8000

Figure 4: Option-critic can learn options (8 in this case)
within a single task in the Arcade Learning Environment.

but in combination with the intra-option Q-learning algo-
rithm (Sutton et al. 1999b) By freezing the network for a
fixed interval, the target for the values update becomes more
stationary learning becomes more stable. Both kinds of up-
dates would be computed at every step with samples com-
ing from an experience replay buffer (Lin 1992) for learning
values but using only fresh online samples for the options
updates. The reason for not using replayed samples with op-
tions gradients (or policy gradients in general) was to ensure
that our gradient estimates would truly come the distribution
of interest : the stationary distribution of the online process.

From Zero to Options : Results in ALE
Could we learn from scratch a set of options and their state
abstraction within a single task ? We set out to answer this
question in four representative tasks of the ALE domain :
Asterix, Ms. Pacman, Seaquest in Zaxxon. Even for simple
grid environments, discovering options in complete auton-
omy had either required excessively large amounts of data
and computation or some form of prior experience in related
tasks. Hence, learning options in ALE without any prespec-
ification other than the goal of maximizing the discounted
return would be a formidable challenge.

Despite the complexity of this endeavour, the combina-
tion of option-critic and our deep architecture outperformed
the best reported DQN performance (fig. 4) for the same to-
tal number of frames in the games Asterix, Ms. Pacman and
Seaquest. It is important to remember that all learning took
place entirely within the same task at a rate and computa-
tional cost comparable to DQN. Beside the options param-
eterization the only parameter that we had to provide to our
system was the number of desired options.

With the end-to-end approach behind the option-critic ar-
chitecture, the question “what options were discovered ?”
can be answered in general by : any kind of options that

• Performance matching or better than DQN learning within a single task

• Out of 8 games tested, option-critic does better that published results in
7, with A3C version superior to DQN - mainly due to exploration

COMP579 Lecture 18, 2025 35

Qualitative results in Atari games

(a) Asterix (b) Ms. Pacman (c) Seaquest (d) Zaxxon

Testing
Moving avg.10
DQN

Testing
Moving avg.10
DQN

Testing
Moving avg.10
DQN

Testing
Moving avg.10
DQN

A
vg

.S
co

re

Epoch Epoch Epoch Epoch
50 100 150 2000 50 100 150 2000 50 100 150 2000 50 100 150 2000

0

2000

4000

6000

8000

10000

500

1000

1500

2000

2500

0

2000

4000

6000

8000

10000

0

2000

4000

6000

8000

Figure 8: Learning curves in the Arcade Learning Environment. The same set of parameters was used across all four games: 8
options, 0.01 termination regularization, 0.01 entropy regularization, and a baseline for the intra-option policy gradients.

Option 0 Option 1

Time

Figure 9: Up/down specialization in the solution found by option-critic when learning with 2 options in Seaquest. The top bar
shows a trajectory in the game, with “white” representing a segment during which option 1 was active and “black” for option 2.

use the DQN framework to implement a gradient-based op-
tion learner, which uses intrinsic rewards to learn the internal
policies of options, and extrinsic rewards to learn the pol-
icy over options. As opposed to our framework, descriptions
of the subgoals are given as inputs to the option learners.
Option-critic is conceptually general and does not require
intrinsic motivation for learning the options.

Discussion
We developed a general gradient-based approach for learn-
ing simultaneously the intra-option policies and termination
functions, as well as the policy over options, in order to opti-
mize a performance objective for the task at hand. Our ALE
experiments demonstrate successful end-to-end learning of
options in the presence of nonlinear function approxima-
tion. As noted, our approach only requires specifying the
number of options. However, if one wanted to use additional
pseudo-rewards, the option-critic framework would easily
accommodate it. In this case, the internal policies and ter-
mination function gradients would simply need to be taken
with respect to the pseudo-rewards instead of the task re-
ward. A simple instance of this idea, which we used in some
of the experiments, is to use additional rewards to encour-
age options that are indeed temporally extended by adding
a penalty whenever a switching event occurs. Our approach
can work seamlessly with any other heuristic for biasing the
set of options towards some desirable property (e.g. compo-
sitionality or sparsity), as long as it can be expressed as an
additive reward structure. However, as seen in the results,
such biasing is not necessary to produce good results.

The option-critic architecture relies on the policy gradient

theorem, and as discussed in (Thomas 2014), the gradient
estimators can be biased in the discounted case. By intro-
ducing factors of the form �t

Qt
i=1(1 � �i) in our updates

(Thomas 2014, eq (3)), it would be possible to obtain un-
biased estimates. However, we do not recommend this ap-
proach since the sample complexity of the unbiased esti-
mators is generally too high and the biased estimators per-
formed well in our experiments.

Perhaps the biggest remaining limitation of our work is
the assumption that all options apply everywhere. In the case
of function approximation, a natural extension to initiation
sets is to use a classifier over features, or some other form of
function approximation. As a result, determining which op-
tions are allowed may have similar cost to evaluating a pol-
icy over options (unlike in the tabular setting, where options
with sparse initiation sets lead to faster decisions). This is
akin to eligibility traces, which are more expensive than us-
ing no trace in the tabular case, but have the same complex-
ity with function approximation. If initiation sets are to be
learned, the main constraint that needs to be added is that the
options and the policy over them lead to an ergodic chain in
the augmented state-option space. This can be expressed as
a flow condition that links initiation sets with terminations.
The precise description of this condition, as well as sparsity
regularization for initiation sets, is left for future work.

Acknowledgements
The authors gratefully acknowledge financial support for
this work by the National Science and Engineering Research
Council of Canada (NSERC) and the Fonds de recherche du
Quebec - Nature et Technologies (FRQNT).

• In Seaquest, separate options are learned to go up and down

COMP579 Lecture 18, 2025 36

Preserving Procedural Knowledge over Time

• Successful simultaneous learning of terminations and option policies

• But, as expected, options shrink over time unless additional regularization
is imposed

Cf. time-regularized options, Mann et al, (2014)

• Intuitively, using longer options increase the speed of learning and
planning (but may lead to a worse result in call-and-return execution)

• Diverse options are useful for exploration in continual learning setting

COMP579 Lecture 18, 2025 37

Bounded Rationality as Regularization

• Problem: optimizing return leads to option collapse (primitive actions
are sufficient for optimal behaviour)

• Bounded rationality: reasoning about action choices is expensive (energy
consumption and missed-opportunity cost)

Eg Russell, 1995, Lieder & Griffiths, 2018

• Idea: switching options incurs an additional cost

Bacon, Harb & Precup

Time

Base MDP + Options

Deliberation Costs

Figure 1: The switching cost is incurred upon entering SMDP decision points, represented
by open circles. The average decision cost per primitive step (filled circle) is represented by
the intensity of the subtrajectory.

Furthermore, if c✓(s
0, o) = ��✓(s

0, o) – which we call a switching cost function – we have :

Qc
✓(s, o) =

X

a

⇡ (a | s, o)

r(s, a) + �
X

s0
P
�
s0
�� s, a

� ⇥
Q✓(s

0, o)� �✓(s
0, o)

�
Ac

✓(s
0, o) + ⌘

�⇤
!

,

(19)

where Ac
✓(s

0, o)=̇Qc
✓(s

0, o)�V c
✓ (s0). The introduction of the switching cost to the base MDP

reward therefore leads to a di↵erent form for the intra-option Bellman equations (5) where
a scalar ⌘ is now added to the advantage function. This suggests that the e↵ect of using a
switching cost ⌘ is to set a baseline on how good an option is believed to be compared to v✓.
By increasing ⌘, we e↵ectively express that persisting with an option might be preferable
to reconsidering the current course of actions immediately. This preference for committing
to the same option might be motivated by computational or metabolic limitations (Simon,
1957), or by the inherent approximation error (due to finite predictive capacity) or to the
uncertainty in the value estimates.

5.3 Di↵erent Horizons for Cost and Reward

The generality of the regularized objective (18) allows a decoupling of the internal horizon
on the expected discounted cost with the discount factor of the external environment. In
this case, the unconstrained objective becomes:

J�,⌧
↵ (✓)=̇

X

s,o

↵(s, o)
�
Q�

✓ (s, o)�D⌧
✓ (s, o)

�
. (20)

where D⌧
✓ is the expected ⌧ -discounted cost and Q�

✓ the expected discount sum of rewards
in the base MDP. The intra-option Bellan equations over the switching cost being:

D⌧
✓ (s, o) =

X

a

⇡ (a | s, o)
X

s0
P
�
s0
�� s, a

� �
c✓(s

0, o) + ⌧Q✓(s
0, o)� ⌧�✓(s

0, o)A✓(s
0, o)
�
,

setting ⌧ = 0 with c✓(s
0, o) = ��✓(s

0, o) leads to :

D⌧=0
✓ (s, o) =

X

a

⇡ (a | s, o)
X

s0
P
�
s0
�� s, a

�
c✓(s, o, s

0) .

16

• Can be shown equivalent to requiring that advantage exceeds a threshold
before switching

COMP579 Lecture 18, 2025 38

Illustration: Amidar

(a) Without a deliberation cost, options ter-
minate instantly and are used in any scenario
without specialization.

(b) Options are used for extended periods
and in specific scenarios through a trajectory,
when using a deliberation cost.

(c) Termination is sparse when using the
deliberation cost. The agent terminates op-
tions at intersections requiring high level de-
cisions.

Figure 2: We show the effects of using deliberation costs on both the option termination and policies. In figures (a) and (b),
every color in the agent trajectory represents a different option being executed. This environment is the game Amidar, of the
Atari 2600 suite.

of deliberation cost with previous notions of regularization
from (Mann et al. 2014) and (Bacon et al. 2017).

The deliberation cost goes beyond only the idea of pe-
nalizing for lengthy computation. It can also be used to in-
corporate other forms of bounds intrinsic to an agent in its
environment. One interesting direction for future work is to
also think of deliberation cost in terms of missed opportunity
and opening the way for an implicit form of regularization
when interacting asynchronously with an environment. An-
other interesting form of limitation inherent to reinforcement
learning agents has to do with their representational capaci-
ties when estimating action values. Preliminary work seems
to indicate that the error decomposition for the action values
could be also be expressed in the form of a deliberation cost.

References
[Altman 1999] E. Altman. Constrained Markov Decision
Processes. Chapman and Hall, 1999.

[Andreas et al. 2017] Jacob Andreas, Dan Klein, and Sergey
Levine. Modular multitask reinforcement learning with pol-
icy sketches. In ICML, pages 166–175, 2017.

[Bacon et al. 2017] Pierre-Luc Bacon, Jean Harb, and Doina
Precup. The option-critic architecture. In AAAI, pages 1726–
1734, 2017.

[Baird 1993] Leemon C. Baird. Advantage updating. Tech-
nical Report WL–TR-93-1146, Wright Laboratory, 1993.

[Bellemare et al. 2013] M. G. Bellemare, Y. Naddaf, J. Ve-
ness, and M. Bowling. The arcade learning environment: An
evaluation platform for general agents. Journal of Artificial
Intelligence Research, 47:253–279, 06 2013.

[Botvinick et al. 2009] Matthew M. Botvinick, Yael Niv, and
Andrew C. Barto. Hierarchically organized behavior and its

neural foundations: A reinforcement learning perspective.
Cognition, 113(3):262 – 280, 2009.

[Branavan et al. 2012] S. R. K. Branavan, Nate Kushman,
Tao Lei, and Regina Barzilay. Learning high-level planning
from text. In ACL, pages 126–135, 2012.

[Daniel et al. 2016] C. Daniel, H. van Hoof, J. Peters, and
G. Neumann. Probabilistic inference for determining op-
tions in reinforcement learning. Machine Learning, Special
Issue, 104(2):337–357, 2016.

[Dayan and Hinton 1992] Peter Dayan and Geoffrey E. Hin-
ton. Feudal reinforcement learning. In NIPS, pages 271–
278, 1992.

[Dietterich 1998] Thomas G. Dietterich. The MAXQ
method for hierarchical reinforcement learning. In ICML,
pages 118–126, 1998.

[Drescher 1991] Gary L. Drescher. Made-up Minds: A Con-
structivist Approach to Artificial Intelligence. MIT Press,
Cambridge, MA, USA, 1991.

[Fikes et al. 1972] Richard Fikes, Peter E. Hart, and Nils J.
Nilsson. Learning and executing generalized robot plans.
Artif. Intell., 3(1-3):251–288, 1972.

[Gigerenzer and Selten 2001] Gerd Gigerenzer and R. Sel-
ten. Bounded Rationality: The adaptive toolbox. Cam-
bridge: The MIT Press, 2001.

[Guo et al. 2014] Xiaoxiao Guo, Satinder Singh, Honglak
Lee, Richard L Lewis, and Xiaoshi Wang. Deep learning
for real-time atari game play using offline monte-carlo tree
search planning. In Z. Ghahramani, M. Welling, C. Cortes,
N. D. Lawrence, and K. Q. Weinberger, editors, Advances
in Neural Information Processing Systems 27, pages 3338–
3346. Curran Associates, Inc., 2014.

[Howard 1963] Ronald A. Howard. Semi-markovian deci-

• Deliberation costs prevent options from becoming too short

• Terminations are intuitive

COMP579 Lecture 18, 2025 39

Should All Option Components Optimize the Same
Thing?

• Deliberation cost can be viewed as associated specifically with termination

• Rewards could be optimized mainly by the internal policy of the option

• Can we generalize this idea to other optimization criteria?

COMP579 Lecture 18, 2025 40

Termination-Critic

• Optimize the termination condition independently of the policy inside
the option

• Option termination should focus on predictability ie finding “funnelling
states”

• Interesting side effect: if each option ended at a funelling state,
expectation and distribution model would be almost identical and the
option would be almost deterministic

• Implementation: minimize the entropy of the option transition model Pω

cf. Harutyunyan et al, AISTATS’2019

COMP579 Lecture 18, 2025 41

Illustration: Rooms environmentAnna Harutyunyan, Will Dabney, Diana Borsa, Nicolas Heess, Rémi Munos, Doina Precup

Figure 3: Example resulting options from ACTC (left) and A2OC (right). Each option is depicted via its policy
and termination condition. ACTC concentrates termination probabilities around a small set of states while A2OC,
with deliberation cost, tends to saturate on constant zero or constant one termination probability.

Figure 4: The learning performance of the two algo-
rithms on the the Four Rooms task with switching goals.
We plot the entire suite of hyperparameters, which
for A2OC includes various deliberation costs, and for
ACTC different learning rates for the �-network. We
see ACTC exhibit better learning performance.

6.2.2 Learning and Planning in Four Rooms

We first depict the options qualitatively with an exam-
ple termination profile shown in Figure 3. We see that
ACTC leads to tightly concentrated regions with high
termination probability and low probability elsewhere,
whereas A2OC even with deliberation cost tends to con-
verge to trivial termination solutions. Although ACTC
does not always converge to terminating in a single
region, it leads to distinct options with characteristic
behavior and termination profiles.

Next, in Figure 4 we compare the online learning per-
formance between ACTC and A2OC with deliberation
cost. The traces indicate separate hyper-parameter
settings and seeds for each algorithm and the bold line

Figure 5: Investigating correlation between predictabil-
ity and planning performance. Average policy value
plotted against predictability objective (negative of the
loss). A2OC options generalize poorly to unseen goals
and have unpredictable terminations. ACTC optimizes
the predictability objective leading to reusable options.

gives their average. ACTC enjoys better performance
throughout learning.

6.3 Correlation with Planning Performance

Finally, we investigate the claim that more directed
termination leads to improved planning performance.
To this end, we generate various sets (n = 4) of goal-
directed options in the Four Rooms domain by sys-
tematically varying the option-policy goal location and
concentration of termination probability around the
goal location. We evaluate these options, combined
with primitive actions, by averaging the policy value
during ten iterations of value iteration and all possible
goal locations (see appendix for more details).

Anna Harutyunyan, Will Dabney, Diana Borsa, Nicolas Heess, Rémi Munos, Doina Precup

Figure 3: Example resulting options from ACTC (left) and A2OC (right). Each option is depicted via its policy
and termination condition. ACTC concentrates termination probabilities around a small set of states while A2OC,
with deliberation cost, tends to saturate on constant zero or constant one termination probability.

Figure 4: The learning performance of the two algo-
rithms on the the Four Rooms task with switching goals.
We plot the entire suite of hyperparameters, which
for A2OC includes various deliberation costs, and for
ACTC different learning rates for the �-network. We
see ACTC exhibit better learning performance.

6.2.2 Learning and Planning in Four Rooms

We first depict the options qualitatively with an exam-
ple termination profile shown in Figure 3. We see that
ACTC leads to tightly concentrated regions with high
termination probability and low probability elsewhere,
whereas A2OC even with deliberation cost tends to con-
verge to trivial termination solutions. Although ACTC
does not always converge to terminating in a single
region, it leads to distinct options with characteristic
behavior and termination profiles.

Next, in Figure 4 we compare the online learning per-
formance between ACTC and A2OC with deliberation
cost. The traces indicate separate hyper-parameter
settings and seeds for each algorithm and the bold line

Figure 5: Investigating correlation between predictabil-
ity and planning performance. Average policy value
plotted against predictability objective (negative of the
loss). A2OC options generalize poorly to unseen goals
and have unpredictable terminations. ACTC optimizes
the predictability objective leading to reusable options.

gives their average. ACTC enjoys better performance
throughout learning.

6.3 Correlation with Planning Performance

Finally, we investigate the claim that more directed
termination leads to improved planning performance.
To this end, we generate various sets (n = 4) of goal-
directed options in the Four Rooms domain by sys-
tematically varying the option-policy goal location and
concentration of termination probability around the
goal location. We evaluate these options, combined
with primitive actions, by averaging the policy value
during ten iterations of value iteration and all possible
goal locations (see appendix for more details).

COMP579 Lecture 18, 2025 42

Why is temporal abstraction useful for complex RL tasks

• Advantages to planning

– Need to generate shorter plans
– Improves robustness to model errors
– Might need to look at fewer states, since the abstract actions have

pre-defined termination conditions
– Discretize the action space in continuous problems

• Advantages to learning

– Improves exploration (can travel in larger leaps)
– Gives a natural way of using a single stream of data to learn many

things (off-policy learning)

• Advantages to interpretability:

– Focusing attention: Sub-plans ignore a lot of information
– Improves readability of both models and resulting plans
– Reduces the problem size

COMP579 Lecture 18, 2025 43

