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Abstract

We study the rates of convergence in classification
error achievable by active learning in the presence of
label noise. Additionally, we study the more general
problem of active learning with a nested hierarchy of
hypothesis classes, and propose an algorithm whose
error rate provably converges to the best achievable
error among classifiers in the hierarchy at a rate adap-
tive to both the complexity of the optimal classifier
and the noise conditions. In particular, we state suf-
ficient conditions for these rates to be dramatically
faster than those achievable by passive learning.

1 Introduction

Active learning is a powerful supervised learning method capa-
ble of producing more accurate classifiers while using a smaller
number of labeled examples than traditional (passive) learning
techniques. In active learning, a learning algorithm is given
access to a large pool of unlabeled examples, and is allowed
to interactively request the label of any particular examples
from that pool. The objective is to learn a function that ac-
curately predicts the labels of new examples, while minimiz-
ing the number of label requests. This contrasts with pas-
sive learning, where the labeled examples are sampled at ran-
dom. In comparison, by more carefully selecting which exam-
ples should be labeled, active learning can often significantly
decrease the total amount of effort required for data annota-
tion. This can be particularly interesting for tasks where unla-
beled examples are available in abundance, but label informa-
tion comes only through significant effort or cost.

There have recently been a series of exciting advances on
the topic of active learning with arbitrary classification noise
(the so-calledagnosticPAC model), resulting in several new
algorithms capable of achieving improved convergence rates
compared to passive learning under certain conditions. The
first, proposed by [BBL06] was theA2 (agnostic active) algo-
rithm, which is provably never significantly worse than pas-
sive learning by empirical risk minimization. This algorithm
was later analyzed in more detail in [Han07], where it was
found that a complexity measure called thedisagreement coef-
ficientcharacterizes the worst-case convergence rates achieved
by A2 for any given hypothesis class, data distribution, and
best achievable error rate in the class. The next major advance
was by [DHM07], who proposed a new algorithm, and proved

that it improves the dependence of the convergence rates on
the disagreement coefficient compared toA2. Both algorithms
are defined below in Section 3. While all of these advances
are encouraging, they are limited in two ways. First, the con-
vergence rates that have been proven for these algorithms typ-
ically only improve the dependence on the magnitude of the
noise (more precisely, the noise rate of the hypothesis class),
compared to passive learning. Thus, in an asymptotic sense,
for nonzero noise rates these results represent at best a con-
stant factor improvement over passive learning. Second, these
results are limited to learning with a fixed hypothesis classof
limited expressiveness, so that convergence to the Bayes error
rate is not always a possibility.

On the first of these limitations, recent work by [CN06] on
learning threshold classifiers discovered that if certain param-
eters of the noise distribution areknown(namely, parameters
related to Tsybakov’s margin conditions), then we can achieve
strict improvements in the asymptotic convergence rate viaa
specific active learning algorithm designed to take advantage of
that knowledge for thresholds. That work left open the ques-
tion of whether such improvements could be achieved by an
algorithm that does not explicitly depend on the noise condi-
tions (i.e., in theagnosticsetting), and whether this type of im-
provement is achievable for more general families of hypothe-
sis classes. In a personal communication, John Langford and
Rui Castro claimedA2 achieves these improvements for the
special case of threshold classifiers. However, there remained
an open question of whether such rate improvements could be
generalized to hold for arbitrary hypothesis classes. In Sec-
tion 4, we provide this generalization. We analyze the rates
achieved byA2 under Tsybakov’s noise conditions [MT99,
Tsy04]; in particular, we find that these rates are strictly supe-
rior to the known rates for passive learning, when the disagree-
ment coefficient is small. We also study a novel modification of
the algorithm of [DHM07], proving that it improves upon the
rates ofA2 in its dependence on the disagreement coefficient.

Additionally, in Section 5, we address the second limita-
tion by proposing a general model selection procedure for ac-
tive learning with an arbitrary structure of nested hypothesis
classes. If the classes each have finite capacity, the error rate
for this algorithm converges to the best achievable error byany
classifier in the structure, at a rate that adapts to the noisecon-
ditions and complexity of the optimal classifier. In general, if
the structure is constructed to include arbitrarily good approxi-
mations to any classifier, the error converges to the Bayes error
rate in the limit. In particular, if the Bayes optimal classifier



is in some class within the structure, the algorithm performs
nearly as well as running an agnostic active learning algorithm
on that single hypothesis class, thus preserving the convergence
rate improvements achievable for that class.

2 Definitions and Notation

In the active learning setting, there is aninstance spaceX , and
some fixed distributionDXY overX ×{−1, 1}, with marginal
DX overX . There is some i.i.d. sequence(X1, Y1), (X2, Y2), . . .
sampled according toDXY . However, the learning algorithm is
only permitted to observe theXi values (unlabeled examples),
and must request theYi values one at a time, interactively. That
is, the algorithm picks some indexi to observe theYi value,
then after observing it, picks another indexi′ to request to ob-
serve theYi′ label value, etc. We are interested in studying the
rate of convergence of the error rate of the classifier outputby
the learning algorithm, in terms of the number of label requests
it has made. To simplify the discussion, we will think of this
sequence of examples as being inexhaustible, and will study
(1 − δ)-confidence bounds on the error rate of the classifier
produced by an algorithm permitted to make at mostn label
requests, for a fixed valueδ ∈ (0, 1). The actual number of
(unlabeled) examples the algorithm uses will be made clear in
the proofs (it is typically close to the passive learning sample
complexity corresponding to the stated error guarantee).

A hypothesis classC is simply a set of measurable classi-
fiersh : X → {−1, 1}. We will denote byd the VC dimension
of C [Vap82]. For any measurableh : X → {−1, 1} and dis-
tributionD, defineerD(h)=P(X,Y )∼D{h(X) 6=Y }, theerror
rate of h; whenD = DXY , we abbreviate this aser(h). We
also define theconditional error rate, given a setR ⊆ X , as
er(h|R) = P{h(X) 6= Y |X ∈ R}. Let ν = infh∈C er(h),
called thenoise rateof C. Additionally, define thediameter
of V ⊆ C asdiam(V ) = suph1,h2∈V P{h1(X) 6= h2(X)},
and for anyǫ > 0 define the diameter of theǫ-minimal set
asdiam(ǫ; C) = diam({h ∈ C : er(h) − infh′∈C er(h′) ≤
ǫ}). For anyx ∈ X , let η(x) = P{Y = 1|X = x}, let
h∗(x) = 21[η(x) ≥ 1/2] − 1, and letν∗ = er(h∗). h∗ is
called theBayes optimal classifier, and ν∗ is the Bayes er-
ror rate. For a classifierh, and a sequence of labeled exam-
plesQ = {(X ′

1, Y
′
1), (X ′

2, Y
′
2), . . . , (X ′

m, Y ′
m)}, let erQ(h) =

1
m

∑m
i=1 1[h(X ′

i) 6= Y ′
i ] denote theempirical error rateonQ.

For thetrue labeled sequence,Zm ={(X1, Y1), . . . ,(Xm, Ym)},
we abbreviate this byerm(h) = erZm

(h), the true empirical
error on the firstm examples.

2.1 Tsybakov’s Noise Conditions

Here we describe a particular parameterization of noise dis-
tributions, relative to a hypothesis class, known as Tsybakov’s
margin conditions [MT99,Tsy04]. These noise conditions have
recently received substantial attention in the passive learning
literature, as they describe situations in which the asymptotic
minimax convergence rate of passive learning is faster thanthe
worst casen−1/2 rate (e.g., [MT99,Tsy04,Kol06,MN06]).

Condition 1 There exist finite constantsµ > 0 andκ ≥ 1, s.t.
∀ǫ > 0, diam(ǫ; C) ≤ µǫ

1
κ . ⋄

For example, this is satisfied whenh∗ ∈ C, and∃µ′ >
0, κ ≥ 1 s.t.∀h ∈ C, er(h) − ν ≥ µ′P{h(X) 6= h∗(X)}κ, or

∃α, µ′ > 0 s.t. P(|η(X) − 1/2| ≤ t) ≤ µ′tα, for t ∈ (0, 1/2)
[MT99, Tsy04, Kol06]. As we will see, the case whereκ = 1
is particularly interesting; for instance, this is the casewhen
h∗ ∈ C andP{|η(X) − 1/2| > c} = 1 for some constant
c ∈ (0, 1/2). Informally, in many cases this condition can
often be interpreted in terms of the relation between magnitude
of noise, density, and distance to the decision boundary; that is,
in practice the amount of noise in an example’s label is often
inversely related to the distance from the decision boundary,
and the value ofκ is essentially determined by how quickly
η(x) changes asx approaches the decision boundary, relative
to how dense the distribution is in that region. See [MT99,
Tsy04, Kol06, CN06, MN06] for further interpretations of this
margin condition.

It is known that when these conditions are satisfied for some
κ ≥ 1 andµ > 0, the passive learning method of empirical risk
minimization achieves a convergence rate guarantee, holding
with probability≥ 1− δ, of

er(arg min
h∈C

ern(h))− ν ≤ c

(

d log(n/δ)

n

)
κ

2κ−1

,

wherec is a (κ andµ -dependent) constant [Kol06]. Further-
more, for some hypothesis classes, this is known to be a tight
bound (up to the log factor) on the minimax rate, so that there
is nopassive learning algorithm for these classes for which we
can guarantee a faster convergence rate, given that the guaran-
tee depends onDXY only throughµ andκ [CN06,Tsy04].

2.2 Disagreement Coefficient

The disagreement coefficient, introduced in [Han07], is a mea-
sure of the complexity of an active learning problem, which
has proven quite useful for analyzing the convergence ratesof
certain types of active learning algorithms: for example, the
algorithms of [CAL94,BBL06,DHM07]. Informally, it quanti-
fies how much disagreement there is among a set of classifiers
relative to how close to someh they are. The following is a
version of its definition, which we will use extensively below.
For any hypothesis classC andV ⊆ C, let

DIS(V ) = {x ∈ X : ∃h1, h2 ∈ V s.t.h1(x) 6= h2(x)}.

Forr ∈ [0, 1] and measurableh : X → {−1, 1}, let B(h, r) =
{h′ ∈ C : P{h(X) 6= h′(X)} ≤ r}.

Definition 1 The disagreement coefficient ofh with respect to
C underDX is1

θh = sup
r>r0

P(DIS(B(h, r)))

r
,

We further define the disagreement coefficient forC with re-
spect toDXY as θ = lim infk→∞ θh[k] , where{h[k]} is any
sequence ofh[k] ∈ C with er(h[k]) monotonically decreasing
to ν. ⋄

The r0 in the definition can either be defined as0, giving a
coarse analysis, or for a more subtle analysis we can take it to
be a function ofn, the number of labels. For our present pur-
poses, we will generally taker0 = 0; a more refined analysis

1Throughout this paper, we will letE and P (and indeedany
reference to “probability”) refer to theouter expectation and mea-
sure [vdVW96], so that quantities such asP(DIS(B(h, r))) are well
defined, even ifDIS(B(h, r)) is not measurable.



with r0 a function ofn will appear in an extended version of
this paper.

Because of its simple intuitive interpretation, measuringthe
amount of disagreement in a local neighborhood of some clas-
sifier h, the disagreement coefficient has the wonderful prop-
erty of being relatively simple to calculate for a wide rangeof
learning problems, especially when those problems have some
type of geometric representation.

3 General Algorithms

We begin the discussion of the algorithms we will analyze by
noting the underlying inspiration that unifies them. Specifi-
cally, at this writing, all of the published general-purpose ag-
nostic active learning algorithms achieving nontrivial improve-
ments are derivatives of a basic technique proposed by [CAL94]
for the realizable active learning problem. Under the assump-
tion that there exists a perfect classifier inC, they proposed
an algorithm which processes unlabeled examples in sequence,
and for each one it determines whether there exists a classifier
in C consistent with all previously observed labels that labels
this new example+1 andone that labels this example−1; if so,
the algorithm requests the label, and otherwise it does not re-
quest the label; aftern label requests, the algorithm returns any
classifier consistent with all observed labels. In some sense,
this algorithm corresponds to the very least we could expectof
an active learning algorithm, as it never requests the labelof an
example it can derive from known information, but otherwise
makes no effort to search for informative examples. We can
equivalently think of this algorithm as maintaining two sets:
V ⊆ C is the set of candidate hypotheses still under consider-
ation, andR = DIS(V ) is their region of disagreement. We
can then think of the algorithm as requesting a random labeled
example from the conditional distribution ofDXY given that
X ∈ R, and subsequently removing fromV any classifier in-
consistent with the observed label.

The algorithms described below for the problem of active
learning with label noise each represent noise-robust variants
of this basic idea. They work to reduce the set of candidate
hypotheses, while only requesting the labels of examples inthe
region of disagreement of these candidates. The trick is to only
remove a classifier from the candidate set once we have high
statistical confidence that it is worse than some other candidate
classifier so that we never remove the best classifier. However,
the two algorithms differ somewhat in the details of how that
confidence is calculated.

The first algorithm, originally proposed by [BBL06], is typ-
ically referred to asA2 for Agnostic Active. This was histor-
ically the first general-purpose agnostic active learning algo-
rithm shown to achieve improved error guarantees for certain
learning problems in certain ranges ofn andν. A version of
the algorithm is described below.

Algorithm 1
Input: hypothesis classC, label budgetn, confidenceδ
Output: classifier̂h

0. V ← C, R← DIS(C), Q← ∅, m← 0
1. Fort = 1, 2, . . . , n
2. If P(DIS(V )) ≤ 1

2P(R)
3. R← DIS(V ); Q← ∅
4. If P(R) ≤ 2−n, Return anyh ∈ V
5. m← min{m′ > m : Xm′ ∈ R}
6. RequestYm and letQ← Q ∪ {(Xm, Ym)}
7. V ←{h∈V : LB(h, Q, δ/n) ≤ min

h′∈V
UB(h′, Q, δ/n)}

8. ht ← argmin
h∈V

UB(h, Q, δ/n)

9. βt ← (UB(ht, Q, δ/n)−min
h∈V

LB(h, Q, δ/n))P(R)

10. Return̂hn = ht̂, wheret̂ = arg min
t∈{1,2,...,n}

βt

Algorithm 1 is defined in terms of two functions:UB and
LB. These represent upper and lower confidence bounds on
the error rate of a classifier fromC with respect to an arbitrary
sampling distribution, as a function of a labeled sequence sam-
pled according to that distribution. As long as these bounds
satisfy

PZ∼Dm{∀h∈C, LB(h,Z,δ′)≤erD(h)≤UB(h,Z,δ′)}≥1− δ′

for any distributionD overX × {−1, 1} and anyδ′ ∈ (0, 1),
andUB andLB converge to each other asm grows, this al-
gorithm is known to be correct, in thater(ĥ) − ν converges
to 0 in probability [BBL06]. For instance, [BBL06] suggest
defining these functions based on classic results on uniform
convergence rates in passive learning [Vap82], such as

UB(h, Q, δ′) = min{erQ(h) + G(|Q|, δ′), 1}, (1)

LB(h, Q, δ′) = max{erQ(h)−G(|Q|, δ′), 0},

whereG(m, δ′) = 1
m +

√

ln 4
δ′

+d ln 2em
d

m , and by convention
G(0, δ′) =∞. This choice is justified by the following lemma,
due to [Vap98].

Lemma 2 For any distributionD overX × {−1, 1}, and any
δ′ ∈ (0, 1) andm ∈ N, with probability≥ 1−δ′ over the draw
of Z ∼ Dm, everyh ∈ C satisfies

|erZ(h)− erD(h)| ≤ G(m, δ′). (2)

⋄

To avoid computational issues, instead of explicitly repre-
senting the setsV andR, we may implicitly represent them by
a set of constraints imposed by the condition in Step 7 of previ-
ous iterations. We may also replaceP(DIS(V )) andP(R) by
estimates, since these quantities can be estimated to arbitrary
precision with arbitrarily high confidence using onlyunlabeled
examples.

The second algorithm we study was originally proposed
by [DHM07]. It uses a type of constrained passive learning
subroutine, LEARN, defined as follows.

LEARNC(L, Q) = argmin
h∈C:erL(h)=0

erQ(h).

If no h∈C haserL(h)=0, define LEARNC(L, Q)=∅. Algo-
rithm 2 is defined in terms of a function∆m(L, Q, h(y), h(−y), δ),



Algorithm 2
Input: hypothesis classC, label budgetn, confidenceδ
Output: classifier̂h, set of labeled examplesL, set of labeled examplesQ

0. L ← ∅, Q← ∅
1. Form = 1, 2, . . .

2. If |Q| = n or |L| = 2n, Returnĥ = LEARNC(L, Q) along withL andQ
3. For eachy ∈ {−1, +1}, let h(y) = LEARNC(L ∪ {(Xm, y)}, Q)
4. If somey hash(−y) =∅ or

erL∪Q(h(−y))− erL∪Q(h(y)) > ∆m−1(L, Q, h(y), h(−y), δ)
5. ThenL ← L ∪ {(Xm, y)}
6. Else Request the labelYm and letQ← Q ∪ {(Xm, Ym)}

representing a threshold for a type of hypothesis test. This
threshold must be set carefully, since the setL ∪ Q is not ac-
tually an i.i.d. sample fromDXY . [DHM07] suggest defining
this function as

∆m(L, Q, h(y), h(−y), δ) =

β2
m + βm

(

√

erL∪Q(h(y)) +
√

erL∪Q(h(−y))

)

, (3)

whereβm =
√

4 ln(8m(m+1)S(C,2m)2/δ)
m andS(C, 2m) is the

shatter coefficient (e.g., [DGL96]); this suggestion is based on
a confidence bound they derive, and they prove the correctness
of the algorithm with this definition. For now we will focus
on the first return value (the classifier), leaving the othersfor
Section 5, where they will be useful for chaining multiple exe-
cutions together.

4 Convergence Rates

In both of the above cases, one can prove fallback guaran-
tees stating that neither algorithm is ever significantly worse
than passive learning by empirical risk minimization [BBL06,
DHM07]. However, it is even more interesting to discuss sit-
uations in which one can prove error rate guarantees for these
algorithms significantlybetter than those achievable by pas-
sive learning. In this section, we begin by reviewing known
results on these potential improvements, stated in terms ofthe
disagreement coefficient; we then proceed to discuss new re-
sults for Algorithm 1 and a novel variant of Algorithm 2, and
describe the convergence rates achieved by these methods in
terms of the disagreement coefficient and Tsybakov’s noise
conditions.2

4.1 Known Results on Convergence Rates for Agnostic
Active Learning

We will now describe the known results for agnostic active
learning algorithms, starting with Algorithm 1. The key to
the potential convergence rate improvements of Algorithm 1is
that, as the region of disagreementR decreases in measure, the
error differenceer(h|R)−er(h′|R) of any classifiersh, h′ ∈ V
under theconditionalsampling distribution (givenR) can be-
come significantly larger (by a factor ofP(R)−1) thaner(h)−

2To simplify the presentation, for the remainder of this paper we
will restrict the discussion to situations withθ > 0 (and thereforeC
with d > 0 too). Handling the extra case ofθ = 0 is a trivial matter,
sinceθ = 0 would imply that any proper learning algorithm achieves
excess error0 for all values ofn.

er(h′), making it significantly easier to determine which of the
two is worse using a sample of labeled examples. In particu-
lar, [Han07] developed a technique for analyzing this type of
algorithm, resulting in the following convergence rate guaran-
tee for Algorithm 1.

Theorem 3 [Han07] Let ĥn be the classifier returned by Al-
gorithm 1 when allowedn label requests, using the bounds(1)
and confidence parameterδ ∈ (0, 1/2). Then there exists a
finite universal constantc such that, with probability≥ 1 − δ,
∀n ∈ N,

er(ĥn)−ν≤c

√

ν2θ2dlog 1
δ

n log n
ν2θ2dlog 1

δ

+ 1
δ exp

{

−
√

n
cθ2d

}

.
⋄

Similarly, the key to improvements from Algorithm 2 is
that asm increases, we only need to request the labels of those
examples in the region of disagreement of the set of classifiers
with near-optimal empirical error rates. Thus, if the region
of disagreement of classifiers with excess error≤ ǫ shrinks
as ǫ decreases, we expect the frequency of label requests to
shrink asm increases. Since we are careful not to discard the
best classifier, and the excess error rate of a classifier can be
bounded in terms of the∆m function, we end up with a bound
on the excess error which is converging inm, the number ofun-
labeledexamples processed, even though we request a number
of labels growing slower thanm. When this situation occurs,
we expect Algorithm 2 will provide an improved convergence
rate compared to passive learning. Using the disagreement co-
efficient, [DHM07] prove the following convergence rate guar-
antee.

Theorem 4 [DHM07] Let ĥn be the classifier returned by Al-
gorithm 2 when allowedn label requests, using the threshold
(3), and confidence parameterδ ∈ (0, 1/2). Then there exists
a finite universal constantc such that, with probability≥ 1−δ,
∀n ∈ N, er(ĥn)− ν ≤

c

√

ν2θd log 1
δ

log n
θνδ

n +
√

d log 1
δ · exp

{

−
√

n
cθd log2 1

δ

}

. ⋄

Note that, among other changes, this bound improves the
dependence on the disagreement coefficient,θ, compared to
the bound for Algorithm 1. In both cases, for certain ranges
of θ, ν, andn, these bounds can represent significant improve-
ments in the excess error guarantees, compared to the corre-
sponding guarantees possible for passive learning. However,
in both cases, whenν > 0 these bounds have anasymptotic
dependence onn of Θ̃(n−1/2), which is no better than the con-
vergence rates achievable by passive learning (e.g., by empir-
ical risk minimization). Thus, there remains the question of



whether either algorithm can achieve asymptotic convergence
rates strictly superior to passive learning for distributions with
nonzero noise rates. This is the topic we turn to next.

4.2 Adaptation to Tsybakov’s Noise Conditions

It is known that for most nontrivialC, for anyn andν > 0,
for every active learning algorithm there is some distribution
with noise rateν for which we can guarantee excess error no
better than∝ νn−1/2 [K0̈6]; that is, then−1/2 asymptotic de-
pendence onn in the above bounds matches the correspond-
ing minimax rate, and thus cannot be improved as long as the
bounds depend onDXY only via ν (and θ). Therefore, if
we hope to discover situations in which these algorithms have
strictly superior asymptotic dependence onn, we will need to
allow the bounds to depend on a more detailed description of
the noise distribution than simply the noise rateν.

As previously mentioned, one way to describe a noise dis-
tribution using a more detailed parameterization is to use Tsy-
bakov’s noise conditions (Condition 1). In the context of pas-
sive learning, this allows one to describe situations in which
the rate of convergence is betweenn−1 andn−1/2, even when
ν > 0. This raises the natural question of how these active
learning algorithms perform when the noise distribution sat-
isfies this condition with finiteµ andκ parameter values. In
many ways, it seems active learning is particularly well-suited
to exploit these more favorable noise conditions, since they im-
ply that as we eliminate suboptimal classifiers, the diameter of
the version space decreases; thus, for smallθ values, the region
of disagreement should also be decreasing, allowing us to focus
the samples in a smaller region and accelerate the convergence.

Focusing on the special case of learning one-dimensional
threshold classifiers under a certain uniform marginal distri-
bution, [CN06] studied conditions related to Condition 1. In
particular, they studied a threshold-learning algorithm that, un-
like the algorithms described here, takesκ asinput, and found

its convergence rate to be∝
(

log n
n

)
κ

2κ−2

whenκ > 1, and

exp{−cn} for some (µ-dependent) constantc, whenκ = 1.
Note that this improves over then− κ

2κ−1 rates achievable in
passive learning [CN06, Tsy04]. Furthermore, they prove that
a value∝ n− κ

2κ−2 (or exp{−c′n}, for somec′, whenκ = 1)
is also alower boundon the minimax rate. Later, in a personal
communication, Langford and Castro claimed that Algorithm
1 also achieves this near-optimal rate (up to log factors) for the
same learning problem (one-dimensional threshold classifiers
under a uniform marginal distribution), leading to speculation
that perhaps these improvements are achievable in the general
case as well (under conditions on the disagreement coefficient).

Other than the one-dimensional threshold learning prob-
lem, it was not previously known whether Algorithm 1 or Algo-
rithm 2 generally achieve convergence rates that exhibit these
types of improvements.

4.3 Adaptive Rates in Active Learning

The above observations open the question of whether these al-
gorithms, or variants thereof, improve this asymptotic depen-
dence onn. It turns out this is indeed possible. Specifically,
we have the following result for Algorithm 1.

Theorem 5 Let ĥn be the classifier returned by Algorithm 1
when allowedn label requests, using the bounds(1) and con-
fidence parameterδ ∈ (0, 1/2). Suppose further thatDXY

satisfies Condition 1. Then there exists a finite (κ- and µ-
dependent) constantc such that, for anyn ∈ N, with proba-
bility ≥ 1− δ,

er(ĥn)− ν ≤







exp
{

− n
cdθ2 log(n/δ)

}

, whenκ = 1

c
(

dθ2 log2(n/δ)
n

)
κ

2κ−2

, whenκ > 1
.

⋄

Proof: We will proceed by bounding thelabel complexity, or
size of the label budgetn that is sufficient to guarantee, with
high probability, that the excess error of the returned classifier
will be at mostǫ (for arbitraryǫ > 0); with this in hand, we
can simply bound the inverse of the function to get the resultin
terms of a bound on excess error.

First note that, by Lemma 2 and a union bound, on an event
of probability 1 − δ, (2) holds withδ′ = δ/n for every set
Q, relative to the conditional distribution given the respective
R set for that iteration, for any value ofn. For the remain-
der of this proof, we assume that this1 − δ probability event
occurs. In particular, this means that for everyh ∈ C and
everyQ set in the algorithm,LB(h, Q, δ/n) ≤ er(h|R) ≤
UB(h, Q, δ/n), for the setR thatQ is sampled under. Thus,
we always have the invariant∀γ > 0, {h ∈ V : er(h) − ν ≤
γ} 6= ∅, and therefore also that∀t, er(ht)− ν = (er(ht|R)−
infh∈V er(h|R))P(R) ≤ βt. We will spend the remainder of
the proof bounding the size ofn sufficient to guarantee some
βt ≤ ǫ.

Recalling the definition of theh[k] sequence (from Defini-
tion 1), note that after step7,
{

h ∈ V : lim supk P(h(X) 6= h[k](X)) > P(R)
2θ

}

=

{

h∈V :

(

limsupk P(h(X) 6=h[k](X))

µ

)κ

>

(

P(R)

2µθ

)κ
}

⊆

{

h∈V :

(

diam(er(h)− ν; C)

µ

)κ

>

(

P(R)

2µθ

)κ}

⊆

{

h∈V : er(h) − ν >

(

P(R)

2µθ

)κ}

=

{

h∈V : er(h|R) − inf
h′∈V

er(h′|R) > P(R)κ−1(2µθ)−κ

}

⊆
{

h∈V : UB(h, Q, δ/n)− min
h′∈V

LB(h′, Q, δ/n)

> P(R)κ−1(2µθ)−κ
}

=
{

h∈V : LB(h, Q, δ/n)− min
h′∈V

UB(h′, Q, δ/n)

> P(R)κ−1(2µθ)−κ − 4G(|Q|, δ/n)
}

.

By definition, everyh ∈ V hasLB(h, Q, δ/n) ≤
minh′∈V UB(h′, Q, δ/n), so for this last set to be nonempty
after step7, we must haveP(R)κ−1(2µθ)−κ < 4G(|Q|, δ/n).
On the other hand, if{h ∈ V : lim supk P(h(X) 6= h[k](X)) >
P(R)/(2θ)} = ∅, then P(DIS(V )) ≤ P(DIS({h ∈ C :
lim supk P(h(X) 6= h[k](X)) ≤ P(R)/(2θ)}))



≤ lim infk P(DIS({h ∈ C : P(h(X) 6= h[k](X)) ≤

P(R)/(2θ)})) ≤ lim infk θh[k]
P(R)
2θ = P(R)

2 , so that we will
definitely satisfy the condition in step2 on the next round.
Since|Q| gets reset to0 upon reaching step3, we have that
after every execution of step7, P(R)κ−1(2µθ)−κ < 4G(|Q| −
1, δ/n).

If P(R) ≤ ǫ
2G(|Q|−1,δ/n) ≤

ǫ
2G(|Q|,δ/n) , then certainly

βt ≤ ǫ. So on any round for whichβt > ǫ, we must have
P(R) > ǫ

2G(|Q|−1,δ/n) . Combined with the above observa-

tions, on any round withβt > ǫ,
(

ǫ
2G(|Q|−1,δ/n)

)κ−1

(2µθ)−κ <

4G(|Q| − 1, δ/n), which implies (by simple algebra)

|Q| ≤
(

1
ǫ

)
2κ−2

κ (6µθ)2
(

ln 4
δ + (d + 1) ln(n)

)

+ 1.

Since we need to reach step3 at most⌈log(1/ǫ)⌉ times before
we are guaranteed someβt ≤ ǫ (P(R) is at least halved each
time we reach step3), any

n ≥ 1+

(

(

1

ǫ

)
2κ−2

κ

(6µθ)2
(

ln
4

δ
+ (d+1) ln(n)

)

+1

)

log2

2

ǫ

(4)
suffices to guarantee someβt ≤ ǫ. This implies the stated
result by basic inequalities to bound the smallest value ofǫ
satisfying (4) for a given value ofn.

If the disagreement coefficient is small, Theorem 5 can rep-
resent a significant improvement in convergence rate compared
to passive learning, where we typically expect rates of order
n−κ/(2κ−1) [MT99, Tsy04, CN06]; this gap is especially no-
table whenκ is small. In particular, the bound matches (up to
log factors) the form of the minimax ratelower boundproven
by [CN06] for threshold classifiers (whereθ = 2). Note that,
unlike the analysis of [CN06], we do not require the algorithm
to be given any extra information about the noise distribution,
so that this result is somewhat stronger; it is also more general,
as this bound applies to an arbitrary hypothesis class.

Note that, Theorem 5 is somewhat surprising, since the
boundsUB andLB used to define the setV and the bounds
βt are not themselves adaptive to the noise conditions. Also
note that, as before,n gets divided byθ2 in the rates achieved
by Algorithm 1. It is not clear whether any modification to the
definitions ofUB andLB can reduce this exponent onθ from
2 to 1. As such, it is natural to investigate the rates achieved by
Algorithm 2 under Condition 1, hoping that as before, it is able
to reduce the exponent ofθ. Unfortunately, we do not presently
know whether the original definition of Algorithm 2 achieves
this improvement. However, we now present a slight modifica-
tion of the algorithm, and prove that it does indeed provide the
desired improvement in dependence onθ, while maintaining
the improvements in the asymptotic dependence onn. Specifi-
cally, consider the following definition for the threshold in Al-
gorithm 2.

∆m(L, Q, h(y), h(−y), δ) = 3ÊC(L ∪Q, δ;L), (5)

whereÊC(·, ·; ·) is defined in Appendix A, based on a notion of
local Rademacher complexity studied by [Kol06]. Unlike the
previous definitions, these definitions are known to be adap-
tive to Tsybakov’s noise conditions, so that we would expect

them to be asymptotically tighter and therefore allow the algo-
rithm to more aggressively prune the set of candidate hypothe-
ses. Using these definitions, we have the following theorem;
its proof is included in Appendix B.

Theorem 6 Supposêhn is the classifier returned by Algorithm
2 with threshold as in(5), when allowedn label requests and
given confidence parameterδ ∈ (0, 1/2). Suppose further that
DXY satisfies Condition 1. Then there exists a finite (κ and
µ -dependent) constantc such that, with probability≥ 1 − δ,
∀n ∈ N,

er(ĥn)− ν ≤











1
δ · exp

{

−
√

n
cdθ log3(d/δ)

}

, whenκ = 1

c
(

dθ log2(dn/δ)
n

)
κ

2κ−2

, whenκ > 1

.

⋄

Note that this does indeed improve the dependence onθ,
reducing its exponent from2 to 1; we do lose some in that
there is now a square root in the exponent of theκ = 1 case,
but it is likely that this can be removed with a refined definition
of ÊC, and therefore is not of fundamental significance. The
bound in Theorem 6 is stated in terms of the VC dimensiond.
However, for certain nonparametric function classes (e.g., with
d = ∞), it is sometimes preferable to quantify the complexity
of the class in terms of a constraint on theentropy(with brack-
eting) of the class (see e.g., [vdVW96, Tsy04, Kol06, CN07]).
Specifically, forǫ ∈ [0, 1], define
ωC(m, ǫ) =

E sup
h1,h2∈C:

P{h1(X) 6=h2(X)}≤ǫ

|(er(h1)− erm(h1))− (er(h2)− erm(h2))|.

Condition 2 There exist finite constantsα > 0 andρ ∈ (0, 1)

s.t.∀m ∈ N andǫ ∈ [0, 1], ωC(m, ǫ) ≤ αǫ
1−ρ
2 m−1/2. ⋄

In particular, as noted by [Kol06], the entropy with bracket-
ing condition used in the original minimax analysis of [Tsy04]
implies Condition 2. In passive learning, it is known that em-
pirical risk minimization achieves a rate of ordern−κ/(2κ+ρ−1),
under Conditions 1and 2 [Kol06], and that this is sometimes
tight [Tsy04]. The following theorem gives a bound on the
rate of convergence of the same version of Algorithm 2 as in
Theorem 6, this time in terms of the entropy with bracketing
condition which, as before, is faster than the passive learning
rate when the disagreement coefficient is small. The proof of
this is included in Appendix B.

Theorem 7 Supposêhn is the classifier returned by Algorithm
2 with threshold as in(5), when allowedn label requests and
given confidence parameterδ ∈ (0, 1/2). Suppose further that
DXY satisfies Conditions 1 and 2. Then there exists a finite (κ,
µ, α andρ -dependent) constantc such that, with probability
≥ 1− δ, ∀n ∈ N,

er(ĥn)− ν ≤ c

(

θ log2(n/δ)

n

)

κ
2κ+ρ−2

.

⋄

Although this result is stated for Algorithm 2, it is conceivable
that, by modifying Algorithm 1 to use definitions ofV andβt

based on̂EC(Q, δ; ∅), an analogous result may be possible for
Algorithm 1 as well.



5 Model Selection

While the previous sections address adaptation to the noisedis-
tribution, they are still restrictive in that they deal onlywith fi-
nite complexity hypothesis classes, where it is often unrealistic
to expect convergence to the Bayes error rate to be achievable.
We address this issue in this section by developing a general
algorithm for learning with a sequence of nested hypothesis
classes of increasing complexity, similar to the setting ofStruc-
tural Risk Minimization in passive learning [Vap82]. The start-
ing point for this discussion is the assumption of a structure on
C, in the form of a sequence of nested hypothesis classes.

C1 ⊂ C2 ⊂ · · ·

Each class has an associated noise rateνi = infh∈Ci
er(h), and

we defineν∞ = lim
i→∞

νi. We also letθi anddi be the disagree-

ment coefficient and VC dimension, respectively, for the setCi.
We are interested in an algorithm that guarantees convergence
in probability of the error rate toν∞. We are particularly inter-
ested in situations whereν∞ = ν∗, a condition which is real-
istic in this setting sinceCi can be defined so that it is always
satisfied, under mild conditions onX (see e.g., [DGL96]). Ad-
ditionally, if we are so lucky as to have someνi = ν∗, then we
would like the convergence rate achieved by the algorithm to
be not significantly worse than running one of the above agnos-
tic active learning algorithms with hypothesis classCi alone.
In this context, we can define a structure-dependent versionof
Tsybakov’s noise condition as follows.

Condition 3 For some nonemptyI ⊆ N, for each i ∈ I,
there exist constantsµi > 0 and κi ≥ 1, such that∀ǫ >

0, diam(ǫ; Ci) ≤ µiǫ
1

κi . ⋄

In passive learning, there are several methods for this type
of model selection which are known to preserve the conver-
gence rates of each classCi under Condition 3 (e.g., [Tsy04,
Kol06]). In particular, [Kol06] develops a method that per-
forms this type of model selection; it turns out we can modify
Koltchinskii’s method to suit our present needs in the context of
active learning; this results in a general active learning model
selection method that preserves the types of improved ratesdis-
cussed in the previous section. This modification, here referred
to as Algorithm 3, is presented below, based on using Algo-
rithm 2 as a subroutine. (It should also be possible to define an
analogous method using Algorithm 1 as a subroutine instead.)
The functionÊ·(·, ·; ·) referred to in Algorithm 3 is defined in
Appendix A.

This method can be shown to correctly converge in proba-
bility to an error rate ofν∞ at a rate never significantly worse
than the original passive learning method of [Kol06], as de-
sired. Additionally, we have the following guarantee on the
rate of convergence under Condition 3. The proof of this result,
and the others in this section, are similar in style to Koltchin-
skii’s original proofs, though some care is needed due to the
altered sampling distribution and the constraint setLjn. How-
ever, these issues are addressed nicely by the several lemmas
we have generated from the proofs of the previous section (in
Appendix B). The details of these proofs are included in Ap-
pendix B.2.

Theorem 8 Supposêhn is the classifier returned by Algorithm
3, when allowedn label requests and confidence parameter
δ ∈ (0, 1/2). Suppose further thatDXY satisfies Condition 3.
Then there exist finite (κi andµi -dependent) constantsci such
that, with probability≥ 1− δ, ∀n ∈ N, er(ĥn)− ν∞ ≤

3 min
i∈I

(νi−ν∞)+















1
δ · exp

{

−
√

n

cidiθi log3 di
δ

}

, if κi = 1

ci

(

diθi log2 din

δ

n

)

κi
2κi−2

, if κi > 1

.

⋄

In particular, if we are so lucky as to haveνi = ν∗ for some
finite i, then the above algorithm achieves a convergence rate
not significantly worse than that guaranteed by Theorem 6 for
applying Algorithm 2 directly, with hypothesis classCi.

As in the case of finite-complexityC, we can also show a
variant of this result when the complexities are quantified in
terms of the entropy with bracketing. Specifically, consider
the following condition and theorem. Again, this represents an
improvement over known results for passive learning when the
disagreement coefficient is small.

Condition 4 For eachi ∈ N, there exist finite constantsαi >
0 and ρi ∈ (0, 1) s.t. ∀m ∈ N and ǫ ∈ [0, 1], ωCi

(m, ǫ) ≤

αiǫ
1−ρi

2 m−1/2. ⋄

Theorem 9 Supposêhn is the classifier returned by Algorithm
3, when allowedn label requests and confidence parameter
δ ∈ (0, 1/2). Suppose further thatDXY satisfies Conditions 3
and 4. Then there exist finite (κi, µi, αi and ρi -dependent)
constantsci such that, with probability≥ 1− δ, ∀n ∈ N,

er(ĥn)− ν∞ ≤ 3 min
i∈I

(νi − ν∞) + ci

(

θi log2 in
δ

n

)

κi
2κi+ρi−2

.

⋄

In addition to these theorems for this structure-dependent
version of Tsybakov’s noise conditions, we also have the fol-
lowing result for a structure-independent version.

Theorem 10 Supposêhn is the classifier returned by Algo-
rithm 3, when allowedn label requests and confidence param-
eter δ ∈ (0, 1/2). Suppose further that there exists a con-
stantµ > 0 such that for all measurableh : X → {−1, 1},
er(h) − ν∗ ≥ µP{h(X) 6= h∗(X)}. Then there exists a finite
(µ-dependent) constantc such that, with probability≥ 1 − δ,
∀n ∈ N,

er(ĥn)− ν∗ ≤ c min
i∈N

(νi − ν∗) + exp







−

√

n

cdiθi log3 idi

δ







.

⋄

The case whereer(h)−ν∗ ≥ µP{h(X) 6= h∗(X)}κ for κ > 1
can be studied analogously, though the rate improvements over
passive learning are more subtle.



Algorithm 3
Input: nested sequence of classes{Ci}, label budgetn, confidence parameterδ

Output: classifier̂hn

0. Fori = ⌊
√

n/2⌋, ⌊
√

n/2⌋ − 1, ⌊
√

n/2⌋ − 2, . . . , 1
1. LetLin andQin be the sets returned by Algorithm 2 run withCi and the

threshold in (5), allowing⌊n/(2i2)⌋ label requests, and confidenceδ/(2i2)
2. Lethin ← LEARNCi

(∪j≥iLjn, Qin)

3. If hin 6= ∅ and∀j s.t. i < j ≤ ⌊
√

n/2⌋,
erLjn∪Qjn

(hin)− erLjn∪Qjn
(hjn) ≤ 3

2 ÊCj
(Ljn∪Qjn, δ/(2j2);Ljn)

4. ĥn ← hin

5. Return̂hn

6 Conclusions

Under Tsybakov’s noise conditions, active learning can offer
improved asymptotic convergence rates compared to passive
learning when the disagreement coefficient is small. It is also
possible to preserve these improved convergence rates when
learning with a nested structure of hypothesis classes, using
an algorithm that adapts to both the noise conditions and the
complexity of the optimal classifier.

A Definition of Ê

For any functionf : X → R, andξ1, ξ2, . . . a sequence of inde-
pendent random variables with distribution uniform in{-1, +1},
define theRademacher processfor f under a finite sequence of
labeled examplesQ = {(X ′

i, Y
′
i )} as

R(f ; Q) = 1
|Q|

|Q|
∑

i=1

ξif(X ′
i).

Theξi should be thought of as internal variables in the learning
algorithm, rather than as fundamental to the learning problem.

For any two sequences of labeled examplesL = {(X ′
i, Y

′
i )}

andQ = {(X ′′
i , Y ′′

i )}, defineC[L] = {h ∈ C : erL(h) = 0},

Ĉ(ǫ;L, Q) = {h ∈ C[L] : erQ(h)− min
h′∈C[L]

erQ(h′) ≤ ǫ},

let D̂C(ǫ;L, Q) = sup
h1,h2∈Ĉ(ǫ;L,Q)

1
|Q|

|Q|
∑

i=1

1[h1(X
′′
i ) 6= h2(X

′′
i )],

and definêφC(ǫ;L, Q) = 1
2 sup

h1,h2∈Ĉ(ǫ;L,Q)

R(h1 − h2; Q). Let

δ ∈ (0, 1], m ∈ N, and definesm(δ) = ln 20m2 log2(3m)
δ .

Let Zǫ = {j ∈ Z : 2j ≥ ǫ}, and for any sequence of
labeled examplesQ = {(X ′

i, Y
′
i )}, define

Qm = {(X ′
1, Y

′
1), (X ′

2, Y
′
2), . . . , (X ′

m, Y ′
m)}.

We use the following notation of Koltchinskii [Kol06] with
only minor modifications. Forǫ ∈ [0, 1], define
ÛC(ǫ, δ;L, Q) =

K̂

(

φ̂C(ĉǫ;L, Q)+

√

s|Q|(δ)D̂C(ĉǫ;L,Q)

|Q| +
s|Q|(δ)

|Q|

)

ÊC(Q, δ;L) =

min
m≤|Q|

inf
{

ǫ>0:∀j∈Zǫ,ÛC(2j, δ;L, Qm)≤2j−4
}

where, for our purposes, we can takeK̂ = 752, andĉ = 3/2,
though there seems to be room for improvement in these con-
stants. We also definêEC(∅, δ; C,L) =∞ by convention.

B Main Proofs

Let ÊC(m, δ) = ÊC(Zm, δ; ∅). For eachm ∈ N, let ĥ∗
m =

arg min
h∈C

erm(h) be the empirical risk minimizer inC for the

true labels of the firstm examples.
For ǫ > 0, defineC(ǫ) = {h ∈ C : er(h) − ν ≤ ǫ}. For

m ∈ N, let

φC(m,ǫ)=E sup
h1,h2∈C(ǫ)

|(er(h1)−erm(h1))− (er(h2)−erm(h2))|,

ŨC(m, ǫ, δ) = K̃

(

φC(m, c̃ǫ) +
√

sm(δ)diam(c̃ǫ;C)
m + sm(δ)

m

)

,

ẼC(m, δ) = inf
{

ǫ > 0 : ∀j ∈ Zǫ, ŨC(m, 2j , δ) ≤ 2j−4
}

,

where, for our purposes, we can takeK̃ = 8272 and c̃ = 3.
We also definẽEC(0, δ) =∞. The following lemma is crucial
to all of the proofs that follow.

Lemma 11 [Kol06] There is an eventEC,δ with P(EC,δ) ≥
1 − δ/2 such that, on eventEC,δ, ∀m ∈ N, ∀h ∈ C, ∀τ ∈
(0, 1/m), ∀h′ ∈ C(τ),

er(h) − ν ≤ max
{

2(erm(h)− erm(h′) + τ), ÊC(m, δ)
}

erm(h)− erm(ĥ∗
n) ≤ 3

2 max
{

(er(h)− ν), ÊC(m, δ)
}

,

ÊC(m, δ) ≤ ẼC(m, δ),

and for anyj ∈ Z with 2j > ÊC(m, δ),
sup

h1,h2∈C(2j)

|(erm(h1)− er(h1))− (erm(h2)− er(h2))|

≤ ÛC(2j , δ; ∅,Zm). ⋄

This lemma essentially follows from details of the proof of
Koltchinskii’s Theorem 1, Lemma 2, and Theorem 3 [Kol06]3.
We do not provide a proof of Lemma 11 here. The reader is
referred to Koltchinskii’s paper for the details.

3Our min
m≤|Q|

modification to Koltchinskii’s version of̂EC(m,δ) is

not a problem, sinceφC(m, ǫ) and sm(δ)
m

are nonincreasing functions
of m.



B.1 Proofs Relating to Section 4

For ℓ ∈ N ∪ {0}, let L(ℓ) andQ(ℓ) denote the setsL andQ,
respectively, in step 4 of Algorithm 2, whenm− 1 = ℓ; if this
never happens during execution, defineL(ℓ) = ∅, Q(ℓ) = Zℓ.

Lemma 12 On eventEC,δ, ∀ℓ ∈ N ∪ {0},

ÊC(Q(ℓ) ∪ L(ℓ), δ;L(ℓ)) = ÊC(ℓ, δ)

and ∀ǫ ≥ ÊC(ℓ, δ), ĥ∗
ℓ ∈ Ĉℓ(ǫ;L(ℓ)) ⊆ Ĉℓ(ǫ; ∅). ⋄

Proof:[Lemma 12] Throughout this proof, we assume the event
EC,δ occurs. We proceed by induction onℓ, with the base case
of ℓ = 0 (which clearly holds). Suppose the statements are true
for all ℓ′ < ℓ. The caseL(ℓ) = ∅ is trivial, so assumeL(ℓ) 6= ∅.
For the inductive step, supposeh ∈ Ĉℓ(ÊC(ℓ, δ); ∅). Then for
all ℓ′ < ℓ, we haveerℓ(h)−erℓ(ĥ

∗
ℓ ) ≤ ÊC(ℓ′, δ). In particular,

by Lemma 11, this implies

er(h)− ν ≤ max
{

2(erℓ(h)− erℓ(ĥ
∗
ℓ )), ÊC(ℓ, δ)

}

≤ 2ÊC(ℓ′, δ), and thus for anyh′ ∈ C, erℓ′(h) − erℓ′(h
′) ≤

erℓ′(h)− erℓ′(ĥ
∗
ℓ′) ≤

3
2 max

{

er(h)− ν, ÊC(ℓ′, δ)
}

≤ 3ÊC(ℓ′, δ) = 3ÊC(Q(ℓ′), δ;L(ℓ′)). Thus, we must have
erL(ℓ)(h) = 0, and thereforeh ∈ Ĉℓ(ÊC(ℓ, δ);L(ℓ)). Since
this is the case for all suchh, we must have that

Ĉℓ(ÊC(ℓ, δ);L(ℓ)) ⊇ Ĉℓ(ÊC(ℓ, δ); ∅). (6)

In particular, this implies that̂UC(ÊC(ℓ, δ), δ;L(ℓ), Q(ℓ)) ≥

ÛC(ÊC(ℓ, δ), δ; ∅,Zℓ) > 1
16 ÊC(ℓ, δ), where the last inequal-

ity follows from the definition ofÊC(ℓ, δ), (which is a power
of 2). Thus, we must havêEC(Q(ℓ) ∪L(ℓ), δ;L(ℓ)) ≥ ÊC(ℓ, δ).

The relation in (6) also implies thatĥ∗
ℓ ∈ Ĉℓ(ÊC(ℓ, δ);L(ℓ)),

and therefore∀ǫ ≥ ÊC(ℓ, δ), Ĉℓ(ǫ;L(ℓ)) ⊆ Ĉℓ(ǫ; ∅), which
implies∀ǫ ≥ ÊC(ℓ, δ), ÛC(ǫ, δ;L(ℓ), Q(ℓ)) ≤ ÛC(ǫ, δ; ∅,Zℓ).
But this meanŝEC(Q(ℓ) ∪ L(ℓ), δ;L(ℓ)) ≤ ÊC(ℓ, δ). There-
fore, we must have equality. Thus, the lemma follows by the
principle of induction.

Lemma 13 Suppose for anyn ∈ N, ĥn is the classifier re-
turned by Algorithm 2 with threshold as in(5), when allowed
n label requests and given confidence parameterδ > 0, and
suppose further thatmn is the value of|Q| + |L| when Algo-
rithm 2 returns. Then there is an eventHC,δ such thatP(HC,δ∩
EC,δ) ≥ 1− δ, such that onHC,δ ∩ EC,δ, ∀n ∈ N,

er(ĥn)− ν ≤ ẼC(mn, δ),

and

n ≤ min

{

mn, log2

4m2
n

δ
+ 4eθ

mn−1
∑

ℓ=0

diam(2ẼC(ℓ, δ); C)

}

.

⋄

Proof:[Lemma 13] Once again, assume eventEC,δ occurs. By
Lemma 11,∀τ > 0,

er(ĥn)−ν≤max
{

2(ermn
(ĥn)−ermn

(ĥ∗
mn

)+τ), ÊC(mn, δ)
}

.

Letting τ → 0, and noting thaterL(ĥ∗
mn

) = 0 (Lemma 12)

impliesermn
(ĥn) = ermn

(ĥ∗
mn

), we have

er(ĥn)− ν ≤ ÊC(mn, δ) ≤ ẼC(mn, δ),

where the last inequality is also due to Lemma 11. Note that
thisÊC(mn, δ) represents an interesting data-dependent bound.

To get the bound on the number of label requests, we pro-
ceed as follows. For anym ∈ N, and nonnegative integer
ℓ < m, let Iℓ be the indicator for the event that Algorithm 2 re-
quests the labelYℓ+1 and letNm =

∑m−1
ℓ=0 Iℓ. Additionally,

let I ′ℓ be independent Bernoulli random variables with

P[I ′ℓ = 1] = P

{

DIS(C(2ẼC(ℓ, δ)))
}

.

Let N ′
m =

∑m−1
ℓ=0 I ′ℓ. We have that

P [{Iℓ = 1} ∩ EC,δ]

≤P

[

{Xℓ+1∈DIS(Ĉℓ(ÊC(Q(ℓ) ∪ L(ℓ), δ;L
(ℓ)
i );L(ℓ)))}∩EC,δ

]

≤ P

[

{Xℓ+1 ∈ DIS(Ĉℓ(ẼC(ℓ, δ); ∅))} ∩ EC,δ

]

≤ P

[

DIS(C(2ẼC(ℓ, δ)))
]

= P[I ′ℓ = 1].

The second inequality is due to Lemmas 12 and 11, while the
third inequality is due to Lemma 11. Note that

E[N ′
m] =

m−1
∑

ℓ=0

P[I ′ℓ = 1] =

m−1
∑

ℓ=0

P

{

DIS(C(2ẼC(ℓ, δ)))}
}

Let us name this last quantityqm. Thus, by union and Chernoff
bounds,

P

[{

∃m∈N : Nm >max

{

2eqm, qm+log2

4m2

δ

}}

∩ EC,δ

]

≤
∑

m∈N

P

[{

Nm > max

{

2eqm, qm + log2

4m2

δ

}}

∩EC,δ

]

≤
∑

m∈N

P

[{

N ′
m > max

{

2eqm, qm + log2

4m2

δ

}}]

≤
∑

m∈N

δ

4m2
≤

δ

2
.

For anyn, we known ≤ mn ≤ 2n. Therefore, we have that
on an event (which includesEC,δ) occuring with probability
≥ 1− δ, for everyn ∈ N,

n ≤ max{Nmn
, log2 mn}

≤ max

{

2eqmn
, qmn

+ log2

4m2
n

δ

}

≤ log2

4m2
n

δ
+ 2e

mn−1
∑

ℓ=0

P{DIS(C(2ẼC(ℓ, δ)))}

≤ log2

4m2
n

δ
+ 2eθ

mn−1
∑

ℓ=0

diam(2ẼC(ℓ, δ); C).



Lemma 14 On eventHC,δ ∩EC,δ (of Lemmas 11 and 13), un-
der Condition 1,∀n ∈ N,

ẼC(mn, δ) ≤











1
δ · exp

{

−
√

n
cdθ log3 d

δ

}

, if κ = 1

c
(

dθ log2(nd/δ)
n

)
κ

2κ−2

, if κ > 1

,

for some finite constantc (depending onκ andµ), and under
the additional Condition 2,∀n ∈ N,

ẼC(mn, δ) ≤ c

(

θ log2(n/δ)

n

)

κ
2κ+ρ−2

,

for some finite constantc (depending onκ, µ, ρ, andα).

Proof:[Lemma 14] We begin with the first case (Condition 1
only).

We know that

ωC(m, ǫ) ≤ K

√

ǫd log 2
ǫ

m

for some constantK (see e.g., [MN06]). Noting thatφC(m, ǫ)
≤ ωC(m, diam(ǫ; C)), we have that

ŨC(m, ǫ, δ) ≤ K̃

(

K

√

diam(c̃ǫ; C)d log 2
diam(c̃ǫ;C)

m

+

√

sm(δ)diam(c̃ǫ; C)

m
+

sm(δ)

m

)

≤ K ′ max







√

ǫ1/κd log 1
ǫ

m
,

√

sm(δ)ǫ1/κ

m
,
sm(δ)

m







.

Taking anyǫ ≥ K ′′
(

d log m
δ

m

)
κ

2κ−1

, for some constantK ′′ > 0,

suffices to make this latter quantity≤ ǫ
16 . So for some appro-

priate constantK (depending onµ andκ), we must have that

ẼC(m, δ) ≤ K

(

d log m
δ

m

)
κ

2κ−1

. (7)

Plugging this into the query bound, we have that

n ≤ log2

4m2
n

δ
+2eθ

(

2 +

∫ mn−1

1

µ(2K ′)
1
κ

(

d log x
δ

x

)
1

2κ−1

)

.

(8)

If κ > 1, (8) is at mostK ′′θm
2κ−2
2κ−1
n d log mn

δ , for some
constantK ′′ (depending onκ and µ). This impliesmn ≥

K(3)
(

n
θd log n

δ

)
2κ−1
2κ−2

, for some constantK(3). Plugging this

into (7) and using Lemma 13 completes the proof for this case.
On the other hand, ifκ = 1, (8) is at mostK ′′θd log2 mn

δ ,
for some constantK ′′ (depending onκ andµ). This implies
mn ≥ δexp

{

K(3)
√

n
θd

}

, for some constantK(3). Plugging
this into (7), using Lemma 13, and simplifying the expression
with a bit of algebra completes this case.

For the bound in terms ofρ, [Kol06] proves that̃EC(m, δ) ≤

K ′ max

{

m− κ
2κ+ρ−1 ,

(

log m
δ

m

)
κ

2κ−1

}

≤ K ′

(

log m
δ

m

)
κ

2κ+ρ−1

,

(9)

for some constantK ′ (depending onµ, α, andκ). Plugging
this into the query bound, we have that

n ≤ log2

4m2
n

δ
+ 2eθ

(

2 +

∫ mn−1

1

µ(2K ′)
1
κ

(

log x
δ

x

)
1

2κ+ρ−1

)

≤ K ′′θm
2κ+ρ−2
2κ+ρ−1
n log mn

δ , for some constantK ′′ (depending on

κ, µ, α, andρ). This impliesmn ≥ K(3)
(

n
θ log n

δ

)
2κ+ρ−1
2κ+ρ−2

, for

some constantK(3). Plugging this into (9) and using Lemma 13
completes the proof of this case.

Proof:[Theorem 6andTheorem 7] These theorems now fol-
low directly from Lemmas 13 and 14.

B.2 Proofs Relating to Section 5

To simplify the notation in this section, defineLQin = Lin ∪
Qin for anyi ∈ N, n ∈ N.

Lemma 15 For i ∈ N, let δi = δ/(2i2) andmin = |Lin| +

|Qin| (for i >
√

n/2, defineLin = Qin = ∅). For eachn, let
în denote the smallest indexi satisfying the condition onhin in
step 3 of Algorithm 3. Letτn = 2−n and define

i∗n =min
{

i∈N :∀i′≥ i, ∀j≥ i′, ∀h∈Ci′ (τn), erLjn
(h)=0

}

,

and

j∗n = argmin
j∈N

νj + ÊCj
(mjn, δj).

Then on the event
∞
⋂

i=1

ECi,δi
,

∀n ∈ N, max
{

i∗n, în

}

≤ j∗n.
⋄

Proof:[Lemma 15] Continuing the notation from the proof of
Lemma 12, forℓ ∈ N∪{0}, letL(ℓ)

in andQ
(ℓ)
in denote the setsL

andQ, respectively, in step 4 of Algorithm 2, whenm−1 = ℓ,
when run with classCi, label budget⌊n/(2i2)⌋, confidence
parameterδi, and threshold as in (5); ifm− 1 is neverℓ during
execution, then defineL(ℓ)

in = ∅ andQ
(ℓ)
in = Zℓ.

Assume the event
∞
⋂

i=1

ECi,δi
occurs. Suppose, for the sake

of contradiction, thatj = j∗n < i∗n for somen ∈ N. Then there
is somei ≥ i∗n− 1 such that, for someℓ < min, we have some
h′ ∈ Ci∗n−1(τn) ∩ {h ∈ Ci : er

L
(ℓ)
in

(h) = 0} but

erℓ(h
′)− min

h∈Ci

erℓ(h) ≥ erℓ(h
′)− min

h∈Ci:er
L

(ℓ)
in

(h)=0
erℓ(h)

> 3ÊCi
(L

(ℓ)
in ∪Q

(ℓ)
in , δi;L

(ℓ)
in ) = 3ÊCi

(ℓ, δi),

where the last equality is due to Lemma 12. Lemma 11 implies
this will not happen fori = i∗n − 1, so we can assumei ≥ i∗n.
We therefore have (by Lemma 11) that

3ÊCi
(ℓ, δi) < erℓ(h

′)− min
h∈Ci

erℓ(h)

≤
3

2
max

{

τn + νi∗n−1 − νi, ÊCi
(ℓ, δi)

}

.



In particular, this implies that

3ÊCi
(min, δi) ≤ 3ÊCi

(ℓ, δi)

<
3

2

(

τn + νi∗n−1 − νi

)

≤
3

2
(τn + νj − νi) .

Therefore,

ÊCj
(mjn, δj) + νj ≤ ÊCi

(min, δi) + νi

≤
1

2
(τn + νj − νi) + νi ≤

τn

2
+ νj .

This would imply thatÊCj
(mjn, δj) ≤ τn/2 < 1

mjn
(due to

the second return condition in Algorithm 2), which by defi-
nition is not possible, so we have a contradiction. Therefore,
we must have that everyj∗n ≥ i∗n. In particular, we have that
∀n ∈ N, hj∗nn 6= ∅.

Now pick an arbitraryi ∈ N with i > j = j∗n, and let
h′ ∈ Cj(τn). Then
erLQin

(hjn)− erLQin
(hin) = ermin

(hjn)− ermin
(hin)

≤ ermin
(hjn)− min

h∈Ci

ermin
(h)

≤
3

2
max

{

er(hjn)− νi, ÊCi
(min, δi)

}

(Lemma 11)

=
3

2
max

{

er(hjn)− νj + νj − νi, ÊCi
(min, δi)

}

≤
3

2
max











2(ermjn
(hjn)− ermjn

(h′) + τn) + νj − νi

ÊCj
(mjn, δj) + νj − νi

ÊCi
(min, δi)

=
3

2
max

{

ÊCj
(mjn, δj) + νj − νi

ÊCi
(min, δi)

(sincej ≥ i∗n)

=
3

2
ÊCi

(min, δi) (by definition ofj∗t )

=
3

2
ÊC(Lin ∪Qin, δi;Lin) (by Lemma 12).

Lemma 16 On the event
∞
⋂

i=1

ECi,δi
, ∀n ∈ N,

er(hînn)− ν∞ ≤ 3 min
i∈N

(

νi − ν∞ + ẼCi
(min, δi)

)

.

Proof:[Lemma 16] Let h′
n ∈ Cj∗n(τn) for τn∈(0, 2−n), n∈N.

er(ĥn) = er(hînn)

= νj∗n + er(hînn)− νj∗n

≤ νj∗n + max

{

2(ermj∗nn
(hînn)− ermj∗nn

(h′
n) + τn)

ÊCj∗n
(mj∗nn, δj∗n)

≤ νj∗n + max

{

2(erLQj∗nn
(hînn)− erLQj∗nn

(hj∗nn)) + τn)

ÊCj∗n
(mj∗nn, δj∗n)

The first inequality follows from Lemma 11. The second in-
equality is due to Lemma 15 (i.e.,j∗n ≥ i∗n). Letting τn → 0

in this last line, and using the definition ofîn, we have that
er(ĥn)− ν∞ is at most

νj∗n − ν∞+

max

{

2

(

3

2
ÊCj∗n

(LQj∗nn, δj∗n ;Lj∗nn)

)

, ÊCj∗n
(mj∗nn, δj∗n)

}

= νj∗n − ν∞ + 3ÊCj∗n
(mj∗nn, δj∗n) (Lemma 12)

≤ 3 min
i

(

νi − ν∞ + ÊCi
(min, δi)

)

(by definition ofj∗n)

≤ 3 min
i

(

νi − ν∞ + ẼCi
(min, δi)

)

(Lemma 11).

We are now ready for the proof of Theorems 8 and 9.
Proof:[Theorem 8andTheorem 9] These theorems now fol-
low directly from Lemmas 16 and 14. That is, Lemma 16
gives a bound in terms of thẽE quantities, holding on event
∞
⋂

i=1

ECi,δi
, and Lemma 14 bounds theseẼ quantities as desired,

on event
∞
⋂

i=1

HCi,δi
∩ ECi,δi

. Noting that, by the union bound,

P

[

∞
⋂

i=1

HCi,δi
∩ ECi,δi

]

≥ 1−
∑∞

i=1 δi ≥ 1− δ completes the

proof.

Definition 17 Define̊c = c̃ + 1, D̊(ǫ) = lim
j→∞

diam(ǫ; Cj),

ŮCi
(m, ǫ, δi)

= K̃



ωCi
(m, D̊(̊cǫ)) +

√

sm(δi)D̊(̊cǫ)

m
+

sm(δi)

m





and

E̊Ci
(m, δi) = inf

{

ǫ > 0 : ∀j ∈ Zǫ, ŮCi
(m, 2j , δi) ≤ 2j−4

}

.

⋄

Lemma 18 For anym, i ∈ N,

ẼCi
(m, δi) ≤ max

{

E̊Ci
(m, δi), νi − ν∞

}

.

⋄

Proof:[Lemma 18] For ǫ > νi − ν∞,
ŨCi

(m, ǫ, δi)

= K̃

(

φCi
(m, c̃ǫ) +

√

sm(δi)diam(c̃ǫ;Ci)
m + sm(δi)

m

)

≤ K̃

(

ωCi
(m, diam(c̃ǫ; Ci))+

√

sm(δi)diam(c̃ǫ;Ci)
m + sm(δi)

m

)

.

But diam(c̃ǫ; Ci) ≤ D̊(c̃ǫ+(νi−ν∞)) ≤ D̊(̊cǫ), so the above
line is at most

K̃

(

ωCi
(m, D̊(̊cǫ))+

√

sm(δi)D̊(̊cǫ)
m + sm(δi)

m

)

= ŮCi
(m, ǫ, δi).



In particular, this implies that
ẼCi

(m, δi)

= inf
{

ǫ > 0 : ∀j ∈ Zǫ, ŨCi
(m, 2j, δi) ≤ 2j−4

}

≤ inf
{

ǫ > (νi − ν∞) : ∀j ∈ Zǫ, ŨCi
(m, 2j , δi) ≤ 2j−4

}

≤ inf
{

ǫ > (νi − ν∞) : ∀j ∈ Zǫ, ŮCi
(m, 2j , δi) ≤ 2j−4

}

≤ max

{

inf
{

ǫ > 0 : ∀j ∈ Zǫ, ŮCi
(m, 2j , δi) ≤ 2j−4

}

νi − ν∞

= max
{

E̊Ci
(m, δi), νi − ν∞

}

.

Proof:[Theorem 10] By the same argument that lead to (7),
we have that

E̊Ci
(m, δi) ≤ K2

di log mi
δ

m
,

for some constantK2 (depending onµ).
Now assume the event

⋂∞
i=1 HCi,δi

∩ECi,δi
occurs. In par-

ticular, Lemma 16 implies that∀i, n ∈ N,
er(ĥn)− ν∗

≤ min

{

1, 3 min
i∈N

(

2(νi − ν∞) + E̊Ci
(min, δi)

)

}

≤ K3 min
i∈N

(

(νi − ν∗) + min

{

1,
di log mini

δ

min

})

,

for some constantK3.
Now takei ∈ N. The label request bound of Lemma 13,

along with Lemma 18, implies that

⌊n/(2i2)⌋ ≤

log
8m2

ini2

δ
+K4θi

(

2+

∫ min−1

1

max

{

νi − ν∗,
di log xi

δ

x

}

dx

)

≤ K5θi max

{

(νi − ν∗)min, di log2(min) log
i

δ

}

Let γi(n) =
√

n
i2θidi log i

δ

. Then

di log
mini

δ

min

≤ K6

(

(νi − ν∗)1+γi(n)
γi(n)2 + di log i

δ (1 + γi(n)) e−c2γi(n)
)

.

Thus,min

{

1,
di log

mini

δ

min

}

≤ min
{

1, K7

(

(νi − ν∗) + di log i
δ (1 + γi(t)) e−c2γi(n)

)}

.

The result follows from this by some simple algebra.
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