
What is Reinforcement Learning for?



Reinforcement Learning

“Part of the appeal of reinforcement learning is that it is in 
a sense the whole AI problem in a microcosm.” 
– Sutton, 1992

http://incompleteideas.net/papers/challengeofRL.pdf


1. RL for understanding intelligence

● A way to model processes in the brain 
● A way to model cognitive processes in animals and people



Learning Values: Temporal-Difference Error

• Value estimate at time step t:

• Value estimate at time step t+1:

• Temporal-difference error:

• If v is parameterized by w, change w so as to minimize the 
TD-error: 

• Shultz, Dayan & Montague (1997): TD-errors model the 
activity of dopamine neurons 

r(St, At) + γ v(St+1)

wt+1 = wt + αδt ∇wvw(St)

v(St)

δt = r(St, At) + γv(St+1) − v(St)



Dopamine neuron modelling

Cf. Shultz, Dayan et al, 1996; and lots of follow-up work including MNI, Psych.



Control: Actor-critic architecture

A(s, a) = r(s, a) + γE(v(s′￼) |s, a) − v(s)

• Parameters of the policy move to make more likely action a that has 
positive advantage: 

• O’Doherty et al (2004): fMRI evidence that dorsolateral striatum 
implements an actor and ventral striatum a critic



Generalizing Actions: Options Framework

• An option is a defined by a tuple 

• An initiation function    (precondition)

• An internal policy         (behavior)

•  A termination function  (post-condition)

• Eg robot navigation: if no obstacle in front (initiation) go 
forward (policy) until something is too close (termination)

Cf. Sutton, Precup & Singh, 1998; Precup, 2000

⟨Iω(s), πω(a |s), βω(s)⟩



Possible Neural Correlates of Options

From Botvinick, Niv & Barto, 2009



“ 

Source: Giphy

Affordances […] relations 
between abilities of 

organisms and features of 
their environment.

Gibson, 1977
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https://giphy.com/


Affordances

Affordances are the subset of 
states and actions which 

complete the intent to go left.

❐ 	 Captures states and actions that complete an intent

?



What is the impact of the affordance set size on performance ?

Decreasing 
Affordance 
set size

Smaller sets of affordances 
= quicker learning

Performance gains



2. RL for applications

● Build super-human agents 
● Tackle very complex control tasks 
● Learn to search and explore



Super-human performance: Games

The Game of Go

~10170 unique positions

~200 moves long

~200 branching factor

~10360 complexity



Complex Control Tasks

Bellemare et al, Nature, 2020 Degrave et al, Nature, 2022



Small Molecule Drug Discovery

Oracle? 

- Ideal: send diverse batches (10-100k) of candidates to a lab, O(weeks) 
- For now: use noisy physics simulator, O(15 CPUs)/molecule

predict reward 
cheaply (DNN)

This part is expensive and/

or noisy! 

(w/ biased noise)

generate molecule(s)

train 
generator

compute “real” reward 

train reward 
predictor

occasionally query “oracle"

Initial data 
{(x,y),..}

Protein

Drug

growing 

datase
t



Drug Discovery as Reinforcement Learning Problem

“empty molecule”

Build molecules block by block 

Episodes end with terminal R > 0 
(no intermediate rewards)



Just apply Reinforcement Learning?

- We have an environment (actions = build molecule) 
- We have a (noisy, learned) reward  
- RL! (Segler et al., 2017; De Cao & Kipf, 2018; Popova et al., 2019;  

        Gottipati et al., 2020; Angermueller et al., 2020) 

But RL greedily looks for one mode, even when we encourage entropy!  
Not great for diverse batch oracle queries
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https://arxiv.org/abs/1701.01329
https://arxiv.org/abs/1805.11973
https://arxiv.org/abs/1905.13372
https://arxiv.org/abs/2004.12485
https://openreview.net/forum?id=HklxbgBKvr


Just apply MCMC?

- We have a Markov Chain (actions = edit molecule) 
- We have a reward  = unnormalized probability, want to sample from it 
- MCMC! (Seff et al., 2019; Xie et al., 2020) 

But MCMC is slow, gets stuck in modes easily (lack of diversity!), requires mode-
mixing for any new sample 

Not great for diverse batch oracle queries!
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https://arxiv.org/abs/1907.08268
https://arxiv.org/abs/1907.08268
https://openreview.net/forum?id=kHSu4ebxFXY


What about the usual generative models?

- Trained from positive samples only (e.g. existing drugs) 

But we have a more informative (non-binary) signal! (reward) 
- We don’t just want high reward, we want to avoid low reward (and have the data) 
- Still possible to do well: Jin et al., 2018; Shi et al., 2020; Luo et al., 2021
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https://arxiv.org/abs/1802.04364
https://arxiv.org/abs/2001.09382
https://arxiv.org/abs/2102.01189


GFlowNet

Generative framework for discrete objects which have a reward (or energy). 

Reward-proportional sampling: 
without MCMC!

NeurIPS 2021
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Background: SumTrees (& control as inference: SoftAC/SoftQL)

s0

s1

s3

s4

s5

s6

s7

s2 R=1 

R=2

R=3 

R=4

F=7 

F=9

F=1

F=10

P(s2) = 1/10

P(s4) = 2/10

P(s6) = 3/10

P(s7) = 4/10

π(a|s) = Q(s,a) / V(s) = F(s,a) / F(s)

using 
π(a|s) = F(s,a) / F(s) 
we get P(x) ∝ R(x)

F(s
3 , a

1 )=7

F(s3, a0)=2
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What if it’s a DAG?

s0

s1

s3

s4

s5

s6

s7

s2 R=1 

R=2

R=3 

R=4

F=7 

F=9

F=3

F=12

P(s2) = 1/12

P(s4) = 4/12

P(s6) = 3/12

P(s7) = 4/12

Naively applying SoftQL/SumTree yields the wrong solution

using 
π(a|s) = F(s,a) / F(s) 
we get P(𝝉) ∝ R(𝝉) 

!=  
 P(x) ∝ R(x)

F(s
3 , a

1 )=7

F(s3, a0)=2
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What if it’s a DAG?

s0

s1

s3

s4

s5

s6

s7

s2 R=1 

R=2

R=3 

R=4

F=7 

F=9

F=3

F=12
P(s2) = 1/12

P(s4) = 4/12

P(s6) = 3/12

P(s7) = 4/12

Naively applying SoftQL/SumTree yields the wrong solution

using 
π(a|s) = F(s,a) / F(s) 
we get P(𝝉) ∝ R(𝝉) 

!=  
 P(x) ∝ R(x)

F(s
3 , a

1 )=7

F(s3, a0)=2

- P(𝝉) ∝ R(𝝉) is bad if many 𝝉 lead 
to the  
  same X!  
- Exponentially bad in graph 
generation 
  (combinatorial # of paths)
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Interpreting the DAG as a flow network

s0

s1

s3

s4

s5

s6

s7

s2 R=1 

R=2(=outflow)

R=3 

R=4

F=7 

F=8

F=2

F=10

P(s2) = 1/10

P(s4) = 2/10

P(s6) = 3/10

P(s7) = 4/10

F(s) such that inflow = outflow

using 
π(a|s) = F(s,a) / F(s) 
we get  P(x) ∝ R(x)! 

inflow is F(s1,a1)+F(s3,a0)

F(s3, a0)=1

F(s
1 , a

1 )=1

F(s
3 , a

1 )=7
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Satisfy flow conditions, for all s’ 
 
 
 
 

This is very similar to a Bellman Equation, the bread and butter of RL! 

Satisfying the flow equations yields the right sampling proportions

Flow consistency

in flow of s’ out flow of s’
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How to train GFlowNet

Take inspiration from RL to learn F: 

Dangerous objective, F(s0,.) is going to be huge! F(s0) = Z
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How to train GFlowNet

Instead, learn the log, and match flows in log-space 

 
with an epsilon (care less about tiny flows)
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Relationship to MaxEntRL

● Quite similar in spirit but different mechanism (recent papers establish formal 
relationship) 

● Sampling of trajectories is always proportional to the reward at the end  
● If multiple policies are optimal their paths continue to be generated 
● In fact, all paths continue to be generated 
● Ongoing work: extensions to non-DAG, rewards at all states

28



Works well! Molecule results
Pre-train reward function once on 300k molecules (computed on CPU simulator)   
Modes are found faster, with better rewards

modes = Bemis-Murcko scaffolds

29



Works for Batch Active Learning too!
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pairs D0, where R(x) is the true reward from the oracle. The generative model (⇡✓) is trained
to fit to the unnormalized probability function learned by the proxy M . We then sample a batch
B = {x1, x2, . . . xk} where xi ⇠ ⇡✓, which is evaluated with the oracle O. The proxy M is updated
with this newly acquired and labeled batch, and the process is repeated for N iterations. We discuss
the experimental setting in more detail in Appendix A.5.

Figure 6: The top-k return (mean over 3 runs)
in the 4-D Hyper-grid task with active learning.
GFlowNet gets the highest return faster.
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Figure 7: The top-k docking reward (mean over
3 runs) in the molecule task with active learning.
GFlowNet consistently generates better samples.

Hyper-grid domain We present results for the multi-round task in the 4-D hyper-grid domain in
Figure 6. We use a Gaussian Process (Williams and Rasmussen, 1995) as the proxy. We compare
the Top-k Return for all the methods, which is defined as mean(top -k(Di)) � mean(top -k(Di�1)),
where Di is the dataset of points acquired until step i, and k = 10 for this experiment. The initial
dataset D0 (|D0| = 512) is the same for all the methods compared. We observe that GFlowNet
consistently outperforms the baselines in terms of return over the initial set. We also observe that
the mean pairwise L2-distance between the top -k points at the end of the final round is 0.83 ± 0.03,
0.61 ± 0.01 and 0.51 ± 0.02 for GFlowNet, MCMC and PPO respectively. This demonstrates the
ability of GFlowNet to capture the modes, even in the absence of the true oracle, as well as the
importance of capturing this diversity in multi-round settings.

Small Molecules For the molecule discovery task, we initialize an MPNN proxy to predict docking
scores from AutoDock (Trott and Olson, 2010), with |D0| = 2000 molecules. At the end of each
round we generate 200 molecules which are evaluated with AutoDock and used to update the proxy.
Figure 7 shows GFlowNet discovers molecules with significantly higher energies than the initial
set D0. It also consistently outperforms MARS as well as Random Acquisition. PPO training was
unstable and diverged consistently so the numbers are not reported. The mean pairwise Tanimoto
similarity in the initial set is 0.60. At the end of the final round, it is 0.54 ± 0.04 for GFlowNet
and 0.64 ± 0.03 for MARS. This further demonstrates the ability of GFlowNet to generate diverse
candidates, which ultimately helps improve the final performance on the task. Similar to the single
step setting, we observe that JT-VAE+BO is only able to generate 103 molecules with similar compute
time, and thus performs poorly.

5 Discussion & Limitations
In this paper we have introduced a novel TD-like objective for learning a flow for each state and
(state, action) pair such that policies sampling actions proportional to these flows draw terminal states
in proportion to their reward. This can be seen as an alternative approach to turn an energy function
into a fast generative model, without the need for an iterative method like that needed with MCMC
methods, and with the advantage that when training succeeds, the policy generates a great diversity
of samples near the main modes of the target distribution without being slowed by issues of mixing
between modes.

Limitations. One downside of the proposed method is that, as for TD-based methods, the use of
bootstrapping may cause optimization challenges (Kumar et al., 2020; Bengio et al., 2020) and limit
its performance. In applications like drug discovery, sampling from the regions surrounding each
mode is already an important advantage, but future work should investigate how to combine such a
generative approach to local optimization in order to refine the generated samples and approach the
local maxima of reward while keeping the batches of candidates diverse.

Negative Social Impact. The authors do not foresee negative social impacts of this work specifically.
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Average return over 3 runs of the top-k candidates in an iterative batch generation approach



Reinforcement Learning for therapeutics

● Very big, largely untapped potential! 
● Reward design is crucial 
● Need to consider specifics of the problem 

● Great opportunity to improve existing algorithms! 
● Sample efficiency of RL needs to be improved

31



3. RL for building general agents

● General computational tools 
● Ability to incorporate many sources of data and powerful architectures 
● But training them from interaction!
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Example: Training to interact with all Android apps
AndroidEnv: A Reinforcement Learning Platform for Android

(a) Catch (b) Rocket Sleigh (c) Press Button (d) Apple Flinger (e) 2048 (f) Blockinger

Figure 5 | Small selection of tasks used in the experiments.

showing that the same agents can have drastically di�erent performance depending on each of these
factors. For example, most agents perform well on tasks such as catch that have a simple action interface
and dense rewards, whereas the combination of a highly structured interface, time sensitivity and sparse
rewards render blockinger particularly di�cult to solve.

Since none of these tasks require high-resolution inputs to achieve optimal behavior, we down-
sampled the image observation to 80 ⇥ 120 pixels. Since this size is comparable to the resolution
commonly used in the ATARI Learning Environment, we were able to run all agents using the network
architectures reported by the authors of each corresponding agent. We generated training data using
128 distributed actors and we compiled results for each hyper-parameter configuration by averaging the
performance of 4 independent runs using di�erent seeds. See Figure 6 for an overview of the results of
these experiments.

Figure 6 | Agent performance: The baseline continuous and discrete control agents ran on selection of
AndroidEnv tasks, covering games where the action interface requires interactions including localised
touches (catch), swiping (classic_2048), and drag-and-drop (apple_flinger). Continuous control
agents perform well only in tasks where the interface does not expect complex gestures, but fail to
achieve reasonable performance otherwise. Discrete control agents display better overall performance.
We compiled the results above by averaging human-normalized scores (with 1.0 corresponding to
average human performance) over four di�erent seeds for each agent configuration. Note the clear
di�erence in task di�culty, highlighted by the performance of baseline agents, with catch being solved
by almost all agents, while no agents can generate useful behavior on blockinger.
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AndroidEnv: A Reinforcement Learning Platform for Android

down their dimensionality, e.g. with wrappers). The timedelta component captures the amount of
time passed since AndroidEnv fetched the last observation. The orientation, even though it does not
a�ect the layout of the RGB image in the observation, might carry relevant information for the agent. For
example, if there is text on the screen, its orientation is useful for automatic processing. As mentioned
above, observations often carry spatial cues and are suggestive of meaningful gestures to perform in a
given state. The fact that the observation space is the same across all tasks is what makes it useful for
agents, and creates the opportunity to generalize across tasks.

Figure 3 | Information avail-
able to the agent.

Task extras. In addition to default observations, ({pixels, timedelta,
orientation}), some tasks might expose structured information after
each step (see Sec. 3). An extra in AndroidEnv is any information that
the environment sends to aid the understanding of the task. The infor-
mation sent through this channel is typically very useful for learning,
yet di�cult to extract from raw pixels. For example, extras may include
signals indicating events such as a button press or opening of a menu,
text displayed on the screen in string format, or a simple numerical
representations of the displayed state. Note that extras are a standard
mechanism for communicating information used in Android apps.

We note that, unlike the observation and raw action space, which
are the same across all AndroidEnv, task extras are specific to individual
tasks, are entirely optional, and may not be available at all. Furthermore,
task extras, even if provided, are not part of the default observation;
rather AndroidEnv returns them upon explicit request (see detailed
documentation).

3. Tasks

While Android is an operating system with no inherent rewards or episodes, AndroidEnv provides
a simple mechanism for defining tasks on it. Tasks capture information such as episode termination
conditions, rewards, or the apps with which the agent can interact. Together, these define a specific RL
problem for the agent.

(a) Android menu (b) Google Maps (c) Calendar (d) Chrome (e) Clock

Figure 4 | Examples of Android OS apps and use cases.

Task structure. We capture aspects that make up a task definition in a Task protocol bu�er message.
These include information on:
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How: Hierarchical RL (and now maybe large models)

34

Learning how to Interact with a Complex Interface using Hierarchical Reinforcement Learning

Figure 1 | Gesture Hierarchy. The architecture used for the Android applications is based on a 3-layer
hierarchy: (1) The lowest level operates over GVFs corresponding to all supported gestures; (2) The
middle layer selects a gesture GVF given the latest pixel image in AndroidEnv and its agent is trained
to maximize the return associated with the task that the agent is trained on; and (3) The top layer
selects a single gesture class for the task and the agent is trained to maximize the average per step
reward. All levels are operated by distributed DQN agents.

for optimization based algorithms, such as gradient descent over deep networks. For simplicity, we
describe below the Bellman equation for the optimal cumulant-based ?-value:

?⇤W,⇠ (A, 0) =
’
A02(

>(A0 |A, 0)
h
⇠(A, 0, A0) + W(A)max

00
?⇤W,⇠ (A0, 00)

i
.

Options. The options framework is a popular formalism for temporally extended actions. A option
l can start execution in any of the states in the initialization set Il ✓ S, and it used policy cl to
select actions and Vl : S ! [0, 1] to determine whether to terminate execution or not. Sutton et al.
(1999) demonstrate that using options along side actions turns an MDP problem into a Semi Markov
Decision Process, which itself can be equipped with optimality value functions and equivalent Bellman
equations, i.e. options can be interchangeably used as actions.

Hierarchy of GVFs. We present a general approach to implement hierarchical decompositions of
complex problems into a multi-layered hierarchy of sub-tasks, where each level is trained to maximize
GVFs: given a fixed cumulant-continuation pair (⇠, W), agents maintain estimates for the value of the
corresponding optimal policy, i.e. ?⇤W,⇠ (A, 0) = maxc ?c,W,⇠ (A, 0). Instead of solving the problem with a
single RL agent operating on the “raw” action space of an environment, we prioritize modularity and
comprehension to build a hierarchy of “problems” that are solved by independent agents, working
at di�erent levels of space and temporal abstraction. A hierarchical decomposition on levels 0 to #
works under the assumption that each level 7 operates over a set of control GVFs, ⌦7 := {(⇠7, W7)}"7=1
and, at each timestep, the corresponding RL agent follows the policy maximizing one of these GVFs.
The selection of the active GVF at every timestep comes as a signal l = (⇠, W) 2 ⌦7 from the level 7 + 1.
For all levels, except for the lowest level 0, the corresponding agent selects an abstract action 07 by
maximizing ?⇤W,⇠ (A, 07), and propagates it down as a GVF selection for level 7 � 1. In other words, the
level is always maximizing one of the many signals that it is designed to predict. Lastly, temporal
abstraction can be achieved within this framework by using the continuation function W of the selected
GVF to determine the temporal extent of its execution. See Figure 1 for the concrete three-level
hierarchy we used in our work. The main advantage of the hierarchical decomposition is that RL
agents operating at di�erent levels can be designed in isolation and perhaps can be trained either
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Some results, still lots to doLearning how to Interact with a Complex Interface using Hierarchical Reinforcement Learning

Figure 3 | Empirical results. We tested our agents on a number of AndroidEnv tasks of di�erent levels
and with varying complexity in the action interface. We report results on tasks where at least one of the
agents was able to improve its behavior. For tasks such as classic_2048 and nostalgic_racer,
using any fling or tap gesture, correspondingly, incurs significant changes in the score outcome. On the
other hand, for tasks such as apple_flinger_M_1_1, blockinger_squares, and floodit_easy,
the agent can only operate by direct interaction with specific buttons or objects and rewards are very
sparse, making all of these tasks intractable for most agents.

of AndroidEnv tasks for which we report results are available on AndroidEnv’s Github Repository.3

Figures 3 and 4 provide a summary of the observed empirical results. The rest of this section provides
a detailed description of the hierarchy used to obtain these results.

Level 0: gesture execution. The lowest level in the hierarchy is designed to execute gestures by
operating on a set of GVFs composed of tap, swipe, and fling gestures. To fully define these GVFs,
level 0 maintains a sequence of all touch positions in a trajectory, denoted by (p0,p1 · · · ,pB), with all
p7 either positions on the screen for tap actions or p7 = 0 for lift actions. For example, to capture a
swipe gesture from location q1 to q2 we use a cumulant

⇠q1,q2 (p0,p1 · · · ,pB) =
8>>><
>>>:

1 if 97 < B with [p7,p7+1, . . . ,pB�1,pB] = [0, q1,p7+2, . . . ,pB�2, q2, 0]
and p 8 < 0,87 < 8 < B,

0 otherwise.

The continuation function is set to Wq1,q2 = 1 � ⇠q1,q2 . In all experiments, we use tap locations and
swipe start/end locations based on the 9 by 6 discretization described above, resulting in 54F54 swipe
GVFs and 54 tap GVFs. We additionally define 8 fling GVFs corresponding to #, #⇢, ⇢, (⇢, (, (,,,
and #, cardinal directions.

As illustrated in Figure 1, the signal from above fully define individual gestures: l0 2 ⌦0 contains
both a gesture class and a gesture parameter, e.g. l0 = (swipe, q1, q2) for a swipe from q1 to q2.
To train the corresponding agent, we concatenate one-hot encodings for the gesture class, gesture
parameters, and the last tap location. Each class of gestures was trained separately, hence the

3https://github.com/deepmind/android_env
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What does Reinforcement Learning Bring to AI?

The Game of Go

~10170 unique positions

~200 moves long

~200 branching factor

~10360 complexity

Ability to develop new skills and exceed humans! 

A clear, unified algorithmic approach 

Many open questions ! My favourites: continual representation 
learning, model-based RL, planning, uncertainty-driven/
purposeful exploration 


