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Abstract

It is well-known that in many applications er-
roneous predictions of one type or another must
be avoided. In some applications, like spam de-
tection, false positive errors are serious prob-
lems. In other applications, like medical di-
agnosis, abstaining from making a prediction
may be more desirable than making an incor-
rect prediction. In this paper we consider dif-
ferent types of reliable classifiers suited for such
situations. We formalize and study proper-
ties of reliable classifiers in the spirit of agnos-
tic learning (Haussler, 1992; Kearns, Schapire,
and Sellie, 1994), a PAC-like model where no
assumption is made on the function being learned.
We then give two algorithms for reliable agnos-
tic learning under natural distributions. The
first reliably learns DNF formulas with no false
positives using membership queries. The sec-
ond reliably learns halfspaces from random ex-
amples with no false positives or false neg-
atives, but the classifier sometimes abstains
from making predictions.

1 Introduction

In many machine learning applications, a crucial re-
quirement is that mistakes of one type or another should
be avoided at all cost. As a motivating example, con-
sider spam detection, where classifying a correct email
as spam (a false positive) can have dire, or even fatal
consequences. On the other hand, if a spam message
is not tagged correctly (a false negative) it is compara-
tively a smaller problem. In other situations, abstaining
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Figure 1: Three different learning settings. Depending
on the application and data, one may be more appro-
priate than the others. (a) The best (most accurate)
classifier (from the class of halfspaces) for a typical ag-
nostic learning problem. (b) The best positive-reliable
halfspace classifier for a problem like spam-prediction
in which false positives are to be avoided. (c) The best
fully reliable halfspace sandwich classifier for a problem
in which all errors are to be avoided. It predicts −, +,
or ?.

from making a prediction might be better than making
wrong predictions; in a medical test it is preferable to
have inconclusive predictions to wrong ones, so that the
remaining predictions can be relied upon. A reliable
classifier would have a pre-specified error bound for false
positives or false negatives or both. We present formal
models for different types of reliable classifiers and give
efficient algorithms for some of the learning problems
that arise.

In agnostic learning [Hau92, KSS94], one would like
provably efficient learning algorithms that make no as-
sumption about the function to be learned. The learner’s
goal is to nearly match (within ε) the accuracy of the
best classifier from a specified class of functions (See
Figure 1a). Agnostic learning can be viewed as PAC
learning [Val84] with arbitrary noise. In reliable ag-
nostic learning, the learner’s goal is to output a nearly
reliable classifier whose accuracy nearly matches the ac-
curacy of the best reliable classifier from a specified class
of functions (See Figure 1b-c).

Since agnostic learning is extremely computation-
ally demanding, it is interesting that we can find effi-
cient algorithms for reliably agnostic learning interest-
ing classes of functions over natural distributions. Our



algorithms build on recent results in agnostic learning,
one for learning decision trees [GKK08] and one for
learning halfspaces [KKMS05]. Throughout the paper,
our focus is on computationally efficient algorithms for
learning problems. The contributions of this paper are
the following:

- We introduce a model of reliable agnostic learning.
Following prior work on agnostic learning, we con-
sider both distribution-specific and distribution-free
learning, as well as both learning from membership
queries and from random examples. We show that
reliable agnostic learning is no harder that agnostic
learning and no easier that PAC learning.

- We give an algorithm for reliably learning DNF
(with almost no false positives) over the uniform
distribution, using membership queries. More gen-
erally, we show that if concept class C is agnostically
learnable, then the class of disjunctions of concepts
from C is reliably learnable (with almost no false
positives).

- We give an algorithm for reliably learning halfspace
sandwich classifiers over the unit ball under uni-
form distribution. This algorithm is fully reliable
in the sense that it almost never makes mistakes of
any type. We also extend this algorithm to have
tolerant reliability, in which case a permissible rate
of false positives and false negatives is specified,
and the goal of the algorithm is to achieve maxi-
mal accuracy subject to these constraints.

Positive Reliability: A positive-reliable classifier is
one that never produces false positives. (One can simi-
larly define a negative-reliable classifier as one that never
produces false negatives.) On the spam example, a
positive-reliable DNF could be

(Nigeria ∧ bank ∧ transaction ∧ million) ∨
(Viagra ∧ ¬COLT . . . .

An email should be almost certainly spam if it fits into
any of a number of categories, where each category is
specified by a sets of words that it must contain and
must not contain.

Our goal is to output a classifier that is (almost)
positive-reliable and has false negative rate (almost) as
low as the best positive-reliable classifier from a fixed set
of classifiers, such as size-s DNFs. Consider a positive-
reliable classifier that has least rate of false negatives.
We require our algorithm to output a classifier that has
rate of false negatives (within ε) as low as this best one,
and require that the false positive rate of our classifier
be less than ε.

Our first algorithm efficiently learns the class of DNF
formulas in the positive reliable agnostic model over the
uniform distribution and uses membership queries. Our
model is conceptually akin to a one-sided error agnostic
noise model; hence this may be a step towards agnosti-
cally learning DNF. Note that our algorithm also gives
an alternative way of learning DNFs (without noise)

that is somewhat different than Jackson’s celebrated
harmonic sieve [Jac97].

More generally, we show that if a class of functions is
efficiently agnostically learnable, then polynomial-sized
disjunctions of concepts from that class are efficiently
learnable in the positive reliable agnostic model. Simi-
larly, it can be shown that agnostically learning a class
of functions implies learning polynomial-size conjunc-
tions of concepts from that class in the negative re-
liable agnostic model. A consequence of this is that
a polynomial-time algorithm for agnostically learning
DNFs over the uniform distribution would give an algo-
rithm for the challenging problem uniform-PAC learning
depth-3 circuits (since PAC learning is easier than reli-
able learning).
Full Reliability: We consider the notion of full-reliability,
which means simultaneous positive and negative relia-
bility. In order to achieve this, we need to consider
partial classifiers, ones that may predict positive, nega-
tive, or “?”, where a “?” means no prediction. A partial
classifier is fully reliable if it never produces false posi-
tives or false negatives. Given a concept class of partial
classifiers, the goal is to find a (nearly) fully reliable clas-
sifier that is almost as accurate as the best fully reliable
classifier from the concept class.

We show that reliable agnostic learning is easier (or
no harder) than agnostic learning; if a concept class is
efficiently learnable in the agnostic setting, it is also
efficiently learnable in the positive-reliable, negative-
reliable, and full-reliable models.
Tolerant reliability: We also consider the notion of
tolerant reliability, where we are willing to tolerate given
rates τ+, τ− of false positives and false negatives. In
this most general version, we consider the class of half-
space sandwich partial classifiers (halfspace sandwiches
for short), in which the examples that are in one halfs-
pace are positive, examples that are in another are neg-
ative, and the rest of the examples are classified as “?”.
We extend the agnostic halfspace algorithm and analy-
sis of Kalai, Klivans, Mansour, and Servedio [KKMS05]
to the case of halfspace sandwiches. In particular, we
show that given arbitrary rates τ+, τ−, we can learn the
class of halfspace sandwiches to within any constant ε
over the uniform distribution in polynomial time using
random examples. Our algorithm outputs a hypothesis
h such that h has false positive and false negative rates
close (within ε) to τ+ and τ− respectively and has accu-
racy within ε of the best halfspace sandwich with false
positive and false negative rates bounded by τ+, τ−.
Related Work: A classical approach to the problem of
reliable classification is defining a loss function that has
different penalties for different type of errors. For ex-
ample, by having an infinite loss on false positive errors
and a loss of one on false negative errors, we essentially
define a positive-reliable classifier as one that minimizes
the loss. The main issue that arises is computational,
since there is no efficient way to compute a halfspace
that would minimize a general loss function. The con-
tribution of this paper is to show that one can define in-
teresting sub-classes for which the computational tasks



are feasible.
Conceptually, our work is similar to the study of cau-

tious classifiers, i.e. classifiers which may output “un-
known” as a label[FHO04]. The models we introduce,
in particular the full-reliable learning model is very sim-
ilar to the bounded-improvement model in [Pie07]. The
methods we use to prove the reduction between agnostic
learning and reliable learning are related to work on del-
egating classifiers [FFHO04] and cost-sensitive learning
[Elk01, ZLA03].

The cost-sensitive classification model is a more gen-
eral model than reliable learning. In particular, to sim-
ulate positive reliability, one would impose a very large
cost on false positives. However, we do not see how to
extend our DNF algorithm to this setting. Even when
the mistake costs are equal, the problem of agnosti-
cally learning DFN remains an open problem [GKK08].
The requirement that there be almost no false positives
seems to make the problem significantly simpler. Ex-
tending our halfspace algorithm to the cost-sensitive
classification setting seems more straightforward.

The motivation of our work is highly related to the
Neyman-Pearson criterion, an application of which is
the following: given a joint distribution over points and
labels, minimize the rate of false negatives subject to
the condition that the rate of false positives is bounded
by a given input parameter. The Neyman-Pearson cri-
terion classifies points based on the ratio between the
likelihood of the point being labeled positive and neg-
ative. Neyman and Pearson [NP33] proved that the
optimal classification strategy is to choose a threshold
on the ratio of the likelihoods. This method was ap-
plied to statistical learning in [CHHS02, SN05], to solve
constrained version of empirical risk minimization or
structural risk minimization. Unfortunately, the opti-
mization problems that arise for most classes of interest
are computationally intractable. In contrast, our work
focuses on deriving computationally efficient algorithms
for some interesting concept classes.

The main focus of our work is to develop formal
models for reliable learning and give algorithms with
theoretical guarantees on their performance. Our mod-
els are similar in spirit to Valiant’s PAC learning model
[Val84] and agnostic learning models by Kearns, Schapire
and Sellie [KSS94]. In our algorithms we do not change
the underlying distribution on the instance space, but
sometimes flip labels of instances. This allows us to con-
vert distribution-specific agnostic learning algorithms
into algorithms for reliable learning.

Organization. For readability, the paper is divided
into three parts. In section 2, we focus only on positive
reliability. Section 3 contains a reduction from agnostic
learning to fully reliable learning. Finally, in section 4,
we consider reliable learning with pre-specified permis-
sible error rates.

2 Positive reliability

The main result we prove in this section is the following:
if a concept class C is efficiently agnostically learnable,
the composite class of size-s disjunctions of concepts

from C is efficiently positive-reliably learnable. An ap-
plication of this result is an algorithm for positive reli-
ably learning size-s DNF formulas, based on the recent
result by Gopalan, Kalai and Klivans [GKK08] for ag-
nostically learning decision trees. (Recall that a mono-
mial has a small decision tree and therefore the class of
DNF is included in the class of disjunctions of decision
trees.)

2.1 Preliminaries
Throughout the paper, we will consider 〈Xn〉n≥1 as the
instance space (for example the boolean cube Xn =
{0, 1}n or the unit ball Xn = Bn). For each n, the
target is an arbitrary function fn : Xn → [0, 1], which
we interpret as fn(x) = Pr[y = 1|x]. A distribution
Dn over Xn together with fn, induces a joint distribu-
tion, (Dn, fn), over examples Xn×{0, 1} as follows: To
draw a random example (x, y), pick x ∈ Xn according
to distribution Dn, set y = 1 with probability fn(x),
and otherwise y = 0.

A false positive is a prediction of 1 when the label
is y = 0. Similarly a false negative is a prediction of
0 when the label is y = 1. The rate of false positives
and negatives of a classifier c : Xn → {0, 1} are defined
below. When Dn and fn are clear from context, we will
omit them.

false+(c) = false+(c,Dn, fn) ,

Pr
(x,y)∼(Dn,fn)

[c(x) = 1 ∧ y = 0] = E
x∼Dn

[c(x)(1− fn(x))]

false−(c) = false−(c,Dn, fn) ,

Pr
(x,y)∼(Dn,fn)

[c(x) = 0 ∧ y = 1] = E
x∼Dn

[(1− c(x))fn(x)]

A classifier c is said to be positive-reliable if false+(c) =
0. In other words, it never makes false positive pre-
dictions. Although, we focus on positive reliability, an
entirely similar definition can be made in terms of neg-
ative reliability. The error of classifier c is,

err(c) = err(c,Dn, fn) ,

Pr
(x,y)∼(Dn,fn)

[c(x) 6= y] = false+(c) + false−(c)

To keep notation simple, we will drop the subscript n,
except in definitions.
Oracles: As is standard in computational learning the-
ory, we consider two types of oracles: membership query
(MQ) and example (EX). Given a target function f :
X → [0, 1] we define the behavior of the two types of
oracles below:

- Membership Query (MQ) oracle: For a query x ∈
X, the oracle returns y = 1 with probability f(x),
and y = 0 otherwise, independently each time it is
invoked.

- Example (EX) oracle: When invoked, the oracle
draws x ∈ X according to the distribution D, sets
y = 1 with probability f(x), y = 0 otherwise and
returns (x, y).



Almost all our results hold for both types of oracles
and none of our algorithms change the underlying dis-
tribution D over X. We use O(f) to denote an oracle,
which may be of either of these types. Note that neither
type of oracle we consider is persistent – either may re-
turn (x, 1) and (x, 0) for the same x. In this sense, our
model is similar to the p-concept distribution model for
agnostic learning introduced in Kearns, Schapire and
Sellie [KSS94]. Whenever an algorithm A has access to
oracle O(f) we denote it by AO(f).

Agnostic Learning. Algorithm A efficiently agnosti-
cally learns sequence of concept classes 〈Cn〉n≥1, un-
der distributions 〈Dn〉n≥1, if there exists a polynomial
p(n, 1/ε, 1/δ) such that, for every n ≥ 1, ε, δ > 0 and
every fn : Xn → [0, 1], with probability at least 1 − δ,
AO(fn)(ε, δ) outputs hypothesis h that satisfies

err(h,Dn, fn) ≤ min
c∈Cn

err(c,Dn, fn) + ε.

The time complexity of both A and h is bounded by
p(n, 1/ε, 1/δ).

Below we define positive-reliable learning and post-
pone definitions of full reliability and tolerant reliability
to sections 3 and 4 respectively. Define the subset of
positive-reliable classifiers (relative to a fixed distribu-
tion and target function), to be: C+ = {c ∈ C | false+(c) =
0}. Note that if we assume that C contains the classifier
which predicts 0 on all examples, then C+ is non-empty.

Positive Reliable Learning. Algorithm A efficiently
positive reliably learns a sequence of concept classes
〈Cn〉n≥1, under distributions 〈Dn〉n≥1, if there exists a
polynomial p(n, 1/ε, 1/δ) such that, for every n ≥ 1,
ε, δ > 0 and every fn : Xn → [0, 1], with probability at
least 1− δ, AO(fn)(ε, δ) outputs hypothesis h that satis-
fies false+(h,Dn, fn) ≤ ε and

false−(h,Dn, fn) ≤ min
c∈C+

n

false−(c,Dn, fn) + ε.

The time complexity of both A and h is bounded by
p(n, 1/ε, 1/δ).

Each oracle call is assumed to take unit time. Hence,
an upper bound on the run-time is also an upper-bound
on the sample complexity, i.e., the number of oracle
calls.

2.2 Positive reliably learning DNF
Our main theorem for this section is the following:

Theorem 1. Let A be an algorithm that (using ora-
cle O(f)) efficiently agnostically learns concept class C
under distribution D. There exists an algorithm A′ that
(using oracle O(f) and black-box access to A) efficiently
positive reliably learns the class of size-s disjunctions of
concepts from C.

Using the result on learning decision trees [GKK08],
we immediately get Corollary 1. The remainder of this
section is devoted to proving Theorem 1 and Corollary
1.

Corollary 1. There is an MQ algorithm B such that for
any n, s ≥ 1, B positive reliably learns the class of size-
s DNF formulas on n variables in time poly(n, s, 1

ε ,
1
δ )

with respect to the uniform distribution.

We show that if we have access to oracle O(f), we
can simulate oracle O(f ′) where f ′(x) = q(x)f(x) +
(1 − q(x))r(x), where q, r : X → [0, 1] are arbitrary
functions and we only assume black-box access to q and
r.

Lemma 1. Given access to oracle O(f) and black-box
access to the functions q and r we can simulate oracle
O(f ′) for f ′ = qf + (1− q)r.

Proof. We show this assuming that O(f) is an example
oracle; the case whenO(f) is a membership query oracle
is simpler. Let f ′ = qf + (1 − q)r. To simulate O(f ′),
we do the following: First draw (x, y) from O(f), with
probability q(x), return (x, y). With probability 1−q(x)
do the following: Set y′ = 1 with probability r(x), y′ = 0
otherwise, return (x, y′). It is easy to see that Pr[y =
1|x] = f ′(x), thus this simulates the oracle O(f ′).

When C is a concept class that is agnostically learn-
able, we give an algorithm that uses the agnostic learner
as a black-box and outputs a hypothesis which has a low
rate of false positives. This hypothesis will have rate
of false negatives close to optimum with respect to the
positive-reliable concepts in C. Our construction mod-
ifies the target function f , leaving the distribution D
unchanged, in such a way that false positives (with re-
spect to the original function) are penalized much more
than false negatives. By correctly choosing parameters,
the output of the black-box agnostic learner is close to
the best positive-reliable classifier.

Lemma 2. Assume that algorithm AO(f)(ε, δ) efficiently
agnostically learns concept class C under distribution
D in time T (ε, δ). Then, AO(f ′)(ε2/2, δ), where f ′ =
(1/2+ε/4)f , positive reliably learns C in time T (ε2/2, δ).

Proof. Let f ′ =
(

1
2 + ε

4

)
f . Let g : X → {0, 1} be an

arbitrary function and let p1 = Ex∼D[f(x)]. We relate
the quantities false+ and false− of g with respect to the
functions f and f ′ - simple calculations show that,

false+(g,D, f ′) =

false+(g,D, f) +
(

1
2
− ε

4

)
(p1 − false−(g,D, f)) (1)

false−(g,D, f ′) =
(

1
2

+
ε

4

)
false−(g,D, f) (2)

err(g,D, f ′) =

false+(g,D, f) +
(

1
2
− ε

4

)
p1 +

ε

2
false−(g,D, f) (3)

Let c ∈ C be such that false+(c,D, f) = 0 and false−(c,D, f) =
opt+ = minc′∈C+ false−(c′,D, f), so that if h is the out-
put of AO(f ′)( ε

2

2 , δ), with probability at least 1− δ,

err(h,D, f ′) ≤ err(c,D, f ′) +
ε2

2
(4)



Substituting identity (3) in (4), once for c and once for
h we get

false+(h,D, f) ≤ ε

2
(opt+ − false−(h,D, f)) +

ε2

2
(5)

≤ ε

Dropping the non-negative term false+(h,D, f) from (5)
and rearranging we get,

ε

2
false−(h,D, f ′) ≤ ε

2
opt+ +

ε2

2
(6)

false−(h,D, f) ≤ opt+ + ε

For learning disjunction of concepts, we first need
to learn the concept class on a subset of the instance
space. We show that in the agnostic setting, learning on
a subset of the instance space is only as hard as learning
over the entire instance space. The simple reduction we
present here does not seem feasible in the noiseless case.
Let S ⊆ X be a subset, a distribution D over X induces
a conditional distribution D|S over S; for any T ⊆ X,
PrD|S [T ] = PrD[T ∩ S]/PrD[S]. We assume access to
the indicator function for the set S, i.e., IS : X → {0, 1}
such that IS(x) = 1 if x ∈ S and IS(x) = 0 otherwise.
If PrD[S] is not negligible, it is possible to agnostically
learn under conditional distribution D|S using a black-
box agnostic learner.

Lemma 3. Suppose algorithm AO(f)(ε, δ) efficiently ag-
nostically learns C under distribution D in time T (ε, δ).
Let S ⊆ X such that, PrD[S] ≥ γ(= 1/poly). Then,
algorithm AO(f ′)(εγ, δ), where f ′ = fIS + (1 − IS)/2,
efficiently agnostically learns C under distribution D|S
in time T (εγ, δ).

Proof. We first relate the errors with respect to f and
f ′ = fIS+(1−IS)/2. In words, f ′ is f on S and random
outside S. Therefore, the error on any function g would
be 1/2 outside of S and its error on D|S inside S. More
formally, for any function g : X → {0, 1} we have,

err(g,D, f ′) = E
x∼D

[g(x)(1− f ′(x)) + (1− g(x))f ′(x)]

= E
x∼D

[(g(x)(1− f(x)) + (1− g(x))f(x))IS ]

+ E
x∼D

[(1− IS)/2]

= Pr
D

[S] err(g,D|S , f) + (1− Pr
D

[S])/2 (7)

Let c ∈ C be such that err(c,D|S , f) = minc′∈C err(c′,D|S , f)
= opt. Using (7) we can conclude that c is also optimal
under distribution D with respect to function f ′. Al-
gorithm AO(f ′)(εγ, δ) outputs hypothesis h which sat-
isfies with probability at least 1 − δ, err(h,D, f ′) ≤
err(c,D, f ′) + εγ. Using (7) and since PrD[S] ≥ γ we
immediately get err(h,D|S , f) ≤ opt + ε.

We define algorithm CPRL (conditional positive re-
liable learner) as follows. The input to the algorithm

input: ε, δ, M, O(f), CPRL
set H0 := 0;
for i = 1 to M {

set m := 2
ε2 log 2M

δ ;
draw Z = 〈(x1, y1), . . . , (xm, ym)〉 from
distribution (D, f);
set p̂i :=

∑m
j=1(1−Hi−1(xj));

if p̂i ≥ ε
2 {

hi := CPRL( ε
2M , δ

2M , 2
3 p̂i,O(f), 1−Hi−1);

} else {
hi := 0;

}
Hi := Hi−1 ∨ hi;

}
output HM

Figure 2: Algorithm Disjunction Learner

is ε - the accuracy parameter, δ - the confidence pa-
rameter, γ - bound on the probability of S, O(f) – or-
acle to access the target function and IS the indicator
function for subset S. Algorithm CPRL initially defines
f ′′ = (1/2 + ε/4)(fIS + (1 − IS)/2). By Lemma 1 we
can sample from O(f ′′) given access to O(f) and IS .
Algorithm CPRL runs AO(f ′′)(ε2γ2/2, δ) and returns its
output. We state the properties of algorithm CPRL as
Lemma 4

Lemma 4. Suppose algorithm AO(f)(ε, δ) agnostically
learns C under distribution D in time T (ε, δ). For a
subset S ⊆ X with PrD[S] ≥ γ(= 1/poly), algorithm
CPRL (which uses A as a black-box) with probability at
least 1− δ returns a hypothesis h such that
false+(h,D|S , f) ≤ ε and

false−(h,D|S , f) ≤ min
c∈C+

false−(c,D|S , f) + ε

Algorithm CPRL has access to oracle O(f) and black-box
access to IS. The running time of algorithm CPRL is
T (ε2γ2/2, δ).

Let ORs(C) = {c1 ∨ · · · ∨ cs | cj ∈ C,∀j ≤ s} be the
composite class of size-s disjunctions of concepts from
C. Theorem 2 states that if C is agnostically learnable
under distribution D, then ORs(C) is positive reliably
learnable under distribution D.

We need two simple lemmas to prove Theorem 2,
whose proofs are elementary and we omit.

Lemma 5. Let D be a distribution over X, f : X →
[0, 1] an arbitrary function and let c, h be such that
false+(c) = 0 and false−(h) ≤ false−(c) + ε, then
PrD[h(x) = 1] ≥ PrD[c(x) = 1]− ε

Lemma 6. Let D be a distribution over X, f : X →
[0, 1] an arbitrary function and let c, h be such that
false+(c) = 0, false+(h) ≤ ε and PrD[h(x) = 1] ≥
PrD[c(x) = 1]− ε, then false−(h) ≤ false−(c) + ε

Lemma 5 states that if a hypothesis h has a rate of
false negatives close to that of a concept c that predicts



no false positives, then h must predict 1 almost as often
as c. Lemma 6 states that if h is a hypothesis with low
rate of false positives and if it predicts 1 almost as often
as a concept c which never predicts false positives, the
rate of false negatives of h must be close to that of c.

Theorem 2. Let C be a concept class that is agnos-
tically learnable (in polynomial time) under D and f :
X → [0, 1] be an arbitrary function. Algorithm Disjunction-
Learner (see Fig. 2) run with parameters ε, δ, M =
s log(2/ε) and access to oracle O(f) and black-box ac-
cess to CPRL, with probability at least 1 − δ outputs a
hypothesis HM , such that false+(HM ,D, f) ≤ ε and

false−(HM ,D, f) ≤ min
ψ∈ORs(C)+

(ψ,D, f) + ε.

The running time is polynomial in s, 1
ε ,

1
δ .

Proof. For definitions of Hi and pi refer to figure 2. Let
ϕ ∈ ORs(C) satisfy false+(ϕ,D, f) = 0 and false−(ϕ,D, f) =
opt+ = minψ∈ORs(C)+ false−(ψ,D, f). Suppose ϕ = c1∨
· · · ∨ cs, where cj ∈ C. Let Si = {x ∈ X | Hi−1(x) =
0}, and hence 1 − Hi−1 is an indicator function for
Si. Let pi = PrD[Si] and p+ = PrD[ϕ(x) = 1]. Our
goal is to show that PrD[HM (x) = 1] ≥ p+ − ε and
false+(HM ,D, f) ≤ ε and then using Lemma 6 we are
done.

In the ith iteration, we compute using a sample, p̂i
to estimate pi. Using Hoeffding’s bound, with proba-
bility at least 1 − (δ/2M), |p̂i − pi| ≤ (ε/2). Let us
suppose this holds for all M iterations, allowing our
algorithm a failure probability of δ/2 so far. In this sce-
nario, if pi ≥ ε, p̂i ≥ (ε/2) and p̂i ≤ (3pi/2). Note that if
pi < ε, then false−(Hi−1,D, f) < ε and PrD[Hi−1(x) =
1] ≥ 1 − ε and hence we are done. Let D|Si denote
the conditional distribution given Si and in the ith it-
eration the call to CPRL returns a hypothesis hi such
that false+(hi,D|Si , f) ≤ ε

2M and false−(hi,D|Si , f) ≤
opti+

ε
2M where opti = minc∈C+ false−(c,D|Si

, f). Note
that for j = 1, . . . , s, false+(cj ,D|Si , f) = 0, and hence
false−(cj ,D|Si

, f) ≥ opti for all i. Thus we get,

false−(hi,D|Si , f) ≤ false−(cj ,D|Si , f) +
ε

2M

and hence using Lemma 5,

Pr
D|Si

[hi(x) = 1] ≥ Pr
D|Si

[cj(x) = 1]− ε

2M

Pr
D|Si

[hi(x) = 1] ≥ 1
s

Pr
D|Si

[ϕ(x) = 1]− ε

2M

Let qi = 1 − pi = PrD[Hi(x) = 1]. We define the
quantity di = p+ − qi and show by induction that di ≤
p+

(
1− 1

s

)i+ ε
2M

∑i−1
j=0

(
1− 1

s

)j . To check the base step
see that d1 = p+ − q1 = p+ − PrD[h1(x) = 1] ≤ p+ −

p+
s + ε

2M . For the induction step we have:
di+1 = p+ − Pr

D
[Hi+1(x) = 1]

= p+ − Pr
D

[Hi(x) = 1]− Pr
D

[Hi(x) = 0 ∧ hi+1(x) = 1]

= di − qi+1 Pr
D|Si+1

[hi+1(x) = 1]

≤ di −
qi+1

s
Pr

D|Si+1

[ϕ(x) = 1] +
ε

2M

≤ di −
1
s
(Pr
D

[ϕ(x) = 1]− Pr
D

[Hi(x) = 1]) +
ε

2M

≤ di

(
1− 1

s

)
+

ε

2M

≤ p+

(
1− 1

s

)i+1

+
ε

2M

i∑
j=0

(
1− 1

s

)j
When M = s log 2

ε , dM ≤ ε, and it is easily checked
that false+(HM ,D, f) ≤ ε and hence using Lemma 6,
false−(HM ,D, f) ≤ opt+ + ε. The probability of fail-
ure some call to CPRL is at most M δ

2M = δ/2, which
combined with probability of failure caused by incorrect
estimation of some p̂i gives total failure probability at
most δ.

Theorem 2 is a more precise restatement of Theo-
rem 1. This combined with Lemma 7 below (which is
Theorem 18 from [GKK08]) proves Corollary 1.

Lemma 7. [GKK08] The class of polynomial-size de-
cision trees can be agnostically learned (using queries)
to accuracy ε in time poly(n, 1

ε ,
1
δ ) with respect to the

uniform distribution.

3 Full reliability

In this section we deal with the case of full reliability.
We are interested in obtaining a hypothesis that has
low error rate, in terms of false positives and negatives
both. In the noisy (agnostic) setting, this is not possible
unless we allow our hypothesis to refrain from making a
prediction. For this reason we use the notion of partial
classifiers which predict a value from the set {0, 1, ?},
where prediction of “?” is treated as uncertainty of the
classifier. Recall, that our instance space is 〈Xn〉n≥1 and
for each n, the target is an unknown function fn : X →
[0, 1]. Formally, a partial classifier is c : Xn → {0, 1, ?}.
Let I(E) denote the indicator function for event E . The
error (similarly false+, false−) of a partial classifier can
be defined as

err(c,Dn, fn) =
E

x∼Dn

[I(c(x) = 0)fn(x) + I(c(x) = 1)(1− fn(x))]

We define the uncertainty of a partial classifier c to be
?(c,Dn, fn) = E

x∼Dn

[I(c(x) =?)]

Finally we define the accuracy of a partial classifier c to
be

acc(c,Dn, fn) =
E

x∼Dn

[I(c(x) = 0)(1− fn(x)) + I(c(x) = 1)fn(x)]



Note that for a partial classifier c, we have err(c)+?(c)+
acc(c) = 1.

Suppose that 〈Cn〉n≥1 is a sequence of concept classes,
recall that we defined C+

n = {c ∈ Cn | false+(c) = 0}.
Similarly we define C−n = {c ∈ Cn | false−(c) = 0}.
We can now define the class of partial classifiers derived
from Cn as PC(Cn) = {(c+, c−) | c+ ∈ C+

n , c− ∈ C−n }.
The definition ensures that for a partial classifier c =
(c+, c−) ∈ PC(Cn), with probability 1 a sample x ∼ Dn

satisfies c−(x) ≥ c+(x). For any x, c(x) = 1, when
both c+(x) = 1 and c−(x) = 1, c(x) = 0, when both
c+(x) = 0 and c−(x) = 0 and “?” otherwise. A fully
reliable classifier is a partial classifier which makes no
errors. We define fully reliable learning as:

Full Reliable Learning. Algorithm A efficiently fully
reliably learns a sequence of concept classes 〈Cn〉n≥1,
under distributions 〈Dn〉n≥1, if there exists a polyno-
mial p(n, 1/ε, 1/δ) such that, for every n ≥ 1, ε, δ > 0
and every fn : Xn → [0, 1], algorithm AO(fn)(ε, δ), with
probability at least 1 − δ, outputs a hypothesis h such
that err(h,Dn, fn) ≤ ε and

acc(h,Dn, fn) ≥ max
c∈PC(Cn)

acc(c,Dn, fn)− ε.

The time complexity of both A and h is bounded by
p(n, 1/ε, 1/δ).

In section 2 we gave an algorithm for positive reliable
learning using a black-box agnostic learner for 〈C〉n≥1

(using Lemma 2). We define this as algorithm PRL (pos-
itive reliable learner). The input to the algorithm is ε
- the accuracy parameter, δ - the confidence parameter
and oracle O(f) - oracle access to the target function.
The output of the algorithm is a hypothesis h such that
false+(h) ≤ ε and false−(h) ≤ minc∈C+ false−(c) + ε.
The algorithm runs in time polynomial in n, 1/ε and
1/δ. A symmetric algorithm NRL (negative reliable
learner) also has identical properties with false positive
and false negative error bounds interchanged. Our main
result of this section is showing that agnostic learning
implies fully reliable learning.

Theorem 3. If C is efficiently agnostically learnable
under distribution D, it is efficiently fully reliably learn-
able under distribution D.

Proof. A simple algorithm to fully reliably learn C is the
following: Let h+ = PRLO(f)( ε4 ,

δ
2 ), h− = NRLO(f)( ε4 ,

δ
2 ).

Define h : X → {0, 1, ?} as,

h(x) =


1 if h+(x) = h−(x) = 1
0 if h+(x) = h−(x) = 0
? otherwise

We claim that hypothesis h is close to the best fully
reliable partial classifier.

Let c = (c+, c−) ∈ PC(C) be such that err(c,D, f) =
0 and acc(c,D, f) = maxc′∈PC(C) acc(c′,D, f). We know
that the following hold:

false+(h+,D, f) ≤ ε

4
false−(h+,D, f) ≤ false−(c+,D, f) +

ε

4

Similarly,

false−(h−,D, f) ≤ ε

4
false+(h−,D, f) ≤ false+(c−,D, f) +

ε

4

Then err(h,D, f) ≤ false+(h+,D, f)+false−(h−,D, f) ≤
ε
2 .

Note that when h(x) =? then h+(x) 6= h−(x) and
hence one of them makes an error. Therefore, we also
have 1−acc(h,D, f) ≤ err(h+,D, f)+err(h−,D, f). We
know that

err(h+,D, f) = false+(h+,D, f) + false−(h+,D, f)

≤ false−(c+,D, f) +
ε

2

Similarly err(h−,D, f) ≤ false+(c−,D, f)+ε/2. Finally,
we check that false−(c+,D, f) + false+(c−,D, f) = 1 −
acc(c,D, f), hence acc(h,D, f) ≥ acc(c,D, f)− ε

4 Reliable learning with tolerance

In this section, we consider our final generalization where
we allow tolerance rates τ+ and τ− for false positives and
false negatives respectively. As in the case of fully re-
liable learning we need to consider the class of partial
classifiers. Given a sequence of concept classes 〈Cn〉n≥1,
for each Cn we define the class of sandwich classifiers as
SC(Cn) = {(c+, c−) | c+ ≤ c−}. For a sandwich classifier
c = (c+, c−), given x, c(x) = 1 when both c+(x) = 1
and c−(x) = 1, c(x) = 0 when both c+(x) = 0 and
c−(x) = 0 and “?” otherwise.

Sandwich classifiers are a generalization of the class
of partial classifiers PC(Cn) that we defined in the pre-
vious section. In particular, the class PC(Cn) is the set
of all sandwich classifiers with zero error. We call a
sandwich classifier c ∈ SC(Cn), (τ+, τ−)-tolerant reliable
if false+(c,Dn, fn) ≤ τ+ and false−(c,Dn, fn) ≤ τ−.
Given acceptable tolerance rates of τ+, τ− define opt
as

opt(τ+, τ−) = max
c∈SC(Cn)

acc(c);

subject to: {false+(c) ≤ τ+; false−(c) ≤ τ−}

We show that algorithm Sandwich Learner (Fig.
3) efficiently learns the class of halfspace sandwiches,
over the unit ball Bn, under the uniform distribution.
With minor modifications, this algorithm can also learn
under log-concave distributions. A halfspace sandwich
over Bn can be visualized as two slices, one labeled 1,
the other 0 and the remaining ball labeled “?”. Our
algorithm is based on the results due to Kalai, Klivans,
Mansour and Servedio [KKMS05], and the analysis is
largely similar. Algorithm Sandwich Learner in each
iteration draws a sample of size m and sets up an `1
regression problem (8- 11), defined as:

min
deg(p)≤d
deg(q)≤d

1
m

 ∑
i: yi=1

|1− p(xi)| +
∑

i: yi=0

|q(xi)|

 (8)



inputs: m, T , d
1.Draw m labeled examples
Zt = 〈(xt1 , yt1), . . . , (xtm , ytm)〉 ∈ (Bn × {0, 1})m
and set up the `1 polynomial regression
problem (8-11).

2.Solve the regression problem, get polynomials
pt(x), qt(x) and record zt to be the value
of the objective function.

3.Repeat the above two steps T times and take
p = ps, q = qs to be the polynomials where
zs was the least.

4.Output a randomized partial hypothesis
h : Bn × {0, 1, ?} → [0, 1]:
h(x, 1) = crop(min(p(x), q(x)))
h(x, 0) = crop(min(1− p(x), 1− q(x))
h(x, ?) = 1− h(x, 1)− h(x, 0)

Figure 3: Algorithm Sandwich Learner

subject to

1
m

∑
i: yi=0

|p(xi)| ≤ τ+ +
ε

2
(9)

1
m

∑
i: yi=1

|1− q(xi)| ≤ τ− +
ε

2
(10)

1
m

∑
i

max(p(xi)− q(xi), 0) ≤ ε

8
(11)

This problem can be solved efficiently by setting it up as
a linear programming problem (see appendix of [KKMS05]).
Thus, the running time of the algorithm is polynomial
in m,T and d. The function crop : R → [0, 1] used in
the algorithm is defined as: crop(z) = z for z ∈ [0, 1],
crop(z) = 0 for z < 0 and crop(z) = 1 for z > 1.
The output of the algorithm is a randomized partial
classifier. We define a randomized partial classifier as
a function, c : X × {0, 1, ?} → [0, 1], so that c(x, 0) +
c(x, 1) + c(x, ?) = 1, and c(x, y) is interpreted the prob-
ability that the output for x is y. We define error and
empirical error of such classifiers as,

err(c,D) = E
(x,y)∼D

[c(x, 1− y)]

êrr(c, Z) =
1
m

m∑
i=1

c(xi, 1− yi),

Other quantities are defined similarly. Theorem 4 be-
low shows that for any constant ε, the class of halfspace
sandwiches over the unit ball Bn is efficiently (τ+, τ−)-
tolerant reliably learnable. The running time of the al-
gorithm is exponential in 1/ε.

Theorem 4. Let U be the uniform distribution on the
unit ball Bn and let f : Bn → [0, 1] be an arbitrary
unknown function. There exists a polynomial P such
that, for any ε, δ > 0, n ≥ 1, τ+, τ− ≥ 0, algorithm
Sandwich-Learner with parameters m = P (nd/(εδ)),

T = log(2/δ), d = O(1/ε2), with probability at least
1− δ, returns a randomized hypothesis h which satisfies
false+(h) ≤ τ+ + ε, false−(h) ≤ τ− + ε and acc(h) ≥
opt(τ+, τ−)− ε, where opt is with respect to the class of
halfspace sandwich classifiers.

The proof of Theorem 4 is given in the appendix.
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A Proof of Theorem 4

To prove Theorem 4, we need Lemma 8 as an interme-
diate step. Here Bn is the unit ball.

Lemma 8. Let D be a distribution over Bn and f :
Bn → [0, 1] be an arbitrary function. Let τ+, τ− be the
required tolerance parameters. Suppose c = (c+, c−) is a
half-space sandwich classifier such that false+(c) ≤ τ+,
false−(c) ≤ τ− and acc(c) = opt(τ+, τ−). If p+, p− are
degree d polynomials such that E[|c+(x)−p+(x)|] ≤ ε

128

and E[|c−(x)−p−(x)|] ≤ ε
128 , and if m = 128

ε2 , then with
probability at least 1

2 , p+, p− are feasible solutions to the
`1 Polynomial Regression Problem (8-11) and value of
the objective function at p+, p− is at most false−(c+) +
false+(c−) + ε

2 .

Proof. Using Hoeffding’s bound when m = 128
ε2 ,

Pr[f̂alse+(c+) ≥ false+(c+) +
ε

8
] ≤ 1

16
(12)

where f̂alse+(c+) is the empirical estimate of false+(c+)
using a sample of size m. Also by Markov’s inequality,

Pr

[
1
m

∑
i

|c+(xi)− p+(xi)| ≥ ε

8

]
≤

Pr

[
1
m

∑
i

|c+(xi)− p+(xi)| ≥ 16E[|c+(x)− p+(x)|]

]
≤ 1

16
(13)

And hence with probability at least 7/8,

1
m

∑
i: yi=0

|p+(xi)| ≤ 1
m

∑
i: yi=0

(|c+(xi)|+ |c+(xi)− p+(xi)|)

≤ false+(c+) + ε/8 + ε/8
≤ τ+ + ε/4 (14)

and hence p+ satisfies constraint (9) in the regression
problem.

Similarly one can show that with probability at least
7/8, p− satisfies constraint (10) of the regression prob-
lem.

Observe that E[max(p+(x)−p−(x), 0)] ≤ E[|p+(x)−
p−(x)+c−(x)−c+(x)|] ≤ E[|p+(x)−c+(x)|]+E[|p−(x)−

c−(x)|] ≤ ε/64. Here we use the fact that c−(x) ≥ c+(x)
for all x (according to our definition of SC(C)). Hence
by Markov’s inequality,

Pr[
1
m

∑
i

max(p+(xi)− pi(xi), 0) ≥ ε

8
] ≤ 1

8
(15)

By union bound with probability at least 5/8, p+, p−
satisfy all the constraints of the regression problem. Let
us assume we are in the event where all of (12-15) and
the corresponding statements in the case of false nega-
tives are true. Using Hoeffding’s bound, Pr[f̂alse−(c+) ≥
false−(c+)+ε/8] ≤ 1/16 and Pr[f̂alse+(c−) ≥ false+(c−)+
ε/8] ≤ 1/16. We allow ourselves a further 1/8 loss in
probability so that these two events do not occur either.
Thus with probability at least 1/2, p+, p− are feasible
solutions to the regression problem and the value of the
objective is,

1
m

∑
i: yi=1

|1− p+(xi)|+ 1
m

∑
i: yi=0

|p−(xi)|

≤ 1
m

∑
i: yi=1

(|1− c+(xi)|+ |c+(xi)− p+(xi)|)

+
1
m

∑
i: yi=0

(|c−(xi)|+ |c−(xi)− p−(xi)|)

≤ false−(c+) + false+(c−) + ε/2

Proof of Theorem 4. We use threshold functions θt in
our proof, where for any t ∈ [0, 1], θt : R → {0, 1} is
such that θt(x) = 1 if x ≥ t, and θt(x) = 0 other-
wise. Although the threshold functions θt do not occur
in the algorithm, they significantly simplify the proof.
To get a decision using the randomized hypothesis that
our algorithm outputs, a simple technique is to choose
a threshold uniformly in [0, 1] and use that to output
a value in {0, 1, ?}. Thresholds over polynomials are
half-spaces in a higher (nd) dimensional space, and we
can use standard results from VC theory to bound the
difference between the empirical error rates and true er-
ror rates. We will use frequently the following useful
observation: For any z ∈ R we have

crop(z) =
∫ 1

0

θt(z)dt.

For a degree d polynomial p : Rn → R, the function
θt ◦ p can be viewed a half-space in dimension nd di-
mension, where we extend the terms of the polynomial
to a linear function. Using the classical VC theory, for
any distribution D over Bn, there exists a polynomial
Q such that for m = Q(nd, ε−1, δ−1) a sample S of m
examples drawn from (D, f), with probability at least
1 − δ, | êrr(θt ◦ p) − err(θt ◦ p)| ≤ ε, where êrr(g) =
1
m

∑
(x,y)∈S I(g(x) 6= y). Similar bounds hold for false+

and false−, where f̂alse+(g, S) = 1
m

∑
(x,y)∈S(1− g(x))y

and f̂alse−(g, S) = 1
m

∑
(x,y)∈S g(x)(1− y).



Let c = (c+, c−) be the best linear sandwich classi-
fier with respect to tolerance rates τ+, τ−. Using results
from Kalai, Klivans, Mansour and Servedio [KKMS05],
for d = O(1/ε2) there exist polynomials p+, p− such
that E[|p+(x)−c+(x)|] ≤ ε/128 and E[|p−(x)−c−(x)|] ≤
ε/128. Thus when algorithm Sandwich-Learner is
run with T = log 2

δ by Lemma 8, with probability at
least 1− δ/2, at least one of the iterations has value of
the objective function smaller than false−(c+)+false+(c−)+
ε/2. It can be checked that false−(c+) + false+(c−) =
1 − acc(c) = err(c)+?(c). We assume that we are in
the case when the least objective function is smaller
than 1 − acc(c) + ε/2, allowing our algorithm to fail
with probability δ/2 so far. Let p, q be the polynomials
which are solutions to the regression problem with the
least objective function.

We now analyze the quantities false+, false−, acc
of the randomized hypothesis h output by algorithm
Sandwich-Learner. We present the analysis of false+,
and false− can be done similarly. We assume that the
number of examples m is large enough, so that all the
bounds due to VC theory that we require in the proof
hold simultaneously with probability at least 1 − δ

2 .1
This can be done easily by taking union bound using
only polynomial number of examples, say P (nd/(εδ)).

For the first part, consider hyperplanes of the form
θt◦p and θt◦(1−q), for any t ∈ [0, 1]. By the VC bound
we have that | f̂alse+(θt◦p, S)−false+(θt◦p,U , f)| ≤ ε/2
and | f̂alse−(θt ◦ (1− q), S)− false+(θt ◦ (1− q),U , f)| ≤
ε/2. The analysis then proceeds as follows,
false+(h,U , f) = E

x∼U
[h(x, 1)(1− f(x))]

= E
x∼U

[
∫ 1

0

θt(min(p(x), q(x)))dt(1− f(x))]

≤
∫ 1

0
E
x∼U

[θt(p(x))(1− f(x))]dt

=
∫ 1

0

false+(θt ◦ p,U , f)dt

≤
∫ 1

0

f̂alse+(θt ◦ p, S)dt+
ε

2

=
∫ 1

0

1
m

∑
i: yi=0

θt(p(xi))dt+
ε

2

≤ 1
m

∑
i: yi=0

|p(xi)|+ ε

2

≤ τ+ + ε

Next we analyze the quantity 1−acc(h) = err(h)+?(h).
Let S̄ = {(x1, 1− y1), . . . , (xm, 1− ym)}, namely we flip
the label in S, and S0 = {(x1, 0), . . . , (xm, 0)}, namely
the sample S all with labels 0. Here we assume the fol-
lowing bounds hold | f̂alse+(θt ◦ (1− p), S̄)− false+(θt ◦

1All our requirements would be about comparing the er-
ror of a hyperplane to its observed error on the sample. We
would need that the sample S = {(x1, y1), . . . , (xm, ym)} is
such that no hyperplane would have a difference larger than
ε/8.

(1 − p),U , 1 − f)| ≤ ε/8, | f̂alse+(θt ◦ q, S) − false+(θt ◦
q,U , f)| ≤ ε/8 and | êrr(θt ◦ (p − q), S0) − err(θt ◦ (p −
q),U , 0)| ≤ ε/8. Step (16) below holds because 1 −
crop(a) = crop(1 − a). Step (17) uses the fact that
min(a, b) = a− (a− b)I(a > b) and max(a, b) = b+ (a−
b)I(a > b). Finally in step (18) we use that crop(a+b) ≤
crop(a) + crop(b). All these facts can be checked easily.

1− acc(h)
= 1− E

x∈U
[h(x, 1)f(x) + h(x, 0)(1− f(x))]

= E
x∈U

[(1− h(x, 1))f(x) + (1− h(x, 0))(1− f(x))]

= E
x∈U

[(1− crop(min(p(x), q(x))))f(x)+

(1− crop(min(1− p(x), 1− q(x))))(1− f(x))]
= E
x∈U

[crop(1−min(p(x), q(x)))f(x)+

crop(max(p(x), q(x)))(1− f(x))] (16)
= E
x∈U

[crop(1− p(x) + (p(x)− q(x))I(p(x) > q(x)))f(x)

+ crop(q(x) + (p(x)− q(x))I(p(x) > q(x)))(1− f(x))]
(17)

≤ E
x∈U

[crop(1− p(x))f(x) + crop(q(x))(1− f(x))

+ crop(p(x)− q(x))] (18)

= E
x∈U

[
∫ 1

0

θt(1− p(x))f(x)dt+
∫ 1

0

θtq(x)(1− f(x))dt

+
∫ 1

0

θt(p(x)− q(x)) · 1 dt]

=
∫ 1

0

(
E
x∈U

[θt(1− p(x))f(x)] + E
x∈U

[θt(q(x))(1− f(x))]

+ E
x∈U

[θt(p(x)− q(x))]
)
dt

=
∫ 1

0

(false+(θt ◦ (1− p),U , 1− f) + false+(θt ◦ q,U , f)

+ err(θt ◦ (p− q),U , 0)) dt

≤
∫ 1

0

(
f̂alse+(θt ◦ (1− p), S̄) + f̂alse+(θt ◦ q, S)

+ êrr(θt ◦ (p− q), S0)
)
dt+

3ε
8

=
∫ 1

0

 1
m

∑
i: yi=1

θt(1− p(xi)) +
1
m

∑
i: yi=0

θt(q(xi))

+
1
m

m∑
i=1

θt(p(xi)− q(xi))

)
dt+

3ε
8

=
1
m

∑
i: yi=1

∫ 1

0

θt(1− p(xi))dt+
1
m

∑
i: yi=0

∫ 1

0

θt(q(xi))dt

+
1
m

∑
i

∫ 1

0

θt(p(xi)− q(xi))dt+
3ε
8

(19)



≤ 1
m

∑
i: yi=1

|1− p(xi)|+ 1
m

∑
i: yi=0

|q(xi)|

+
1
m

m∑
i=1

max(p(xi)− q(xi), 0) +
3ε
8

≤ 1− acc(c,U , f) + ε

where in the last inequality we used that fact that
the first two terms are the objective function of the re-
gression (and we assumed that they are at most false−(c+)+
false+(c−) + ε/2, and the third term is bounded in the
regression by ε/8. Hence acc(h) ≥ acc(c)− ε.


