
Robustness of Evolvability

Vitaly Feldman
IBM Almaden Research Center

650 Harry rd.
San Jose, CA 95120

vitaly@post.harvard.edu

Abstract

A framework for analyzing the computational ca-
pabilities and the limitations of the evolutionary
process of random change guided by selection was
recently introduced by Valiant [Val06]. In his frame-
work the process of acquiring a complex function-
ality is viewed as a constrained form of PAC learn-
ing. In addition to the basic definition, a number of
natural variants of the evolvability model were in-
troduced by Valiant, and several others have been
suggested since then [Val09, Mic07, Val08]. Un-
derstanding the relative power of these variants in
terms of the efficiently evolvable function classes
they define is one of the main open problems re-
garding the model [Val09, FV08].
We present several results that collectively demon-
strate that the notion of evolvability is robust to a
variety of reasonable modifications of the model.
Our results show that the power of a model of evolv-
ability essentially depends only on the fitness met-
ric used in the model. In particular, we prove that
the classes of functions evolvable in Valiant’s orig-
inal model are also evolvable with substantially
weaker and simpler assumptions on the mutation
algorithm and the selection rule and therefore a
wide range of models of evolution are equivalent.
Another consequence of our results if that evolv-
ability with the quadratic loss fitness metric (or
any other non-linear loss) is strictly stronger than
evolvability with the linear loss fitness metric used
in Valiant’s basic definition.

1 Introduction
We study the model of evolvability recently introduced by
Valiant [Val06]. Valiant’s model addresses one of the most
important and least understood aspects of the theory of evo-
lution: how complex and adaptable mechanisms result from
relatively short sequences of random mutations guided pri-
marily by natural selection. His theory views the process of
acquiring a complex behavior as a form of learning a cir-
cuit in which the feedback from the environment is provided
solely by natural selection. Valiant therefore suggests that
the appropriate framework for understanding the power of

evolution to produce complex behavior is that of computa-
tional learning theory [Val84]. Accordingly, in his model,
evolvability of a certain useful functionality is cast as a prob-
lem of learning the desired functionality through a process in
which, at each step, the most “fit” candidate function is cho-
sen from a small pool of candidates. Limits on the number
of steps, the size of the pool of candidates, and the amount of
computation performed at each step are imposed to make this
process naturally plausible. A class of functions is consid-
ered evolvable if there exists a single mechanism that guar-
antees convergence to the desired function for every function
in this class. Here the requirements closely follow those of
the celebrated PAC learning model introduced by Valiant in
1984 [Val84]. In fact, every evolutionary algorithm (here and
below in the sense defined in Valiant’s model) can be simu-
lated by an algorithm that is given random examples of the
desired function.

1.1 Outline of the Model
We start by presenting a brief overview of the model. For
detailed description and intuition behind the various choices
made in model the reader is referred to [Val09]. The goal of
the model is to specify how organisms can acquire complex
mechanisms via a resource-efficient process based on ran-
dom mutations and guided by fitness-based selection. The
mechanisms are described in terms of the multi argument
functions they implement. The fitness of such a mechanism
is measured by evaluating the correlation of the mechanism
with some “ideal” behavior function. The value of the “ideal”
function on some input describes the most beneficial behav-
ior for the condition represented by the input. The evalu-
ation of the correlation with the “ideal” function is derived
by evaluating the function on a moderate number of inputs
drawn from a probability distribution over the conditions that
arise. These evaluations correspond to the experiences of one
or more organisms that embody the mechanism. A specific
“ideal” function and a distribution over the domain of inputs
effectively define a fitness landscape over all functions. As
usual, bounds polynomial in the size of the problem are the
ones considered moderate.

Random variation is modeled by the existence of an ex-
plicit algorithm that acts on some fixed representation of
mechanisms and for each representation of a mechanism pro-
duces representations of mutated versions of the mechanism.
The model essentially does not place any restrictions on the
mutation algorithm other than it being efficiently implementable

by a randomized Turing machine (naturally, the model can be
extended to allow quantum computation but, following the
original treatment, we restrict our attention to the classical
case).

Natural selection is modeled by an explicit rule that de-
termines the probabilities with which each of the mutations
of a mechanism will be chosen to “survive” based on the
fitness of all the mutations of the mechanism and the prob-
abilities with which each of the mutations is produced by
the mutation algorithm. The main rule used in the defini-
tion of the model distinguishes between beneficial, neutral
and deleterious mutations based on the fitness of a mutation
relative to the fitness of the original mechanism. A specific
parameter referred to as the tolerance determines the differ-
ence in fitness that needs to be exhibited by a mutation to be
considered beneficial or deleterious. Another type of rules
considered is those that select one of the mutations with op-
timal performance. Here we discuss selection rules and their
properties in more general terms and refer to the original se-
lection rule as SelNB.

As can be seen from the above description, a fitness land-
scape (given by a specific “ideal” function and a distribution
over the domain), a mutation algorithm, and a selection rule
jointly determine how each step of an evolutionary process
is performed. A class of functions C is considered evolv-
able with respect to a distribution D over the domain if there
exist a representation of mechanisms R and a mutation al-
gorithm M such that for every “ideal” function f ∈ C, a
sequence of evolutionary steps starting from any representa-
tion in R and performed according to f, D,M and selection
rule SelNB converges in a polynomial number of steps to
f . The convergence is defined as achieving fitness (which
is the correlation with f over D) of at least 1 − ε for some
ε > 0 referred to as the accuracy parameter. This process is
essentially PAC learning of C over distribution D with the
selection rule (rather than explicit examples) providing the
only target-specific feedback.

An evolvable class of functions C represents the com-
plexity of structures that can evolve in a single phase of evo-
lution driven by a single “ideal” function. As pointed out by
Valiant, if multiple phases are allowed with different ideal
functions in succession then more complex structures can
evolve. Therefore evolvability theory, analogously to learn-
ing theory, analyzes only the granularity of the structures that
can evolve [Val09].

1.2 Background

The constrained way in which evolutionary algorithms have
to converge to the desired function makes finding such algo-
rithms a substantially more involved task than designing PAC
learning algorithms. Initially, only the evolvability of mono-
tone conjunctions of Boolean variables, and only when the
distribution over the domain is uniform, was demonstrated
(if not specified otherwise, the domain is {0, 1}n) [Val09].
Later Michael gave an algorithm for evolving decision lists
over the uniform distribution that used a larger space of hy-
potheses and a different fitness metric over hypotheses (specif-
ically, quadratic loss) [Mic07]. In our earlier work we showed
that evolvability is, at least within polynomial limits, equiva-
lent to learning by a natural restriction of well-studied statis-

tical queries (SQ)[Kea98], referred to as correlational statis-
tical queries [Fel08]. This result gives distribution-specific
algorithms for any SQ learnable class of functions, showing
that evolvability is a more powerful phenomenon than was
previously believed. Coupled with communication-complexity-
based lower bounds [GHR92, She07, BVdW07], this result
also implies that evolvability by distribution-independent al-
gorithms is strictly weaker than SQ learning [Fel08].

As in other computational models, such as Turing ma-
chines or computational learning, a number of specific as-
pects of the model can reasonably be defined in several ways.
For example, Valiant discusses two ways to model natural se-
lection, one which makes a distinction between neutral and
beneficial mutations (namely SelNB) and another that makes
a distinction only between optimal mutations and the rest
[Val09]. Other natural models of selection that give weaker
feedback have been proposed [Val08]. Another example is
the fitness metric on which the selection is based. For sim-
plicity, in Valiant’s work only Boolean {−1, 1} functions
were considered and the correlation used as the fitness met-
ric. If one considers hypotheses that can take intermediate
values between −1 and 1, other ways of modeling the per-
formance evaluation of such functions might be appropriate.
Some natural candidates would be the linear loss function
and the quadratic loss function that penalizes large variance
(used in Michael’s work [Mic07]). Finally, some specific
technical elements of the model were guided by the very few
known examples of evolution algorithms and might need to
be revisited once new algorithms are discovered and a deeper
understanding of the model is achieved.

The question of how robust the model is under reason-
able variations is fundamental to the understanding of the
model and its applications [Val09]. Answering this ques-
tion is also necessary to allow confident and accurate com-
parisons of results obtained in the different variants of the
model. Further, understanding how a variation that models
a specific feature of biological evolution affects the limits of
evolvability might shed light on the role of that feature in
the evolution as it occurred on Earth. Discussion and some
progress along these lines are given by Valiant [Val09].

Valiant’s framework models a complex phenomenon and
is comprised of several components with relatively complex
interactions among them. As a result, general analysis of
the model has been fairly involved and a significant number
of basic questions about the model and its variants have not
been answered until now.

1.3 Summary of Our Contributions

In this work we demonstrate that the power of Valiant’s model
in terms of the efficiently evolvable classes it defines, re-
mains unchanged under a variety of modifications to the model.
In other words, we show that a number of possible alterna-
tive definitions of evolvability are equivalent to the specific
model introduced by Valiant (to which we refer as the ba-
sic model) and hence are all equivalent to learning by cor-
relational statistical queries (CSQ). For an unknown target
function f and distribution D over the domain of the learn-
ing problem, a CSQ allows a learning algorithm to obtain an
estimate of the correlation of any Boolean function g with
the target function or Ex∼D[f(x)g(x)]. This is exactly the

performance metric used in the basic model of evolvability.
In our first result we prove that the equivalence between

evolvability and learning by CSQs can be extended to per-
formance metrics based on any other loss function if one
replaces CSQs with queries that estimate the correspond-
ing performance function (Th. 14). We then characterize the
power of the obtained models showing that a simple prop-
erty of the loss function determines whether the model is
equivalent to learning by CSQs or to everything learnable by
statistical queries (Th. 13). As we have previously demon-
strated, learnability by CSQs is not equivalent to learnability
by SQs, which is widely regarded as almost as powerful as
PAC learning [Fel08]. This, in particular, implies that evolv-
ability with performance based on the quadratic loss function
(or in fact any non-linear one) is strictly more powerful than
evolvability with performance based on the correlation.

The second aspect of the model that we address is fixed-
tolerance evolvability [Val09] (Sec. 5). Tolerance is the thresh-
old value that determines whether a mutation is considered
beneficial, neutral or deleterious. In the basic model this
threshold can be adjusted as a function of the current hy-
pothesis representation, in principle, giving the mutation al-
gorithm some degree of control over the selection process
performed on it. This ability is necessary in Valiant’s evolu-
tionary algorithm for monotone conjunctions and in our ear-
lier general reduction from CSQ algorithms [Fel08]. Here
we prove that this ability is not essential, in other words
fixed-tolerance evolvability is as powerful as the the basic
model.

We then examine the role of the selection rule. As a sim-
ple corollary of the properties of the reduction in Sec. 5, we
obtain that evolvability with the selection rule that only dis-
tinguishes between the mutation with close-to-optimal per-
formance and the rest is equivalent to evolvability with the
original SelNB selection rule (Th. 14). The selection rules
that we discussed earlier use a sharp threshold in the selec-
tion rule. That is, the selection decisions are not continuous:
negligible differences in the fitness of a mutation might de-
termine whether the probability of taking that mutation is 0
or 1. One of the most interesting questions about Valiant’s
model is whether and how a non-trivial evolutionary algo-
rithm can be obtained if one uses a selection rule in which
the probability of survival is a smooth function of the muta-
tion’s initial frequency and the performance of all the avail-
able mutations [Val08]. To answer this question we define a
general property of selection rules, that, informally, requires
that the selection rule weakly “favors” mutations with suffi-
ciently higher performance. We then show that every CSQ
learning algorithm for a concept class C can be transformed
into a mutation algorithm that, when started in a specific ini-
tial representation, will evolve C with any selection rule sat-
isfying the property we defined (Th. 16). This weaker form
of evolvability is referred to as evolvability with initializa-
tion [Val09]. To establish this result we show a new general
transformation from a CSQ algorithm to a CSQ algorithm
that relies on a very weak form of CSQs. The resulting CSQ
algorithm is then transformed into a mutation algorithm us-
ing techniques similar to those given in Section 5.

We note that there are essentially no prior results estab-
lishing equivalence of different models of evolvability. Pre-

vious work [Val09] has only considered direct reductions
between algorithms in different models of evolvability, and
only a single one-way implication was established.

Another significant product of this work is a simplifica-
tion of the description of the model. The first simplifica-
tion results from replacing the variable tolerance parameter
by fixed tolerance as described above. We also show that a
number of simplifications can be made to the definition of
the mutation algorithm without loss of generality and pro-
vide a definition of the model that facilitates the discussion
of the roles of the different components of the model. In this
sense our work is analogous to simplifications made to the
PAC learning model by Haussler et al. [HMLW91].

Finally, to complement the abstract discussion of the power
of the model by a concrete example of an evolutionary algo-
rithm, we show that the concept class of singletons is evolv-
able distribution independently. This is the first non-trivial
class of functions for which distribution-independent evolv-
ability is shown. This, in particular, resolves another open
problem in Valiant’s work [Val09].

1.4 Relation to Prior Work
With respect to other studies of evolution we note the fol-
lowing. Valiant’s framework is the first one that directly
addresses the complexity, in a precisely defined sense, of
mechanisms that can provably result from computationally-
feasible evolutionary processes without any need for unlikely
events to occur. Therefore the results in this work and the
model in general are not directly comparable to the exten-
sive studies of evolution in biology and evolution-inspired
optimization methods (such as genetic algorithms) [Wri78,
BFM97, Weg01]. Limitations on evolutionary algorithms
and the additional structure they possess also distinguish this
direction from the study of the complexity of optimization
problems solvable efficiently by local search (referred to as
PLS) [JPY88].

2 Preliminaries
For a positive integer `, let [`] denote the set {1, 2, . . . , `}.

For a domain X , a concept class over X is a set of {−1, 1}-
valued functions over X referred to as concepts. A concept
class together with a specific way to represent all the func-
tions in the concept class is referred to as a representation
class. We only consider efficiently evaluatable representa-
tion schemes, that is schemes, for which there exists an algo-
rithm, that given a representation of a function g and a point
x ∈ X , computes g(x) in time polynomial in the length of
x and the length of the representation of g. Whenever the
meaning is clear from the context, we use one symbol to re-
fer to both a function and its representation. Similarly, we re-
fer to a representation class as just a concept class whenever
a simple representation scheme is implicit in the definition
of the concept class.

There is often a complexity parameter n associated with
the domain X and the concept class C such as the number
of Boolean variables describing an element in X or the num-
ber of real dimensions. In such a case it is understood that
X =

⋃
n≥1 Xn and C =

⋃
n≥1 Cn. We drop the subscript n

when it is clear from the context. In some cases it useful to
consider another complexity parameter associated with C:

the minimum description length of f under the representa-
tion scheme of C. Here, for brevity, we assume that n (or a
fixed polynomial in n) bounds the description length of all
functions in Cn.

Let F∞1 denote the set of all functions from X to [−1, 1]
(that is all the functions with L∞ norm bounded by 1). In ad-
dition to deterministic functions, we use hypotheses comput-
ing randomized (or probabilistic) real-valued functions (see
[Hau92, KS94, Yam98] for detailed discussions of learning
and use of such functions). The value of a randomized func-
tion Φ at point x ∈ X is a real-valued random variable which
we denote by Φ(x). A randomized function can be evaluated
using a randomized algorithm. As in the case of determin-
istic functions, we will only consider representations of ran-
domized functions that allow efficient evaluation.

The definitions of Valiant’s well-known PAC model and
Kearns’ SQ learning model are included in Appendix A for
reference.

3 Model of Evolvability
In this section we give the definitions of the basic evolvabil-
ity model [Val09] and a number of its variants. Our goal
is to both describe the original definition of the model of
evolvability and to present a somewhat different way to de-
fine the model in order to facilitate a more general discussion
of Valiant’s framework and to provide a simpler description
of the basic model. Our presentation follows the outline in
Section 1.1 in dividing the definition of the model into the
descriptions of fitness metric (Sec. 3.2), mutation algorithm
(Sec. 3.3), selection rule (Sec. 3.4), and the definition of
evolvability of a function class (Sec. 3.5). In the full version
of this work we also demonstrate that a new way to define
the model is equivalent to the original definition via simple
and direct reductions.

3.1 Original Definition
Let f denote the unknown “ideal” function and D be a distri-
bution over the domain X . The performance of a hypothesis
h relative to the target f and distribution D is defined to be
Perff (h,D) = Ex∼D[f(x) · h(x)]. Note that for Boolean
hypotheses (both deterministic and randomized), this is equiv-
alent to measuring the probability of agreement of f and h
(as ED[f(x) · h(x)] = 2 · PrD[f(x) = h(x)] − 1). For
an integer s, the empirical performance Perff (h, D, s) of
h is a random variable that equals 1

s

∑
i∈[s] f(zi) · h(zi) for

z1, z2, . . . , zs ∈ X chosen randomly and independently ac-
cording to D.

Let R be a representation class of functions over X . The
class R denotes the space of hypotheses available to the evolv-
ing organism. Each representation r ∈ R defines a possibly
randomized Boolean function on X .

The first part of the definition is the neighborhood of
each representation r which specifies all the possible mu-
tations of r and probabilities of their generation.

Definition 1 For a polynomial p(·, ·) and a representation
class R, a p-neighborhood N on R is a pair (M1,M2) of
randomized polynomial time Turing machines such that on
input the numbers n and d1/εe (in unary) and a representa-
tion r ∈ R act as follows: M1 outputs all the members of a

set NeighN (r, ε) ⊆ R, that contains r and may depend on
random coin tosses of M1, and has size at most p(n, 1/ε).
If M2 is then run on this output of M1, it in turn outputs
one member of NeighN (r, ε), with member r1 being output
with a probability PrN (r, r1) ≥ 1/p(n, 1/ε). For a set T ⊆
NeighN (r, ε), we denote PrN (r, T) =

∑
r′∈T PrN (r, r′).

The conditions on M1 and M2 ensure that for each r the
number of variants, determined by M1, that can be searched
effectively is not unlimited, because the population at any
time is not unlimited, and that a significant number of expe-
riences with each variant, generated by M , must be available
so that differences in performance can be detected reliably.

The next part of the definition describes how a single step
of selection is performed.

Definition 2 For an error parameter ε, positive integers n
and s, an ideal function f ∈ C, a representation class R
with p(n, 1/ε)-neighborhood N on R, a distribution D, a
representation r ∈ R and a real number t, the mutator
Mu(f, p(n, 1/ε), R, N, D, s, r, t) outputs a random variable
that takes a value r1 determined as follows. For each r′ ∈
NeighN (r, ε), it first computes an empirical value of v(r′) =
Perff (r′, D, s). Let Bene = {r′ | v(r′) ≥ v(r) + t} and
Neut = {r′ | |v(r′)− v(r)| < t}. Then

(i) if Bene 6= ∅ then output r1 ∈ Bene with probability
PrN (r, r1)/PrN (r, Bene);

(ii) if Bene = ∅ then output r1 ∈ Neut with probability
PrN (r, r1)/PrN (r, Neut).

In this definition a distinction is made between beneficial and
neutral mutations as revealed by a set of s experiments. If
some beneficial mutations are available one is chosen ac-
cording to the relative probabilities of their generation by
M2. If none is available then one of the neutral mutations
is taken according to the relative probabilities of their gen-
eration by M2. Since r ∈ NeighN (r, ε), r will always be
empirically neutral, by definition, and hence Neut will be
nonempty.

Finally, we define how representations evolve to func-
tions in C. We say that tolerance parameter t(r, n, 1/ε) is
poly-bounded if t(r, n, 1/ε) is computable by a randomized
TM T in time polynomial in n and 1/ε, and satisfies

1/tuη(n, 1/ε) ≤ t(r, n, 1/ε) ≤ 1/tu(n, 1/ε)

for all n, r ∈ R and ε > 0, where tu(·, ·) is a polynomial and
η is a fixed constant.

Definition 3 For a concept class C, distribution D, polyno-
mials p(·, ·) and s(·, ·), a poly-bounded tolerance t(r, n, 1/ε),
representation class R, p(n, 1/ε)-neighborhood N on R, C
is said to be t-evolvable by (p(n, 1/ε), R, N, s(n, 1/ε)) over
D if there exists a polynomial g(·, ·) such that for every n,
f ∈ C, ε > 0, and every r0 ∈ R, with probability at least
1− ε, a sequence r0, r1, r2, . . ., where

ri ← Mu(f, p(n, 1/ε), R, N, D, s(n, 1/ε), ri−1, t(ri−1, n, 1/ε))

will have Perff (rg(n,1/ε), D) ≥ 1− ε.

The polynomial g(n, 1/ε) upper bounds the number of gen-
erations needed for the evolution process.

Definition 4 A concept class C is evolvable over a class of
distributions D if there exist polynomials p(·, ·) and s(·, ·), a
poly-bounded tolerance t(r, n, 1/ε), representation class R,
p(n, 1/ε)-neighborhood N on R, such that C is t-evolvable
by (p(n, 1/ε), R, N, s(n, 1/ε)) over every D ∈ D.

Note that the basic model allows the tolerance t to vary with
the representation. In Section 5 we prove that the depen-
dence on r is not essential. A concept class C is said to be
fixed-tolerance evolvable if it is evolvable for t that is inde-
pendent of r.

A more relaxed notion of evolvability requires conver-
gence only when the evolution starts from a single fixed rep-
resentation r0. Such evolvability is referred to as evolvabil-
ity with initialization. Evolvability without initialization al-
lows for successive phases of evolution without a need to
restart. This, for example, would allow an organism to con-
tinue evolving if the target function changes.

A concept class C is evolvable if it is evolvable over all
distributions (by a single evolutionary algorithm). We em-
phasize this by saying distribution-independently evolvable.

We now provide a more general way to define the model.

3.2 Measuring Performance
In the original definition the performance of a Boolean hy-
pothesis h relative to the target f and distribution D effec-
tively measures the probability of agreement of f and h.
Here we also consider real-valued hypotheses and hence will
need to extend the notion of performance to real-valued func-
tions. A loss function is usually used to formalize the no-
tion of “closeness”, in learning theory. For functions with
range Y , a loss function L is a non-negative mapping L :
Y × Y → R+. L(y, y′) measures the “distance” between
the desired value y and the predicted value y′ and is inter-
preted as the loss suffered due to predicting y′ when the
correct prediction is y. Commonly considered loss func-
tions are discrete loss L=, linear loss L1(y, y′) = |y′ − y|
and the quadratic loss LQ(y, y′) = (y′ − y)2. Since in-
puts are coming from a distribution D we can define the
expected loss of a hypothesis h relative to the target f and
distribution D: Ex∼D[L(f(x), h(x))]. For brevity we de-
note it as ED[L(f, h)]. When considering randomized hy-
potheses, the expectation in the definition of the expected
loss is also taken over the random values of the hypothe-
sis. That is, for a randomized hypothesis Φ, ED[L(f, Φ)] =
Ex∼D,Φ[L(f(x), Φ(x))] . We will only consider loss func-
tions L : {−1, 1} × [−1, 1] → R+ that are efficiently com-
putable and satisfy

1. L(1,−1) = L(−1, 1) and L(−1,−1) = L(1, 1) = 0,

2. monotone: for all y, y′ ∈ [−1, 1], if y ≤ y′ then
L(−1, y) ≤ L(−1, y′) and L(1, y′) ≤ L(1, y).

3. non-degenerate: for every y ∈ [−1, 1],
L(1, y) + L(−1, y) > 0.

We refer to such loss functions as admissible. Let L be an ad-
missible loss function. For consistency with Valiant’s defini-
tion of performance, we define a corresponding performance
function as

LPerff (Φ, D) = 1− 2 ·ED[L(f, Φ)]/L(−1, 1) .

Where Φ is a (possibly randomized) function and the factor
2/L(−1, 1) is used to normalize LPerff (Φ, D) to be in the
same range as Perff (Φ, D) (namely [−1, 1]).

Remark 5 For any admissible loss function L and a Boolean
function Φ, LPerff (Φ, D) = Perff (Φ, D).

This remark implies that all performance functions derived
from an admissible loss function are equivalent on Boolean
functions. In particular, this implies that Valiant’s and our
earlier results [Val09, Fel08] hold for any loss function. We
also note that for any function Φ taking values in [−1, 1],

L1Perff (Φ, D) = Perff (Φ, D) = Perff (Φ′, D)
= Perff (φ,D) ,

where Φ′(x) is a Boolean randomized function and φ(x) a
deterministic (real-valued) function such that for every x,
EΦ′ [Φ′(x)] = φ(x) = EΦ[Φ(x)]. This implies that evolv-
ability with the linear loss L1 (over real-valued hypotheses)
is equivalent to evolvability with Perf over Boolean ran-
domized hypotheses [Fel08]. It will be convenient to rep-
resent Boolean randomized hypotheses as deterministic real-
valued ones when evolving with respect to Perf.

For an integer s, function Φ and loss function L, the
empirical performance LPerff (Φ, D, s) of Φ is a random
variable that equals 1− 1

s
2

L(−1,1)

∑
i∈[s] L(f(zi), Φ(zi)) for

z1, z2, . . . , zs ∈ X chosen randomly and independently ac-
cording to D.

One can also consider hypotheses with the range outside
of [−1, 1] (as is done in Michael’s work [Mic07]). This is
not required to prove our results. We also note that when
evolving to a Boolean target function, outputting a value v
outside of [−1, 1] will always incur a higher loss than out-
putting sign(v) and hence values outside of [−1, 1] are al-
ways detrimental.

3.3 Mutation Algorithm
The description of a mutation algorithm A consists of the
definition of the representation class R of possibly random-
ized hypotheses in F∞1 and the description of an algorithm
that for every r ∈ R, outputs a random mutation of r. More
formally,

Definition 6 A mutation algorithm A is defined by a pair
(R,M) where

• R is a representation class of functions over X with
range in [−1, 1].

• M is a randomized polynomial (in n and 1/ε) time Tur-
ing machine that given r ∈ R and 1/ε as input outputs
a representation r1 ∈ R with probability PrA(r, r1).
The set of representations that can be output by M(r, ε)
is referred to as the neighborhood of r for ε and de-
noted by NeighA(r, ε). For a set T ⊆ NeighA(r, ε),
we denote PrA(r, T) =

∑
r′∈T PrA(r, r′).

This definition is the analogue of p-neighborhood in the basic
model.

3.4 Selection Rules
We now define several models of how natural selection acts
on a mutation algorithm evolving towards a specific target
function f over a specific distribution D. A selection rule
is essentially a transformation of the distribution over repre-
sentations in R output by the mutation algorithm that favors
representation with higher performance. In other words, se-
lection rule Sel has access to r and M , can evaluate the em-
pirical performance of representations and outputs the “sur-
viving” representation. The output of a selection rule Sel
can be randomized and we will only consider selection rules
that can be implemented efficiently and output only repre-
sentations in the neighborhood of r or ⊥ that means that no
mutation has survived. We note that, as in the original model,
here we only consider mutations acting on a single repre-
sentation (rather than a population) and outputting a single
representation.

We first describe a selection rule that is analogous to the
mutator in the basic model but can be applied to any mutation
algorithm and not only to a p-neighborhood.

Definition 7 For a loss function L, tolerance t, candidate
pool size p, sample size s, selection rule SelNB[L, t, p, s] is
an algorithm that for any function f , distribution D, muta-
tion algorithm A = (R,M), a representation r ∈ R, accu-
racy ε, SelNB[L, t, p, s](f,D, A, r) outputs a random vari-
able that takes a value r1 determined as follows. First run
M(r, ε) p times and let Z be the set of representations ob-
tained. For r′ ∈ Z, let PrZ(r′) be the relative frequency
with which r′ was generated among the p observed represen-
tations. For each r′ ∈ Z ∪ {r}, compute an empirical value
of performance v(r′) = LPerff (r′, D, s). Let Bene(Z) =
{r′ | v(r′) ≥ v(r)+t} and Neut(Z) = {r′ | |v(r′)−v(r)| <
t}. Then

(i) if Bene(Z) 6= ∅ then output r1 ∈ Bene with probability
PrZ(r1)/

∑
r′∈Bene(Z) PrZ(r′);

(ii) if Bene(Z) = ∅ and Neut(Z) 6= ∅ then output r1 ∈
Neut(Z) with probability PrZ(r1)/

∑
r′∈Neut(Z) PrZ(r′).

(iii) If Neut(Z) ∪ Bene(Z) = ∅ then output ⊥.

The main difference between this selection rule and the mu-
tator with the same parameters is that in the basic model
the definition of p-neighborhood requires that M1 produce
a neighborhood of polynomial size whereas mutation algo-
rithms are not explicitly restricted and might produce an ex-
ponential number of representations each with negligible prob-
ability. Hence SelNB[L, t, p, s] first samples the mutations
produced by M(r, ε) and then uses the empirical neighbor-
hood instead of the actual NeighA(r, ε). The second dif-
ference is that in the basic model r ∈ NeighN (r, ε) ensures
that the performance does not drop by more than the value of
the threshold t. Definition 7 enforces this explicitly by out-
putting⊥ and thereby stopping process of evolution when no
neutral or beneficial mutations are present.

Valiant also considers selection rules that always choose
a mutation with empirical performance within tolerance t of
the best one in the neighborhood NeighN (r, ε). He defines
evolvability with optimization as evolvability with every se-
lection rule that has this property and shows that every con-

cept class evolvable with optimization is evolvable in the ba-
sic model. Here we define a particular optimizing analogue
of SelNB that outputs all the mutations whose performance
is within t of the best, each with probability proportional to
their probability in the empirical neighborhood of r.

Definition 8 For a loss function L, tolerance t, candidate
pool size p and sample size s, the selection rule SelOpt[L, t, p, s]
is an algorithm that for any function f , distribution D, mu-
tation algorithm A, a representation r ∈ R, accuracy ε,
SelOpt[L, t, p, s](f, D,A, r) outputs a random variable that
takes a value r1 determined as follows. First run M(r, ε) p
times and let Z be the set of representations obtained. For
r′ ∈ Z, let PrZ(r′) be the relative frequency with which r′
was generated among the s observed representations. For
each r′ ∈ Z ∪ {r}, compute an empirical value of perfor-
mance v(r′) = LPerff (r′, D, s). Let p∗ = maxr′∈Z∪{r}{v(r′)}
and let Opt = {r′ | r′ ∈ Z, v(r′) ≥ p∗ − t}. Output
r1 ∈ Opt with probability PrZ(r1)/

∑
r′∈Opt PrZ(r′). If

Opt is empty SelOpt[L, t, p, s] outputs ⊥.

Note that like SelNB[L, t, p, s], SelOpt[L, t, p, s] does not
allow the performance to drop by more than t. As we will
demonstrate in Section 5, evolvability with this simpler SelOpt
is equivalent to evolvability with SelNB.

3.4.1 Smooth Selection Rules
The selection rules that we discussed earlier use a sharp thresh-
old in the transformation of probabilities. That is, the se-
lection decisions are not continuous: negligible differences
in the empirical performance of a mutation might determine
whether the probability of taking that mutation is 0 or 1. In
many realistic conditions the probability that a certain muta-
tion is adopted is a smooth function of its initial frequency
and the performance of all the available mutations. We in-
formally refer to such selection rules as smooth.

Instead of considering various possible selection rules
that might arise we define a general property of selection
rules that is satisfied by a variety of smooth selection rules
and, as we prove later, does not reduce the power of evolv-
ability. Informally, the property of a selection rule that we
need is that when selecting from between two candidate hy-
potheses r1 and r2 such that performance of r2 is “observ-
ably” higher than the performance of r1, the output probabil-
ity of r2 is “observably” higher than the output probability of
r1. In addition, the selection rule has to be “representation-
neutral”; that is if two representations compute the same
function then their relative frequencies in the output should
remain the same. Finally, we assume that the selection rule
does not output ⊥ if the neighborhood of r contains repre-
sentations with performance higher or equal than the per-
formance of r with significant probability (we use 1/2 for
concreteness).

Definition 9 Let Π be a selection rule. For real numbers
t > 0 and γ > 0 we say that Π is (t, γ)-distinguishing if
for every mutation algorithm A = (R, M), r ∈ R, ε > 0,
r1, r2 ∈ NeighA(r, ε)

1. v(r1) < v(r2)− t implies that

PrA,Π(r, r1)
PrA,Π(r, r2)

< (1− γ)
PrA(r, r1)
PrA(r, r2)

,

where v(r′) denoted the performance of r′ and PrA,Π(r, r′)
denotes the probability that Π applied to A on r and ε
outputs r′.

2. r1 ≡ r2 implies that PrA,Π(r,r1)
PrA,Π(r,r2)

= PrA(r,r1)
PrA(r,r2)

;

3. for P = {r′ ∈ NeighA(r, ε) | v(r′) ≥ v(r)}, if
PrA(r, P) ≥ 1/2 then PrA,Π(r,⊥) = 0.

(We treat 0
0 as 0).

Note that the output of a (t, γ)-distinguishing selection rule
is not constrained at all when 0 < |q1 − q2| ≤ t. For brevity
we also say that a selection rule is t-distinguishing if it is
(t, 1)-distinguishing.

3.5 Convergence
A concept class C is defined to be evolvable by a mutation
algorithm A guided by a selection rule Sel over distribution
D if for every target concept f ∈ C, mutation steps as de-
fined by A and guided by Sel will converge to f .

Definition 10 For concept class C over X , distribution D,
mutation algorithm A, loss function L and a selection rule
Sel based on LPerf we say that the class C is evolvable
over D by A in Sel if there exists a polynomial g(n, 1/ε)
such that for every n, f ∈ C, ε > 0, and every r0 ∈ R, with
probability at least 1 − ε, a sequence r0, r1, r2, . . ., where
ri ← Sel(f,D, A, ri−1) will have LPerff (rg(n,1/ε), D) ≥
1 − ε. We refer to the algorithm obtained as evolutionary
algorithm (A, Sel).

One particular important issue addressed by the model is
the ability of an organism to adjust to a change of the tar-
get function or distribution without sacrificing the perfor-
mance of the current hypothesis (beyond the decrease caused
by the change itself). Formally, we say that an evolution-
ary algorithm (A, Sel) evolves C over D monotonically if
with probability at least 1 − ε, for every i ≤ g(n, 1/ε),
LPerff (ri, D) ≥ LPerff (r0, D), where g(n, 1/ε) and
r0, r1, r2, . . . are defined as above.

The main reason why we consider the new definition is
that it clearly differentiates the roles of the mutation algo-
rithm and the selection rules whereas, in the original defini-
tion, efficiency constraints on the selection process were part
of the definition of a p-neighborhood and a mutator. This
differentiation is useful for a more general discussion of the
model and is also move convenient notationally. In the full
version of this work we prove that the original definition is
equivalent to a special case of our definition.

4 Statistical Query Learning with General
Loss Functions

It was observed by Valiant that any evolutionary algorithm
can, in fact, be simulated using statistical queries and hence
any evolvable concept class is also SQ learnable [Val09].
Further, it was shown in our earlier work that evolvability is
equivalent to learnability by a constrained form of statistical
queries referred to as correlational. A correlational statisti-
cal query is a statistical query for a correlation of a function
over X with the target [BF02]. Namely the query function
ψ(x, f(x)) ≡ φ(x)f(x) for a function φ ∈ F∞1 . We say

that an algorithm is a correlational statistical query (CSQ)
algorithm if it uses only correlational statistical queries.

Therefore, in order to understand the relative power of
a particular model of evolvability it is sufficient to relate
it to learnability by CSQs. Note that a CSQ φ measures
the performance Perff (φ,D) = L1Perff (φ,D). Our goal
is to show that the equivalence between CSQ learning and
evolvability with the linear loss can be extended to other
loss functions. For this purpose we define an L-SQ to be a
statistical query for which the query function ψ(x, f(x)) ≡
LPerff (φ(x), D) for some function φ ∈ F∞1 . Formally, for
a function f and distribution D, let L-STAT(f, D) be the or-
acle that given a function φ : X → [−1, 1] as query responds
with any value v satisfying |LPerff (φ,D)− v| ≤ τ , where
τ ∈ [0, 1] is the tolerance of the query. Similarly we say that
a concept class C is L-SQ learnable if it is learnable by a
statistical query algorithm that uses only L-SQ queries and
the output hypothesis h satisfies LPerff (h,D) ≥ 1− ε.

Definition 11 For a concept class C, distribution class D
over X and admissible loss function L, an algorithm A is
said to L-SQ learn C from queries of tolerance τ in time t if
for every ε > 0, δ > 0, f ∈ C, D ∈ D, A given ε, δ, and
access to L-STAT(f, D) outputs, in time t and with proba-
bility at least 1−δ, a hypothesis h that is evaluatable in time
t and satisfies LPerff (h,D) ≥ 1 − ε. Each query φ made
by A can be evaluated in time t and has tolerance τ . The
algorithm is said to (efficiently) learn C if t is polynomial in
n, 1/ε and 1/δ, and τ is lower bounded by the inverse of a
polynomial in n and 1/ε.

A simple consequence of this definition is the following claim.

Theorem 12 If a concept class C is evolvable over a class of
distributionsD in a selection rule Sel that uses loss function
L then C is efficiently L-SQ learnable over D.

The proof follows easily from the fact that both the mutation
algorithm and the selection rule can be efficiently simulated
given the ability to estimate LPerff . In the next section we
prove the converse of this claim.

We use L-SQ learnability primarily for convenience as,
for every admissible loss function L, if L is not, in a sense,
similar to L1 then L-SQ learnability is equivalent to SQ learn-
ability. Formally, we say that a loss function L is quasi-
linear if for every y ∈ [1, 1], L(1, y)+L(−1, y) = L(−1, 1).
The proof of the following theorem appears in the full ver-
sion of this work.

Theorem 13 Let L be an admissible loss function. If L is
quasi-linear then a concept class C is efficiently L-SQ learn-
able over a class of distributions D if and only if it is effi-
ciently CSQ learnable over D. If L is not quasi-linear then
a concept class C is efficiently L-SQ learnable over a class
of distributions D if and only if it is efficiently SQ learnable
over D.

5 Fixed-Tolerance Evolvability for Any Loss
Function

In this section we examine the roles of the tolerance of the se-
lection process and the loss function used in it. We show that

for an admissible loss function L, any L-SQ learnable con-
cept class is evolvable in SelNB[L, t, s, s] for some polyno-
mial s (used for both the candidate pool size and the sample
size), and fixed t lower bounded by the inverse of a polyno-
mial in n and 1/ε. This strengthens our earlier result [Fel08]
for the linear loss and extends it to other loss functions. In
addition the algorithm that we produce also evolves with the
optimizing selection rule SelOpt[L, t, s, s]. This demon-
strates that evolvability with a specific optimizing selection
rule is equivalent to the basic model. We note that one direc-
tion of this equivalence was showed by Valiant using a more
direct method [Val09].

Theorem 14 Let L be an admissible loss function and C be
a concept class L-SQ learnable over a class of distributions
D by a randomized polynomial-time algorithm B. There ex-
ists a polynomial s(·, ·), inverse-polynomial t(·, ·) and an
evolutionary algorithm A = (R,M) such that C is evolv-
able by A overD in SelNB[L, t(n, 1/ε), s(n, 1/ε), s(n, 1/ε)]
and in SelOpt[L, t(n, 1/ε), s(n, 1/ε), s(n, 1/ε)].

As in [Fel08] the proof is based on a reduction of general
L-SQs to comparisons. Namely, for a function f and a dis-
tribution D we define an oracle L-SQ>(f, D) to be the or-
acle that accepts queries of the form (r, θ, τ) where r is a
function from X to [−1, 1], θ is the threshold and τ > 0
is the tolerance. To such a query (referred to as an L-SQ>

query) the oracle returns 1 when LPerff (r,D) ≥ θ + τ , 0
when LPerff (r,D) ≤ θ − τ , and either 0 or 1, otherwise.
The following lemma is analogous to a lemma from [Fel08]
(a subtle but significant difference is that Perff (−r,D) =
−Perff (r,D) does not hold for general loss functions and
hence some of the resulting comparisons are with a negative
threshold).

Lemma 15 For every function f and distribution D, an L-
SQ (r, τ) can be replaced by dlog(1/τ)e + 1 queries to L-
SQ>(f,D). Each of the produced queries is of the form
(r, θ, τ ′), where τ ′ = τ/2, and |θ| ≥ τ/2.

Proof: Let v = LPerff (r,D). Queries to L-SQ>(f,D)
allow to perform comparisons of v with any value in [−1, 1]
up to accuracy τ/2. Let T denote the set

{τ/2 + i · τ | − 1/τ − 1/2 ≤ i ≤ 1/τ − 1/2} ∪ {−1, 1} .

We perform a binary search for a value u ∈ T such that the
oracle returns 1 on the comparison with u (meaning “>”)
and 0 on the comparison with u′, where u′ is the smallest
value in T larger than u. Such value will always exist since
we can assume that the comparison with -1 returns 1 and the
comparison with 1 returns 0. The procedure returns the value
v′ = (u + u′)/2.

The answers of the oracle imply that v ∈ [u− τ/2, u′ +
τ/2]. By our choice of the set T , u′ − u ≤ τ and therefore
|v′ − v| ≤ τ . The number of comparison queries performed
is at most dlog(1/τ)e+1 and by the choice of T , every com-
parison is with a threshold θ such that |θ| ≥ τ/2.

The reduction from a L-SQ> algorithm to a mutation al-
gorithm and its analysis are similar to those in [Fel08]. The
high-level idea of this construction is to get the answer to
an L-SQ> (φ, θ, τ) by creating a mutation that outputs φ(x)

with small probability. For an appropriately chosen proba-
bility, this mutation will be chosen as the next generation if
and only if LPerff (φ,D) ≥ θ. This allows the evolution-
ary algorithm to “record” the answer to the L-SQ>. All the
answers that were obtained so far are “remembered” in the
current representation. Finally, given the answers to all the
queries of the L-SQ> algorithm, the mutation algorithm out-
puts the representation equal to the final hypothesis of the
L-SQ> algorithm for the given answers of its queries. To
achieve fixed tolerance, the probability that the mutation out-
puts φ(x) is scaled appropriately. Also, compared with our
earlier construction, a different type of mutations needs to
be used for L-SQ> queries with a negative threshold. The
complete proof appears in Appendix B.

6 Evolvability with Weak Selection Rules
We now show that the analogues of the results of the previous
section can also be obtained in any selection rule that weakly
“favors” mutations with sufficiently higher performance. We
only prove the result for performance based on linear loss.
The extension to general loss functions can be obtained using
similar methods.

To prove the result we design a new general transfor-
mation from a CSQ algorithm to a mutation algorithm that
evolves in any (t, γ)-distinguishing selection rule for suffi-
ciently small t and sufficiently large γ. Note that SelNB[L1, t, s, s]
and SelOpt[L1, t, s, s] are both t-distinguishing selection rules
(with high probability and for sufficiently large s).

Theorem 16 Let C be a concept class CSQ learnable over
a class of distributions D by a polynomial-time algorithm
B. There exists an inverse polynomial t(n, 1/ε) such that for
every inverse polynomial γ(n, 1/ε), there exists a mutation
algorithm Aγ = (Rγ , Mγ) that evolves C over D in Π with
initialization for every (t, γ)-distinguishing selection rule Π.

The key new step of this proof is a conversion of any CSQ
algorithm to an algorithm that uses a similarly restricted ver-
sion of statistical queries. For a function f and distribution D
over X , let (τ, γ)-CSQ(f,D) oracle be the oracle that given
a function φ : X → [−1, 1] returns a value b ∈ {0, 1} such
that:

• if ED[f · φ] ≥ τ then b = 1 with probability at least γ′
where γ′ satisfies (1 − γ′)/γ′ ≤ 1 − γ (independently
of any previous queries);

• if ED[f · φ] ≤ −τ then b = 0 with probability at least
γ′ where γ′ satisfies (1−γ′)/γ′ ≤ 1−γ (independently
of any previous queries).

Lemma 17 Let C be a concept class CSQ learnable over a
class of distributions D by a polynomial-time algorithm B.
There exists an inverse polynomial τ ′(n, 1/ε) such that for
every inverse polynomial γ(n, 1/ε), there exists an algorithm
Bγ that given access to (τ ′, γ)-CSQ(f, D) oracle learns C
over D.

The proof of this lemma appears in Appendix C. Now we
can use a (t, γ)-distinguishing selection rule to provide re-
sponses to queries for (τ ′, γ)-CSQ(f, D) oracle in essen-
tially the same way as SelNB was used to answer CSQ>

queries in the proof of Theorem 19. The details appear in
the full version of the work.

It would certainly be desirable to obtain the same re-
sult without initialization. We note that by using a selection
rule that satisfies additional conditions our construction can
be strengthened to not require initialization as in the proof
of Theorem 14. However our current method that adds the
ability to “re-initialize” to an evolutionary algorithm requires
gradual reduction of performance to 0. This, while legal in
the basic model, seems to contradict the main motivation be-
hind evolvability from any state: the ability to adjust to new
environmental conditions without significant decrease in per-
formance. Therefore we regard such methods of achieving
“re-initialization” as less useful for understanding the power
of evolutionary algorithms and hence do not adapt them to
this setting.

7 Distribution-Independent Evolvability of
Singletons

In this section we show that the concept class of singletons
is evolvable distribution-independently. The concept class
of singletons over {0, 1}n is defined as C1 = {Ind[z] | z ∈
{0, 1}n} where Ind[z] is the indicator function of the set
{z}.

Theorem 18 C1 is evolvable distribution-independently.

Proof: To prove this we show that there exists a mutation
algorithm M that for every current hypothesis h, can produce
a random hypothesis h′ such that for every distribution D and
target function Ind[z], with probability at least 1/p(n, 1/ε),
M(h, ε) outputs a hypothesis h′ such that

ED[Ind[z] · h′] ≥ 1− ε/2

for some polynomial p(n, 1/ε). For such M , for sufficiently
large polynomial s(·, ·) the empirical neighborhood of h will
include a hypothesis with sufficiently high performance. This
means that the desired performance will be achieved in a sin-
gle step of

SelNB[L1, ε/4, s(n, 1/ε), s(n, 1/ε)]

applied to M .
We now describe the design and analysis of M . M out-

puts function Ind[S], where S ⊆ {0, 1}n is chosen ran-
domly and has the following properties

• uniformity: for every x ∈ {0, 1}n, PrM [x ∈ S] =
2−k, for k = dlog 1/εe+ 3.

• pairwise independence: for every x, y ∈ {0, 1}n such
that x 6= y, PrM [x ∈ S | y ∈ S] = 2−k.

We first note that it is easy to choose S in such a way. One
possible way is as follows: choose randomly and uniformly
k + 1 vectors in {0, 1}n, and let B denote the first k vectors
and v denote the last one. Then let SB,v denote the set

a ∈ {0, 1}n

∣∣∣∣∣∣
∀b ∈ B,

∑

i∈[n]

((ai + vi) · bi) = 0 (mod 2)

It is well-known and can be easily verified that this proce-
dure will produce a pairwise-independent subset of {0, 1}n.
We also observe that Ind[S] as above can be computed effi-
ciently for every choice of random vectors.

With probability 2−k, z ∈ S. In addition, pairwise inde-
pendence implies that for every y 6= z, PrM [y ∈ S | z ∈
S] = 2−k. Therefore

EM [PrD[x ∈ S \ {z}] | z ∈ S]

=
∑

y 6=z

(PrM [y ∈ S | z ∈ S] ·PrD[x = y])

= 2−k
∑

y 6=z

PrD[x = y] ≤ 2−k.

Therefore, by Markov’s inequality, with probability at least
1
22−k we have that z ∈ S and PrD[x ∈ S \ {y}] ≤ 2 · 2−k.
This implies that with probability at least 2−k−1 ≥ ε/32
over the choice of S,

ED[Ind[S] · Ind[z]] ≥ 1− 2 ·PrD[x ∈ S \ z] ≥ 1− 2−k+2

≥ 1− ε/2.

We note that the representation class R used by this algo-
rithm includes Ind[S] for each set B and vector b ∈ {0, 1}n.
However the mutation algorithm can start from any hypoth-
esis adding a new degree of robustness to the algorithm.

Additional properties of this mutation algorithm can be
observed. First, the algorithm can be easily extended to the
concept class of indicator functions of sets of polynomial in
n size. In addition, the mutation algorithm evolves C1 in any
(ε/8)-distinguishing selection rule. This implies that C1 is
evolvable monotonically giving the first example of a mono-
tone evolvability in the basic model. Finally, this algorithm
is in fact agnostic, that is if the target function f is not Ind[z]
for some z, this algorithm will converge to a function with
performance within ε of the best possible by a singleton.

8 Conclusions
In this work we have addressed the roles of the main com-
ponents of Valiant’s model of evolvability: performance (or
fitness) metric, selection rule and its tolerance, constraints
on mutation algorithms and initialization. Our results clarify
many aspects of the interactions among these components,
thereby, we believe, greatly enhancing the understanding of
Valiant’s framework for modeling evolution. Most of the re-
sults demonstrate that the limits of the efficiently evolvable
are not changed when a reasonable variant of the definition
is considered. These limits coincide with all of the learn-
able using the corresponding restriction of statistical queries.
Our results also demonstrate that evolvability with hypothe-
ses that use intermediate values in [−1, 1] and non-linear loss
is strictly stronger than the basic model. Whether and when
such feedback is biologically plausible is an interesting ques-
tion.

From the algorithmic standpoint our results give new ways
to automatically obtain numerous new algorithms that sat-
isfy the onerous requirements of the evolvability framework.
While the general transformations produce algorithms that
are not necessarily the most natural and efficient, they can

be used as a basis for finding simpler and more efficient al-
gorithms for specific concept classes and distributions. Our
singleton learning algorithm is an example of this approach.

Some important questions about the power of models of
evolvability are not answered by this work. The most inter-
esting among them is whether the fairly unnatural “reinitial-
ization” used in our reduction when the evolutionary algo-
rithm is not initialized is necessary. In other words, whether
monotone evolvability is equivalent to the basic model. Cur-
rently, the only known examples of monotone evolvability is
Michael’s algorithm for evolving decision lists over the uni-
form distribution using quadratic loss and the algorithm for
evolving singletons presented here. In a very recent work we
present some progress on this question [Fel09] but the ques-
tion remain unresolved even for the concept class of conjunc-
tions.

Acknowledgements
I am grateful to Les Valiant for suggesting several of the
problems addressed here and numerous helpful discussions.
I also thank Ron Fagin for helpful comments on this manuscript.

References
[AD98] J. Aslam and S. Decatur. Specification and sim-

ulation of statistical query algorithms for effi-
ciency and noise tolerance. Journal of Com-
puter and System Sciences, 56:191–208, 1998.

[AFHN09] M. Ajtai, V. Feldman, A. Hassidim, and J. Nel-
son. Sorting and selection with imprecise com-
parisons. Proceedings of ICALP(A), 2009.

[BF02] N. Bshouty and V. Feldman. On using extended
statistical queries to avoid membership queries.
Journal of Machine Learning Research, 2:359–
395, 2002.

[BFM97] T. Back, D. Fogel, and Z. Michalewicz. Hand-
book of Evolutionary Computation. IOP Pub-
lishing Ltd., Bristol, UK, 1997.

[BVdW07] H. Buhrman, N. Vereshchagin, and R. de Wolf.
On computation and communication with small
bias. In Proceedings of IEEE Conference
on Computational Complexity, pages 24–32,
2007.

[Fel08] V. Feldman. Evolvability from learning algo-
rithms. In Proceedings of STOC, pages 619–
628, 2008.

[Fel09] V. Feldman. A complete characterization of
statistical query learning with applications to
evolvability. Manuscript. Available on the au-
thor’s web page, 2009.

[FV08] V. Feldman and L. G. Valiant. The learning
power of evolution. In Proceedings of COLT,
pages 513–514, 2008.

[GHR92] M. Goldmann, J. Håstad, and A. Razborov.
Majority gates vs. general weighted threshold
gates. Computational Complexity, 2:277–300,
1992.

[Hau92] D. Haussler. Decision theoretic generalizations
of the PAC model for neural net and other learn-

ing applications. Information and Computa-
tion, 100(1):78–150, 1992.

[HMLW91] D. Haussler, M.Kearns, N. Littlestone, and
M. Warmuth. Equivalence of models for poly-
nomial learnability. Information and Computa-
tion, 95(2):129–161, 1991.

[Hoe63] W. Hoeffding. Probability inequalities for
sums of bounded random variables. Journal of
the American Statistical Association, 58:13–30,
1963.

[JPY88] D. Johnson, C. Papadimitriou, and M. Yan-
nakakis. How easy is local search? Journal
of Computer and System Sciences, 37:79–100,
1988.

[Kea98] M. Kearns. Efficient noise-tolerant learning
from statistical queries. Journal of the ACM,
45(6):983–1006, 1998.

[KS94] M. Kearns and R. Schapire. Efficient
distribution-free learning of probabilistic con-
cepts. Journal of Computer and System Sci-
ences, 48:464–497, 1994.

[Mic07] L. Michael. Evolving decision lists.
Manuscript, 2007.

[She07] A. A. Sherstov. Halfspace matrices. In Pro-
ceedings of IEEE Conference on Computa-
tional Complexity, pages 83–95, 2007.

[Val84] L. G. Valiant. A theory of the learnable. Com-
munications of the ACM, 27(11):1134–1142,
1984.

[Val06] L. G. Valiant. Evolvability. Electronic Collo-
quium on Computational Complexity (ECCC),
6(120), 2006.

[Val08] L. G. Valiant, 2008. Personal communication.
[Val09] L. G. Valiant. Evolvability. Journal of the ACM,

56(1):3.1–3.21, 2009.
[Weg01] I. Wegener. Theoretical aspects of evolutionary

algorithms. In Proceedings of ICALP, pages
64–78, 2001.

[Wri78] S. Wright. Evolution and the Genetics of Pop-
ulations, A Treatise. University of Chicago
Press, Chicago, 1968-78.

[Yam98] K. Yamanishi. A decision-theoretic extension
of stochcastic complexity and its applications
to learning. IEEE Transactions on Information
Theory, 44(4):1424–1439, 1998.

A PAC and SQ Learning Models
The models we consider are based on the well-known PAC
learning model introduced by Valiant [Val84]. Let C be a
representation class over X . In the basic PAC model a learn-
ing algorithm is given examples of an unknown function f
from C on points randomly chosen from some unknown dis-
tribution D over X and should produce a hypothesis h that
approximates f . Formally, an example oracle EX(f,D) is an
oracle that upon being invoked returns an example 〈x, f(x)〉,
where x is chosen randomly with respect to D, indepen-
dently of any previous examples.

An algorithm is said to PAC learn C in time t if for every
ε > 0, δ > 0, f ∈ C, and distribution D over X , the algo-
rithm given ε, δ, and access to EX(f, D) outputs, in time t

and with probability at least 1−δ, a hypothesis h that is eval-
uatable in time t and satisfies PrD[f(x) = h(x)] ≥ 1 − ε.
We say that an algorithm learns C by a representation class
H if the hypotheses output by the algorithm use the repre-
sentation scheme of H .

The running time t is allowed to depend on n, 1/ε and
1/δ. We say that an algorithm efficiently learns C when t is
upper bounded by a polynomial in n, 1/ε and 1/δ.

A number of variants of this basic framework are com-
monly considered. The basic PAC model is also referred
to as distribution-independent learning to distinguish it from
distribution-specific PAC learning in which the learning al-
gorithm is required to learn only with respect to a single dis-
tribution D known in advance. More generally, one can re-
strict the target distribution to come from a class of distribu-
tions D known in advance (such as product distributions) to
capture both scenarios. We refer to this case as learning over
D.

In the statistical query model of Kearns [Kea98] the learn-
ing algorithm is given access to STAT(f, D) – a statistical
query oracle for target concept f with respect to distribution
D instead of EX(f, D). A query to this oracle is a function
ψ : X×{−1, 1} → {−1, 1}. The oracle may respond to the
query with any value v satisfying |ED[ψ(x, f(x))]− v| ≤ τ
where τ ∈ [0, 1] is a real number called the tolerance of the
query. For convenience, we allow the query functions to be
real-valued in the range [−1, 1]. As it has been observed by
Aslam and Decatur [AD98], this extension is equivalent to
the original SQ model.

An algorithm A is said to learn C in time t from statisti-
cal queries of tolerance τ if A PAC learns C using STAT(f, D)
in place of the example oracle. In addition, each query ψ
made by A has tolerance τ and can be evaluated in time t.

The algorithm is said to (efficiently) SQ learn C if t is
polynomial in n, 1/ε and 1/δ, and τ is lower bounded by the
inverse of a polynomial in n and 1/ε.

B Proof of Theorem 14
We first prove the claimed result for evolvability with initial-
ization. For a vector z and j ∈ [|z|] let zj denote the jth

element of z and let zj denote the prefix of length j of z. For
every z, z0 equals the empty string λ.

Theorem 19 Let L be an admissible loss function and C be
a concept class L-SQ learnable over a class of distributions
D by a randomized polynomial-time algorithm B. There ex-
ists a polynomial s(·, ·), inverse-polynomial t(·, ·) and an
evolutionary algorithm A = (R,M) such that C is evolv-
able by A overD in SelNB[L, t(n, 1/ε), s(n, 1/ε), s(n, 1/ε)]
with initialization.

Proof: Let H be the representation class of B’s hypotheses.
We first assume that B is deterministic and apply Lemma
15 to convert B to algorithm B′ that uses only queries to L-
SQ>(f,D). Let q = q(n, 1/ε) be a polynomial upper bound
on the number of queries asked by B′ and τ = τ(n, 1/ε)
denote the tolerance of the queries asked by B′.

For i ∈ [q] and z ∈ {0, 1}i−1, let (φz(x), θz, τ) denote
the ith query that B′ asks given that the answers to the previ-
ous i−1 queries are as specified by z. Here for j ≤ i−1, bit

zj is the answer to the jth query. For z ∈ {0, 1}q we denote
by hz the hypothesis produced by B′ given that its queries
were answered according to z (we can assume without loss
of generality that exactly q queries are asked in every possi-
ble execution of B′). Note that the queries produced by B′
implicitly depend on the values of ε and n.

The high-level idea of our construction is to get the an-
swer to a L-SQ> (φ, θ, τ) of B′ is to use a mutation that
outputs φ(x) with small probability. For an appropriately
chosen probability, this mutation will be chosen as the next
generation if and only if LPerff (φ, D) ≥ θ. This allows the
evolutionary algorithm to “record” the answer to the L-SQ>.
All the answers that were obtained so far are “remembered”
in the current representation. Finally, given the answers to
all the queries of B′, the mutation algorithm outputs the rep-
resentation equal to the final hypothesis of B′ for the given
answers to B′s queries.

We will now define the mutation algorithm A = (R, M)
for C formally. For i ∈ [q] and z ∈ {0, 1}i, we define Φ0 to
be the random coin flip hypothesis, that is for every x ∈ X ,
Φ0 equals 1 with probability 1/2 and −1 with probability
1/2. Let rz(x) be the hypothesis that is computed as follows.
For each j ∈ [i] such that zj = 1, φzj−1(x) is output with
probability τ

|θzj−1 |·q . Note that according to Lemma 15, for
every query φz , |θz| ≥ τ and hence the total probability that
either of φzj−1(x) is output is less than 1. With the remaining
probability rz(x) equals Φ0(x). Let

R = H ∪ {rλ} ∪ {rz}i∈[q],z∈{0,1}i ,

where rλ ≡ Φ0 (λ denotes the empty string).
We now define M by specifying for each r, NeighA(r, ε)

and probabilities of mutations in NeighA(r, ε). Let ∆ ∈
(0, 1) be a real value to be defined later.

1. r = rz for z ∈ {0, 1}i where 0 ≤ i ≤ q−1: NeighA(r, ε) =
{rz0, rz1};
if θz > 0 then PrA(r, rz1) = ∆ and PrA(r, rz0) = 1−
∆, otherwise PrA(r, rz1) = 1−∆ and PrA(r, rz0) =
∆.

2. r = rz for z ∈ {0, 1}q: NeighA(r, ε) = {r, hz};
PrA(r, hz) = 1−∆ and PrA(r, r) = ∆.

3. r = h for h ∈ H: NeighA(r, ε) = {r}; PrA(r, r) = 1.

Claim 20 There exists a polynomial s(·, ·) and inverse-polynomial
t(·, ·) such that C is evolvable by A over D in
SelNB[L, t(n, 1/ε), s(n, 1/ε), s(n, 1/ε)] with initialization.

Proof: We define the bound on the number of generations
g(n, 1/ε) = q(n, 1/ε)+1, let t(n, 1/ε) = τ(n, 1/ε)/q(n, 1/ε)
and let ∆ = ε

4g(n,1/ε) . Let s′(n, 1/ε) be the size of a sam-
ple sufficient to produce an estimate of a random variable
V ∈ [−1, 1] within τ ′ = τ2

2q with probability at least 1 −
ε

12·g(n,1/ε) . Hoeffding’s bound implies that s′(n, 1/ε) =
c0q

2 · τ−4 · log (1/ε) samples for a constant c0 will suf-
fice for this [Hoe63]. We also choose the candidate pool
size to be large enough to ensure that with high probability,
every possible mutation of the current representation occurs
in the empirical neighborhood of SelNB. In this condition

one can replace the empirical probabilities of mutations (or
PrZ(r, r1)) with their actual probabilities (or PrA(r, r1)).
Neighborhood of every representation has at most two repre-
sentation and each occurs with probability at least ∆. There-
fore by choosing candidate pool size to be at least p′(n, 1/ε) =
ln (8 · g(n, 1/ε)/ε)/∆, we will guarantee that for every rep-
resentation, its empirical neighborhood will equal the actual
neighborhood with probability at least 1− ε

4g(n,1/ε) . We set
s(n, 1/ε) = max {s′(n, 1/ε), p′(n, 1/ε)}.

Let f ∈ C be the ideal function and let r0 = rλ, r1, r2, . . . , rg

be a sequence of representations produced by

rk ← SelNB[L, t, s(n, 1/ε), s(n, 1/ε)](f, D,A, rk−1) .

Our goal is to prove that with probability at least 1 − 3ε/4,
LPerff (rg, D) ≥ 1 − ε. We first note that for every rep-
resentation r, the neighborhood of r contains at most two
representations. Therefore at most 3 · g(n, 1/ε) estimations
of performance on a sample of size s will be required. By
the choice of s, each of these estimates is within τ ′ = τ2

2q of
the true performance with probability at least 1− ε

12·g(n,1/ε)

and therefore all of them are within τ ′ with probability at
least 1 − ε/4. For a representation r, we denote the ob-
tained estimate by v(r). For the given choice of s(n, 1/ε), in
g(n, 1/ε) steps the empirical neighborhoods are the same as
actual neighborhoods with probability at least 1− ε/4.

Next, assuming that all the estimates are within τ ′ and
the empirical neighborhoods are the same as actual neighbor-
hoods, we prove that for every z of length k ∈ {0, 1, . . . , q−
1}, if rk = rz then with probability at least 1 −∆, rk+1 =
rzb, where b is a valid answer to query (φz(x), θz, τ) from
L-SQ>(f, D).

By the definition of A, NeighA(rz, ε) = {rz0, rz1}. Ac-
cording to the definition of the function computed by rz and
using the linearity of expectation, we obtain

LPerff (rz, D) =
1
q

∑

j∈[i], zj=1

τ

|θzj−1 |LPerff (φzj−1 , D) .

Representations rz and rz0 compute the same function and
therefore have the same performance which we denote by ρ.
Using the definition of the function computed by rz1, we get
that

LPerff (rz1, D)

=
1
q

 ∑

j∈[i], zj=1

τ

|θzj−1 |LPerff (φzj−1 , D)

+
τ

q · |θz|LPerff (φz, D)

= ρ +
τ

q · |θz|LPerff (φz, D) .

since (z1)i+1 = 1 and (z1)i = z. By the definition, t =
τ/q ≥ 2τ ′ and therefore |v(rz0)−v(rz)| ≤ 2τ ′ ≤ t meaning
that rz0 ∈ Neut.

We now consider two cases

• θz > 0: If rz1 ∈ Bene then rk+1 = rz1 and v(rz1) −

v(rz) ≥ t. But

v(rz1)− v(rz)

≤ LPerff (rz1, D)− LPerff (rz, D) + 2τ ′

=
τ

q · θz
LPerff (φz, D) + 2τ ′ .

That is,

LPerff (φz, D) ≥ θz · q
τ

(t−2τ ′) = θz−θz ·τ ≥ θz−τ.

Therefore b = 1 is indeed a valid answer from L-SQ>(f, D)
to query (φz(x), θz, τ).
If rz1 6∈ Bene then a representation from Neut will be
chosen according to its relative probability. This means
that with probability at least 1−∆, rk+1 = rz0. In this
case rz1 6∈ Bene implies that v(rz1) − v(rz) < t. By
the same argument as in the previous case, this implies
that

LPerff (φz, D) ≤ θz · q
τ

(t + 2τ ′) ≤ θz + τ .

Therefore b = 0 is indeed a valid answer from L-SQ>(f, D)
to query (φz(x), θz, τ).

• θz < 0: If rz1 6∈ Bene ∪ Neut then rk+1 = rz0 and
v(rz) − v(rz1) ≥ t. By the same argument as in the
previous cases we have that

v(rz)− v(rz1) ≤ τ

θz · qLPerff (φz, D) + 2τ ′ .

That is,

LPerff (φz, D) ≤ θz · q
τ

(t−2τ ′) = θz−θz ·τ ≤ θz+τ.

Therefore b = 0 is indeed a valid answer from L-SQ>(f, D)
to query (φz(x), θz, τ).
If rz1 ∈ Bene ∪ Neut then either a representation from
Neut will be chosen according to its relative probabil-
ity or rz1 will be output. By the definition, PrA(rz, rz1) =
1 − ∆, and therefore in either case with probability
at least 1 − ∆, rk+1 = rz1. The condition rz1 ∈
Bene ∪ Neut implies that v(rz) − v(rz1) ≤ t. By the
same argument as in the previous case, we obtain that

v(rz)− v(rz1) ≥ τ

θz · qLPerff (φz, D)− 2τ ′ .

Therefore

LPerff (φz, D) ≥ θz − τ

and b = 1 is indeed a valid answer from L-SQ>(f, D)
to query (φz(x), θz, τ).

The property of each step that we proved implies that
with probability at least 1 − ε/4, rq(n,1/ε) = rz , where z is
of length q(n, 1/ε) and for each i ∈ [q(n, 1/ε)], zi is a valid
answer to query (φzi−1(x), θzi−1 , τ). By the properties of
B′, this in turn implies that hz (the output of B′ on responses
z) satisfies

LPerff (hz, D) ≥ 1− ε

The neighborhood of rz is {rz, hz}. If hz ∈ Bene ∪ Neut
then SelNB will output hz with probability at least 1 − ∆.
Otherwise, SelNB will output rz . This only holds if

LPerff (rz, D)− LPerff (hz, D) ≥ t− 2τ ′ > 0 .

Hence LPerff (rz, D) > 1− ε.
Therefore, under our assumptions on empirical perfor-

mance estimates and empirical neighborhoods, with proba-
bility at least 1 − ε/4, LPerff (rg, D) > 1 − ε. This im-
plied that LPerff (rg, D) > 1 − ε with probability at least
1− 3ε/4. (Cl. 20)

So far, in the definition of R we have assumed that B′ is
deterministic. A randomized algorithm might produce dif-
ferent queries for different settings of its random bits and
might have some additional probability of failure. Therefore
to handle randomized algorithms the representation class R
needs to be defined to include representations that will be
computed for every possible setting of B′s random bits. Let
` be the number of random bits required to achieve failure
probability of at most ε/4 and let R = {rλ} ∪ {Rv | v ∈
{0, 1}`} where Rv is the representation class for B′ with
its random bits set to v (as described above). On input rλ

M outputs rv,λ for a randomly and uniformly chosen v ∈
{0, 1}`. By, symmetry and the semantics of SelNB[L, t, s, s],
after the first step the evolutionary algorithm will be at rep-
resentation rv,λ for a uniformly chosen v ∈ {0, 1}`. From
there the analysis of the deterministic case applies. The total
probability of failure of the resulting evolutionary algorithm
is at most 3ε/4 + ε/4 = ε.

Finally, we need to establish that A is an efficient evo-
lutionary algorithm. The efficiency of B implies that the
representation class R is polynomially evaluatable and M is
efficiently computable. The bounds on g(n, 1/ε), s(n, 1/ε)
and 1/t(n, 1/ε) are polynomial in n and 1/ε. (Th. 19)

We now describe how to create evolutionary algorithms
that do not require initialization, that is converge when started
in any state. This construction is a simple modification of the
construction in [Fel08] that uses variable tolerance. The idea
of the modification is to use the fact that evolutionary mech-
anisms that we create inexorably reach some representation
with a final hypothesis (that is they do not get “stuck”). Once
the algorithm is in one of such representations it is possi-
ble to test whether the representation computes a hypothesis
with appropriately high performance. If this does not hold
the algorithm if forced to “re-initialize” and to start from the
initial representation rλ.

Theorem 21 Let L be an admissible loss function and C be
a concept class L-SQ learnable over a class of distributions
D by a randomized polynomial-time algorithm B. There ex-
ists a polynomial s(·, ·), inverse-polynomial t(·, ·) and an
evolutionary algorithm A = (R, M) such that for every n
and ε, C is evolvable by A over D in
SelNB[L, t(n, 1/ε), s(n, 1/ε), s(n, 1/ε)].

Proof: Let A′ = (R′,M ′) be the evolutionary algorithm ob-
tained in the proof of Theorem 19. We will modify A′ to
produce A that does not require initialization. First note that,
if A′ is started in representation rz ∈ R′ for some vector z
of partial replies to L-SQ> queries, then with probability at

least 1−ε/2, after at most q(n, 1/ε) steps, the algorithm will
reach either representation rz′ for some z′ ∈ {0, 1}q or rep-
resentation h ∈ H. This is true since in every step an answer
to a L-SQ> query is recorded in the current representation as
before. Therefore it is sufficient to prove convergence from
representations in the set

{rz′ | z′ ∈ {0, 1}q}
⋃
H.

We first handle the convergence from a representation h that
has performance lower than 1 − ε (this can only happen if
the algorithm was not started from rλ). Our fix consists of
checking whether LPerff (h,D) ≥ 1 − ε and if not, “re-
initializing” the evolutionary algorithm.

To check this condition we add a representation h−0 that
computes h(x) with probability 1 − t

1−ε and Φ0(x) with
probability t

1−ε . Note that

LPerff (h−0 , D) = (1− t

1− ε
)LPerff (h, D) .

Therefore

LPerff (h,D)− LPerff (h−0 , D) =
LPerff (h,D)

1− ε
t ≥ t

if and only if LPerff (h,D) ≥ 1−ε. Therefore, if this repre-
sentation is not deleterious then LPerff (h,D) < 1− ε and
the algorithm will evolve into h−0 for an appropriate choice
of PrA(h, h−0). Otherwise (if LPerff (h,D) ≥ 1 − ε), the
algorithm will remain in representation h. Note however that
the transitions are based on imprecise empirical estimates of
performance and not on the actual performance. To handle
this imprecision we can assume that B produces a hypoth-
esis with performance at least 1 − ε/2 whereas we have to
“re-initialize” only if the performance is less than 1 − ε. It
is possible to distinguish between these situations even when
estimates of performance are imprecise. In particular, preci-
sion of ε · t/4 will be sufficient. We omit the straightforward
details of this and other analogous modifications to simplify
the presentation.

Formally, for h ∈ H, we define

• NeighA(h, ε) = {h, h−0 };

• PrA(h, h) = ∆, PrA(h, h−0) = 1−∆;

To “re-initialize” the algorithm we add a sequence of repre-
sentations with performance gradually approaching 0. The
difference in the performance of any two adjacent represen-
tations in the sequence is less than t and therefore each of the
mutations in the sequence will always be neutral. For every
integer i ≤ 1/t − 1, we define a representation h−i (x) that
computes the function h−0 (x) with probability (1− i · t) and
Φ0(x) otherwise. Further for i ∈ {0, 1, . . . , d1/te − 1}, we
define:

• NeighA(h−i) = {h−i+1}; when i = d1/te − 1, h−d1/te
refers to rλ.

• PrA(h−i , h−i+1) = 1;

With this definition, for every i ≤ d1/te − 2,

|LPerff (h−i , D)− LPerff (h−i+1, D)|
= |LPerff (h−0 , D) · t| < t ,

and

|LPerff (h−d1/te−1, D)− LPerff (rλ, D)|
≤ |LPerff (h−0 , D) · t| ≤ t .

Therefore h−i+1 ∈ Neut whenever the algorithm is at repre-
sentation h−i . This implies that, with high probability, after
at most 1/t steps the algorithm will evolve to rλ. When the
algorithm reaches rλ the usual analysis applies. Also note
that if the evolutionary algorithm starts in any of the new
representations h−i , it will evolve to rλ after at most 1/t− 1
steps.

Testing and “re-initialization” at a representation rz′ for
z′ ∈ {0, 1}q can be done in exactly the same way. We can al-
ways assume that LPerff (rz′ , D) ≤ 1/2 (as this can always
be achieved by using q(n, 1/ε) which is twice the actual
bound on the number of queries). Then the “re-initialization”
sequence will need to be taken only if hz′ is not a beneficial
mutation from rz′ . Formally we define the following neigh-
borhood of rz′

• NeighA(rz′ , ε) = {r−z′,0, hz′}, where r−z′,0(x) ≡ rz′(x).

• PrA(rz′ , hz′) = ∆, PrA(rz′ , r
−
z′,0) = 1−∆.

The “reinitialization” path from r−z′,0 to rλ is defined exactly
as for h−0 .

Finally, note that the upper bound on the number of gen-
erations required for convergence in this construction is at
most 2q(n, 1/ε) + 1/t + 1 and, in particular, remains poly-
nomial.

Our proof of Theorem 14 can be easily used to show
that evolvability with the optimizing selection rule SelOpt
is equivalent to learnability by L-SQ.

Theorem 22 Let L be an admissible loss function and C
be a concept class L-SQ learnable over a class of distri-
butions D by a randomized polynomial-time algorithm B.
There exists a polynomial s(·, ·), inverse-polynomial t(·, ·)
and an evolutionary algorithm A = (R, M) such that C is
evolvable by A over D in
SelOpt[L, t(n, 1/ε), s(n, 1/ε), s(n, 1/ε)].

Proof: We use the same algorithm A as in the proof of The-
orem 14. We first observe that for every r ∈ R and every
ε > 0, NeighA(r, ε) contains at most two representations. In
this situation the semantics of
SelOpt[L, t(n, 1/ε), s(n, 1/ε), s(n, 1/ε)] is the same as the
semantics of SelNB[L, t(n, 1/ε), s(n, 1/ε), s(n, 1/ε)]. The
only exception is the representation rλ that contains rλ,v for
every v ∈ zo` in its neighborhood. In this case, consid-
erations of symmetry still apply and rλ,v for a random and
uniformly chosen v will be output by
SelOpt[L, t(n, 1/ε), s(n, 1/ε), s(n, 1/ε)].

C Proof of Lemma 17
Lemma 23 (Restated Lemma 17) Let C be a concept class
CSQ learnable over a class of distributionsD by a polynomial-
time algorithm B. There exists an inverse polynomial τ ′(n, 1/ε)
such that for every inverse polynomial γ(n, 1/ε), there exists
an algorithm Bγ that given access to (τ ′, γ)-CSQ(f, D) or-
acle learns C over D.

Proof: We first note that by repeating a query φ to (τ ′, γ)-
CSQ(f, D) oracle and taking the majority vote over the out-
comes, we can boost the confidence in the answer to the
query. That is, for every δ > 0, by repeating the query
O(γ−2 log (1/δ)) times we can simulate (τ ′, 1−δ)-CSQ(f, D)
oracle. By taking small enough δ we can assume that we are
given (τ ′, 1)-CSQ(f,D) oracle, that is, the oracle that al-
ways returns 1 if (but not only if) ED[f ·φ] ≥ τ ′ and returns
0 if (but not only if) ED[f · φ] ≤ −τ ′.

Our next step is to reduce B to an algorithm B′ that
uses queries to CSQ>(f, D) using Lemma 15. Let τ0 de-
note the tolerance of B. The general idea of the rest of the
transformation is as follows. The (τ ′, 1)-CSQ(f, D) oracle
can answer a query (φ, 0, τ ′) to CSQ>(f,D) oracle, that
is it can compare ED[f · φ] to 0 with tolerance τ ′. As-
sume, for simplicity, that we are given a function g(x) such
that ED[f · g] = θ. Then, by giving a query φ(x) − g(x)
to (τ ′, 1)-CSQ(f, D) oracle, we can find (up to tolerance
τ ′) whether ED[f · (φ − g)] ≥ 0 which is equivalent to
ED[f · φ] ≥ ED[f · g] = θ. Therefore, given g as above, we
can directly simulate a query to B′ using a query to (τ ′, 1)-
CSQ(f, D) oracle. The main problem is, therefore, to find a
function g that can be used in place of the threshold.

We note that given a function g with performance α we
can still obtain the result of a comparison by scaling the func-
tions appropriately. To find an appropriate g and α we use
the characterization of (weak) CSQ learning [Fel08]. Specif-
ically, in [Fel08] it is proved that CSQ learnability of C over
D implies that there exist a polynomial q(n) and an effi-
ciently computable polynomial-sized set of Boolean func-
tions S such that for every f ∈ C and D ∈ D, there exists
g′ ∈ S such that |ED[f · g′]| ≥ 1/q(n). We can assume
that ED[f · g′] ≥ 1/q(n) by replacing g′ with its negation if
necessary. Let g = argmaxg′∈S{ED[f · g′]} and let α be a
value such that 1/q(n) ≤ α ≤ ED[f · g] + τ/(3q(n)). For
every query (φ, θ, τ0) to CSQ>(f, D) we ask query φ′ =
(α · φ− θ · g)/2 to (τ ′, 1)-CSQ(f, D) for τ ′ = τ0/(3q(n)).
First note that the range of φ′ is [−1, 1] and hence the query
is legal. If the oracle returns 1, then ED[φ′ · f] ≥ −τ ′ or

ED[(α · φ− θ · g) · f]/2 = (α ·ED[φ · f]− θ ·ED[g · f]) /2

≥ −τ ′ = −τ0/(3q(n)).

This implies that

ED[φ · f] ≥ θ ·ED[g · f]
α

− 2τ0

3α · q(n)

≥ θ(α− τ0/(3q(n)))
α

− 2τ0

3α · q(n)

= θ − θ · τ0 + 2τ0

3α · q(n)
≥ θ − τ0

α · q(n)
≥ θ − τ0

and therefore 1 is also a valid response to query (φ, θ, τ0) for
CSQ>(f, D) oracle. If (τ ′, 1)-CSQ(f, D) oracle returns 0,
then ED[φ′ · f] ≤ τ ′ and this, by a similar argument implies
that 0 is a valid response to query (φ, θ, τ) for CSQ>(f,D).

We now deal with the problem of finding

g = argmaxg′∈S{ED[f · g′]}
and α such that 1/q(n) ≤ α ≤ ED[f · g] + τ0/(3q(n)). In-
stead of actually finding the pair, we try all pairs (g′, α′) such
that g′ ∈ S and α′ ∈ {i · τ0/(3q(n))}i∈[3q(n)/τ0]. That is for
every pair we simulate B′ while using g′ and α′ to answer
queries as described above. Let hg′,α′ denote the hypothe-
sis output by B′ in this simulation and let H be the set of
all hypotheses we obtain. Clearly, g and a suitable α will be
among the pairs we try and hence, there exists h ∈ H such
that ED[f ·h] ≥ 1− ε. Further our (τ ′, 1)-CSQ(f,D) oracle
allows us to compare ED[f · h1] with ED[f · h2] by asking
query (h1 − h2)/2. A result of the query is only guaranteed
to be correct when |ED[f ·h1]−ED[f ·h2]| > 2τ ′. Our goal
is, then, to use these comparisons to find a hypothesis hmax

with the maximum value of the correlation with the target
concept. Clearly hmax satisfies ED[f · hmax] ≥ 1− ε. Our
comparisons are imprecise and therefore we might not be
able to find hmax. However, we claim that one can find a hy-
pothesis h∗ such that ED[f ·h∗] ≥ ED[f ·hmax]−4τ ′ ≥ 1−
ε− 4τ ′. To achieve this we compare each pair of hypotheses
h1, h2 ∈ H . For a hypothesis h ∈ H let kh be the number of
comparisons in which the correlation of h was larger. Let h∗
be a hypothesis such that kh∗ = max{kh}h∈H . If, according
to the above comparison, the correlation of h∗ is larger than
the correlation of hmax then ED[f ·h∗] ≥ ED[f ·hmax]−2τ ′
and therefore h∗ has the desired property. Otherwise (if the
correlation of h∗ is smaller then the correlation of hmax),
the condition kh∗ ≥ khmax implies that there exist a func-
tion h′ ∈ H such that, the correlation of h∗ is larger than the
correlation of h′ and the correlation of h′ is larger than the
correlation of hmax. In both cases the comparison is correct
up to the tolerance of 2τ ′ and therefore

ED[f · h∗] ≥ ED[f · h′]− 2τ ′ ≥ ED[f · hmax]− 4τ ′ .

We note that this problem of finding a close-to-maximum
element from imprecise comparisons was recently studied
by Ajtai et al. who give substantially more efficient methods
of finding a close-to-maximum element [AFHN09].

As usual we can use B to learn to accuracy ε/2 and set
τ ′ = min{ε/8, τ0/(3q(n))} to ensure that ED[f ·h∗] ≥ 1−ε.
Using the bounds on τ0 and q(n), it is easy to verify that the
running time of the algorithm we constructed is polynomial
and that τ ′ can be lower bounded by an inverse of a polyno-
mial in n and 1/ε.

