
New Results for Random Walk Learning

Jeffrey C. Jackson∗
Duquesne University, 600 Forbes Ave

Pittsburgh PA 15282-1754 USA
jacksonj@duq.edu

Karl Wimmer
Carnegie Mellon University, 5000 Forbes Ave

Pittsburgh, PA 15213 USA
kwimmer@andrew.cmu.edu

Abstract

In a very strong positive result for passive learn-
ing algorithms, Bshouty et al. showed that DNF
expressions are efficiently learnable in the uni-
form random walk model. It is natural to ask
whether the more expressive class of thresh-
olds of parities (TOP) is similarly learnable,
but the Bshouty et al. time bound becomes
exponential in this case. We present a new
approach to weak parity learning that leads
to quasi-efficient random walk learnability of
TOP. We also introduce a more general ran-
dom walk model naturally related to the Metropolis-
Hastings algorithm and show that DNF is effi-
ciently learnable and that juntas are efficiently
agnostically learnable in this model.

1 Introduction
Positive results in learning theory have often assumed
that the learner has access to a membership oracle. Such
a learner is active, actively choosing examples for which
it would like information. In arguably the strongest re-
sult to date in any natural passive model (i.e., any model
with examples chosen randomly according to some nat-
ural process), Bshouty et al. [BMOS05] showed that an
algorithm that receives examples drawn via a uniform
random walk on the Boolean cube can efficiently learn
the class of DNF expressions, that is, learn an arbitrary
Boolean function f in time polynomial in the minimum
number of terms in any DNF expression equivalent to f
(and polynomial in other parameters).

However, Bshouty et al. left as an open problem
for the uniform random walk model the efficient learn-
ability of polynomial-weight threshold-of-parity (poly-
TOP) functions. A function f : {0, 1}n → {−1, 1}
is in poly-TOP if it can be represented as the sign of a
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weighted sum of parity functions, where the weights are
integers and the sum of the magnitudes of the weights
is bounded by some fixed polynomial in n. More gen-
erally, we can ask if there is an algorithm that learns
any Boolean function f in time polynomial in the mini-
mal weight of any TOP representation of f as well as in
the other standard PAC learning parameters. This is an
intriguing question both because TOP is a much more
expressive class than is DNF and because the member-
ship query algorithm for efficiently learning DNF, the
Harmonic Sieve [Jac97], can also efficiently learn TOP.

Unfortunately, as Bshouty et al. point out, their ap-
proach does not seem to be capable of producing a pos-
itive TOP learning result. Actually, they give two algo-
rithms, one using a random walk oracle and a second
using a weaker oracle that can be viewed as making sta-
tistical queries to estimate noise sensitivity (which is,
roughly, the probability that corrupting an input to a
function changes the output). A proof in Roch [Roc07]
shows that time 2Ω(n) is required for the latter approach,
and Bshouty et al.’s time bound for the former approach
also becomes exponential when applied to learning even
a single parity function on Ω(n) bits.

In somewhat more detail, the Bshouty et al. weak
learning algorithm is loosely based on the algorithm of
Goldreich and Levin [GL89]—adopted for learning pur-
poses by Kushilevitz and Mansour [KM93] and there-
fore often referred to in learning papers as the KM algorithm—
for locating all of the Fourier coefficients of a function
whose magnitude exceeds some threshold. Bshouty et
al. replace the influence-like estimates made by KM
with noise sensitivity estimates, and they also employ
a breadth-first search rather than KM’s depth-first ap-
proach. Each of these changes makes the modified KM
unsuitable for finding a weak-approximating parity on
Ω(n) bits: high-order Fourier coefficients contribute only
negligibly to low-order noise sensitivity estimates, which
are the only estimates made by Bshouty et al.; employ-
ing breadth-first search for a high-degree parity using
the original KM influence-like estimates would lead to



computing an exponential in n number of estimates be-
fore locating the parity.

We are aware of only one approach to weakly learn-
ing parity that differs fundamentally from KM. This ap-
proach is based on a clever algorithm due to Levin [Lev93]
that randomly partitions the set of 2n Fourier coeffi-
cients into polynomially many bins and succeeds in find-
ing a weak approximator if one of the bins is domi-
nated by a single coefficient, which happens with non-
negligible probability. Variants of Levin’s algorithm have
been proposed and analyzed by others ([BJT04, Fel07]).
But it is not at all clear how Levin’s original algorithm
or any of the variants could be adapted to use a random
walk oracle rather than a membership oracle.

Thus, it seems that a fundamentally new approach
to weakly learning parity functions is needed in order to
efficiently learn TOP in the random walk model. We
take a step in this direction, presenting an algorithm
that learns TOP in time polynomial in n but exponen-
tial in log(s/ε), where s is the minimal TOP-weight of
the target function and ε is the desired accuracy of the
approximation. The algorithm borrows some underly-
ing Fourier ideas from KM, but differs markedly in how
it employs these ideas. A key feature is that our algo-
rithm can be viewed as an elimination algorithm: it lo-
cates a good approximating parity function by eliminat-
ing all other possibilities. The core of our algorithm can
also be viewed as an agnostic learner for parity in the
random walk model; it is efficient if the optimal parity
is an O(1)-approximator to the target. In contrast, the
best current algorithm for the same problem given only
uniform random examples has time bound 2O(n/ logn)

[BKW03].
We give a quasi-polynomial algorithm for learning

TOP in the uniform random walk model. TOP is a nat-
ural class of functions that arise in learning theory, es-
pecially when using Fourier techniques. The efficient
learnability of TOP is an intriguing question both be-
cause TOP is a much more expressive class than is DNF
and because the membership query algorithm for effi-
ciently learning DNF, the Harmonic Sieve [Jac97], can
also efficiently learn TOP. Hence, TOP is a good can-
didate for a concept class to learn after establishing the
learnability of DNF. The algorithm is a seemingly counter-
intuitive search method for identifying large Fourier co-
efficients.

Finally, we introduce a more general random walk
model based on p-biased distributions. We briefly show
why Fourier-based methods cannot learn TOP in this
model. On a positive note, we generalize existing ef-
ficient learning results for DNF and juntas, showing that
these classes are also efficiently learnable (juntas agnos-
tically) in the product random walk model.

Also, we consider another learning model called the

Noise Sensitivity model. In this model, random exam-
ples come in correlated pairs. The first comes from the
standard random distribution, and the second is a noisy
version of the first. It is clear that this model is at least as
powerful as the standard PAC model, because we could
ignore the second example in each pair. [BMOS05] also
show that DNF expressions are learnable in this model;
we extend this result (and the model) to product distri-
butions. Further, we extend a membership query algo-
rithm of [GKK08] for agnostically learning functions of
few variables to product distribution Noise Sensitivity
models.

2 Preliminaries
All of our results are for versions of the well-known PAC
model: we are given some class of functionsF equipped
with a size measure (such as the class of all Boolean
functions and size measure the TOP size); a target func-
tion f : {0, 1}n → {−1, 1} is drawn from F adver-
sarially; examples 〈x, f(x)〉 of this function are drawn
from an oracle to be specified; given ε, δ > 0, the goal
is to with probability at least 1− δ (over randomness in
the oracle and learning algorithm) produce a hypothesis
h : {0, 1}n → {−1, 1} such that Pr[f(x) 6= h(x)] ≤ ε,
where the probability is with respect to some distribu-
tion D (that is related to the oracle; see below) over in-
stances x. If this goal can be achieved for every f ∈ F
and every ε and δ, then F is said to be learnable (from
the given oracle). If ε is of the form 1/2 − γ for some
specified γ (which is typically a function of other pa-
rameters), we say that h is a γ-weak approximation to
f , and if F is learnable for all ε so restricted then F
is γ-weakly learnable. The run time dependence on δ
for our algorithms, like virtually all PAC algorithms, is
logarithmic. For simplicity of exposition, we will as-
sume that δ is such a small constant, e.g. 2−50, that our
algorithms can rationally be relied on as if they were de-
terministic. The δ parameter is then subsumed in O()
notation and will henceforth be ignored.

Our TOP result makes use of a uniform random walk
oracle. In the first example 〈x, f(x)〉 returned by this or-
acle, the instance x is drawn uniformly at random from
{0, 1}n. Thereafter, the oracle chooses the instance to
return in each example by beginning with the previous
example’s instance x, choosing i ∈ [1..n] uniformly at
random, and replacing bit xi with a bit value chosen
uniformly at random (i.e., chosen by a fair coin flip).
This is known as updating x. (A more natural defini-
tion involves flipping rather than updating bits, but as
[BMOS05] point out, the definitions are essentially in-
terchangeable for uniform random walks, and the up-
dating oracle turns out to be more convenient for our
proofs.) The distribution D used to measure the accu-
racy of hypothesis h when learning from a uniform ran-
dom walk oracle is the uniform distribution over {0, 1}n.



We call PAC learning in this setting the uniform random
walk model, denoted by RW .

A class F is agnostically learnable if there is an al-
gorithm that, given an oracle for an arbitrary Boolean
function f and any ε > 0, returns a function h ∈ F such
that Pr[h 6= f ] ≤ ming∈F Pr[g 6= f ] +O(ε).

We will make extensive use of discrete Fourier anal-
ysis. For any a ∈ {0, 1}n, define χa : {0, 1}n →
{−1, 1} as χa(x) = (−1)a·x, where a · x represents
the dot product of vectors a and x. χa(x) returns the
parity (1 is even parity, −1 is odd) of the subset of com-
ponents of x indexed by the 1’s in a. For any function
g : {0, 1}n → R and any a ∈ {0, 1}n, let ĝ(a) ≡
E[g(x)χa(x)], where the expectation is over uniform
choice of x from {0, 1}n. We call ĝ(a) a Fourier co-
efficient of g. If g is Boolean (which in this paper means
that g has codomain {−1, 1}), then it is easily seen that
ĝ(a) = 1 − 2Pr[χa 6= g], where again the probability
is uniform over the Boolean cube. Thus, if |ĝ(a)| ≥ γ,
then either Pr[χa 6= g] ≤ 1/2 − γ/2 or Pr[−χa 6=
g] ≤ 1/2 − γ/2, which implies that either χa or −χa
is a (γ/2)-weak approximation to g. Our primary algo-
rithms, which focus on finding heavy Fourier coefficients—
finding a such that |ĝ(a)| ≥ γ for some threshold value
γ > 0 that will be clear from context—therefore can be
viewed as weak learning algorithms. We use L2(ĝ) to
denote

∑
a ĝ

2(a) and L∞(g) to represent maxx |g(x)|.
By Parseval’s identify, if g is Boolean, L2(ĝ) = 1. The
notation x ⊕ y represents the bitwise exclusive-OR of
the binary vectors x and y (assumed to be of the same
length). Sometimes, instead of f̂(a), we write f̂(A),
where A ⊂ {1, . . . , n} is the set of coordinates at which
a is 1.

We will call a string in {0, 1, ∗}n a restriction (we
use such strings to represent certain subsets, which can
be viewed as restrictions of larger sets). For example,
0 ∗ ∗1∗ represents the restriction and could be viewed
as representing the set of all 5-bit strings where the first
bit is 0 and the fourth is 1. The bits of a restriction are
those symbols that are not ∗’s. Note that an n-bit string
is considered to be a restriction. For 1 ≤ i ≤ n and
b ∈ {0, 1, ∗}, we use the notation α+ (i, b) to represent
the restriction α′ that is identical to α except that its ith
symbol α′i is b. We say that a restriction a is consistent
with a restriction α if and only if for all i such that αi 6=
∗ it is the case that ai = αi. A Fourier coefficient f̂(c)
is consistent with restriction a if c is consistent with a.
A sum over a ∈ α represents a sum over the set of all
bit-strings a consistent with α.

Our algorithms involve approximating various mean
values using sample means. As with the PAC δ parame-
ter, although the required sample size for such estimates
is logarithmically dependent on the confidence we wish
to have in the accuracy of the approximation, we will
treat this dependence as a constant.

3 Finding a Heavy Parity
In this section we present and analyze our core algo-
rithm, which given a threshold value θ and a uniform
random walk oracle for a function g : {0, 1}n → R
finds the index a of a Fourier coefficient such that |ĝ(a)|
(nearly) exceeds θ, if such a coefficient exists. The algo-
rithm’s time bound is exponential in log(L2(ĝ)/θ) but
is otherwise polynomial. In later sections we use this
algorithm to obtain other random walk results, agnosti-
cally learning parity (in polynomial time if the accuracy
ε is constant) and learning TOP (in polynomial time for
TOPs of constant size and given constant ε).

We will use FC(g, a, τ) to denote an algorithm that
uses a uniform random set of examples to estimate the
Fourier coefficient ĝ(a) = Ex[g(x)χa(x)] within an
additive error τ of the true value. By Hoeffding [Hoe63],
this is easy to implement with a random walk oracle
(walking O(n log n) steps from any point gives a uni-
form random input) in time polynomial in n and 1/τ .

We will use SSF(g, α, τ) to represent an algorithm
that returns a value σ such that |

∑
a∈α ĝ

2(a)− σ| ≤ τ .
If α contains exactly k bits (or equivalently, k non-∗ en-
tries), then it follows from the analysis of Kushilevitz
and Mansour [KM93] that

∑
a∈α ĝ

2(a) = Ex,y,z[g(x+
y)g(x + z)χd(y ⊕ z)], where the expectation is over
uniform choice of x from {0, 1}n−k and y and z from
{0, 1}k, where we use x + y to mean the n-bit string
formed by interleaving in the obvious way bits from x
in positions where there are ∗’s in α with bits from y
in non-∗ positions, and where d is the k-bit string ob-
tained by removing all of the ∗’s from α. Thus, SSF
can be implemented given a membership oracle for g by
randomly sampling the random variable g(x + y)g(x +
z)χd(y ⊕ z) and computing the sample mean. By the
Hoeffding bound [Hoe63], a sample of size polynomial
in 1/τ suffices, and therefore the time bound for SSF is
polynomial in n and 1/τ .

It is also easy to implement SSF using a random
walk oracle, but the time bound now depends on k, the
number of bits in α. Specifically, to obtain a single sam-
ple from the random variable g(x + y)g(x + z)χd(y⊕
z), we begin by walking O(n log n) steps to ensure in-
dependence with previous draws. We then draw from
the oracle until we observe a sequence of consecutive
steps that collectively update all of and only the k bits
corresponding to non-∗ characters in α (some of these
bits may be updated more than once). The inputs before
and after this sequence of steps give us the x + y and
x + z values we need in order to obtain a sample from
the random variable. It is not hard to see that the ex-
pected time to obtain such a sequence is O(nk), giving
us an algorithm for SSF in RW having run time poly-
nomial in 1/τ and nk.

Given SSF and FC, we next present an algorithm PT
that finds a parity function weakly approximating the



target, if such a function exists. See Algorithms 2 (the
primary portion of the algorithm, a recursive “helper”
function) and 1 (the entry point). We give some intuition
for the algorithm before analyzing it formally.

Consider two calls to SSF, one with α = 0∗n−1

and one with α = 1∗n−1 (and assume for this informal
description that the value returned by SSF is exact rather
than an approximation). Since these calls return sums
of squares of coefficients and since every coefficient is
included in one or the other of these sums, if both of
the returned values are less than θ2 then there can be
no coefficient of magnitude θ, and the algorithm returns
this information. On the other hand, if exactly one of the
returned values—say from the call with α = 1∗n−1—
returns an above-threshold value, then we know that the
index of any heavy coefficient must begin with a 1. In
this case, we could record this fact (this is the purpose of
the a parameter of PTH) and next attempt to fix a value
for the second bit of all heavy indices by calling SSF
with α = ∗0∗n−2 and α = ∗1∗n−2. If this similarly
returns a single above-threshold value, and if in fact we
have similar results for all n variables, then there will
remain a single candidate heavy Fourier coefficient with
index a; all other possibilities will have been eliminated.
We can then use FC to determine whether or not f̂(a) is
heavy, and we are done.

But what if, say, the calls to SSF with α = ∗0∗n−2

and α = ∗1∗n−2 both return a value greater than θ2?
Then the second bit of a heavy Fourier coefficient index
might be either 0 or 1. So, we tentatively choose one
value—say, 0—for this bit and temporarily remember
this bit in the a parameter of a recursive call to PTH.
We also record this bit value in the recursive call’s α pa-
rameter; as long as we are exploring the possibility that
some heavy coefficient has an index with 0 as its second
bit (that is, as long as the recursive call is active), this
α parameter will “remember” to include 0 as the sec-
ond bit in the α parameter of calls to SSF. For instance,
when we next attempt to fix a value for the third bit, we
will call SSF with the restrictions α = ∗00∗n−3 and
α = ∗01∗n−3. If both of these return below-threshold
values, we can conclude that no heavy coefficient has a
0 in the second bit of its index, and hence that this bit
must be 1 in any heavy coefficient’s index. We will then
retract our tentative choice of 0 for the second bit (by
returning from the recursive call to PTH) and replace
the second bit of a with a 1. This also means that we no
longer need to restrict bit 2 of α in subsequent calls to
SSF (also retracted by the recursive return). That is, we
can proceed to examine the third bit using the restric-
tions α = ∗ ∗ 0∗n−3 and α = ∗ ∗ 1∗n−3, because we
know the values that the first two bits must have in any
heavy index.

One possibly counter-intuitive aspect of the algo-
rithm is that, when choosing which of two bits to ten-
tatively select, it chooses the one corresponding to a
smaller sum of squares of coefficients. As the formal
analysis will show, this approach limits the number of
non-∗ values in the α parameter in every call to SSF,
which in turn allows us to achieve a quasipolynomial
time bound. Intuitively, this approach makes sense if we
think of the algorithm as seeking to eliminate non-heavy
coefficients rather than seeking to find heavy ones.

Algorithm 1 : PT
Input: θ, ε > 0
Output: thrown value, if any, is a ∈ {0, 1}n such that
|ĝ(a)| ≥ θ− ε/2; normal return guarantees that there
is no a such that |ĝ(a)| ≥ θ + ε/2.

if θ ≤ ε/2 then {any coefficient will do}
throw 0n

else
PTH(∗n, ∗n, 1, θ, ε)
return

end if

Algorithm 2 : PTH
Input: α, a ∈ {0, 1, ∗}n; 1 ≤ i ≤ n; θ > 0; 0 < ε <

2θ
Output: thrown value, if any, is c ∈ {0, 1}n such that
|ĝ(c)| ≥ θ − ε/2; normal return guarantees that there
is no c consistent with a such that |ĝ(c)| ≥ θ + ε/2.

while i ≤ n do
s0 ← SSF(g, α+ (i, 0), ε2/16)
s1 ← SSF(g, α+ (i, 1), ε2/16)
if s0 < θ2 and s1 < θ2 then

return
else if s0 < θ2 then
a← a+ (i, 1)

else if s1 < θ2 then
a← a+ (i, 0)

else
b← argminb(sb)
PTH(α+ (i, b), a+ (i, b), i+ 1, θ, ε)
a← a+ (i, 1− b)

end if
i← i+ 1

end while
if |FC(g, a, ε/2)| ≥ θ then

throw a
else

return
end if

We prove the correctness of our algorithm in two



lemmas.

Lemma 1 Suppose c is thrown. Then |ĝ(c)| ≥ θ − ε/2.

Proof: If θ ≤ ε/2, then 0n is thrown immediately in
PT, and we are done as θ − ε/2 ≤ 0. Otherwise, a
value is thrown near the end of PTH. Before throwing
c, we must have that |FC(g, c, ε/2)| ≥ θ, which implies
|ĝ(c)| ≥ θ − ε/2.

We now need to show that a normal return implies
that all the Fourier coefficients have low magnitude. We
show an equivalent statement:

Lemma 2 If there exists c′ ∈ {0, 1}n such that |ĝ(c′)| ≥
θ + ε/2, then the algorithm throws some value c.

Proof: We assume that θ > ε/2, otherwise PT throws
immediately. It suffices to consider all possibilities that
make iterations of PTH return. Suppose PTH is called
with a restriction a consistent with c′. When we com-
pute sb for a+ (i, b) also consistent with c′, we get that
sb is at least

(θ + ε/2)2 − ε2/16 ≥ θ2 + 2θε+ ε2/4− ε2/16
≥ θ2 + 2(ε/2)ε+ ε2/4− ε2/16
≥ θ2.

So the algorithm won’t return. Instead, it either in-
vokes a new iteration of PTH with restriction a+ (i, b)
or simply continues the current iteration with restriction
a+ (i, b). Either way, the effect is the same: an iteration
of PTH using a restriction a having one more bit consis-
tent with c′ is performed. If no other values are thrown,
eventually we will call FC(g, c′, ε/2), which will return
a value at least θ because |ĝ(c′)| ≥ θ + ε/2, and c′ will
be thrown, completing the proof.

What remains is to analyze the run time. First, notice
that each recursive call receives an argument α that con-
tains exactly as many bits k as the level of the recursion.
Furthermore, every recursive call has a different α argu-
ment, and in fact if S(α) represents the set of locations
of bits in restriction α, and if α1 and α2 are the values
of the α arguments in any two distinct calls to PTH,
then S(α1) 6= S(α2). Therefore, if the maximum level
of recursion is k, then there are O(nk) many recursive
calls. Furthermore, each of these calls runs (excluding
the time for any recursive calls it makes) in time polyno-
mial in nk and 1/ε, where the bulk of the time is spent
implementing SSF with a random walk oracle. There-
fore, the run time is similarly bounded, and our task is
reduced to finding a bound on k.

As a first approximation to bounding k, note that
if each call to SSF returned exactly the requested sum
of squares, then the maximum depth of the recursion

would clearly be O(log(L2(ĝ)/θ)), since the recursion
would always be performed on the smaller of two halves
of a larger sum of squares of coefficients and recursion
would never be performed on a sum of squares less than
θ2.

When using the actual SSF, the first thing to note
is that we might recurse on a restriction such that the
true sum of squares for that restriction (call it tb) could
be as small as θ2 − ε2/16 (which, since θ ≥ ε/2, is at
least 3/4 of θ2). Furthermore, it could be that the re-
striction recursed on actually corresponds to the larger
of the two sums of squares; in the worst case, tb =
t1−b + ε2/8. Combining these observations with some
straightforward analysis gives us that for θ ≥ ε/2, the
maximum value of tb/(tb + t1−b) is 3/4. Thus, even
when employing an imperfect SSF, the algorithm re-
curses on a sum of squares that is reduced by a constant
factor and recurses down to a value nearly the same as
that in the perfect SSF case. So we still have that the
maximum depth k of the recursion is O(log(L2(ĝ)/θ)).

We have now shown the following:

Lemma 3 Given any g : {0, 1}n → R and any positive
θ and ε, PT(θ, ε) runs in time polynomial in 1/ε and
nlog(L2(ĝ)/θ) and produces the output claimed in Algo-
rithm 1.

4 TOP Learning
The Harmonic Sieve [Jac97] learns—from a member-
ship oracle and with accuracy measured respect to the
uniform distribution—Threshold of Parity (TOP) func-
tions in time polynomial in their size s as well as in
n and 1/ε (recall that the TOP-size of a function f is
the minimum weight representation of that function as
a threshold of an integer-weighted sum of parity func-
tions). The algorithm’s proof of correctness is based in
part on the following fact [Jac97]:

Fact 4 For every f of TOP-size s and every distribution
D over {0, 1}n, there exists a parity χa such that

|ED[fχa]| ≥ 1
2s+ 1

Defining g ≡ 2nfD, it follows that for any TOP of
size s, there exists a such that |ĝ(a)| ≥ 1/(2s+ 1). The
original Sieve uses its membership queries in two ways:
1) to obtain uniform random examples for purposes of
estimating hypothesis accuracy; 2) to implement KM
in order to locate heavy a’s for D’s (and hence g’s) de-
fined by a certain boosting algorithm. The original Sieve
boosting algorithm (and some other boosting algorithms
which could be used instead and give asymptotically
better bounds; see, e.g., [KS99]) has the property that,
when learning with respect to uniform, theD’s it defines
all have the property that 2n maxxD(x) is polynomial



in 1/ε. It follows that any g defined using such a D has
L2(ĝ) that is also polynomial in 1/ε [Jac97].

It is a simple matter, then, to replace the membership-
query KM algorithm in the Sieve with the random-walk
PT algorithm. Since 1/θ is O(s) (we can assume s is
known, since a simple binary search technique can be
used otherwise), in the context of TOP learning PT will
run in time polynomial in nlog s/ε. And as noted earlier,
the uniform random examples required by the Sieve can
be obtained using a uniform random walk oracle with
O(n log n) run-time cost per example. We therefore ob-
tain the following:

Theorem 5 TOP is learnable in the uniform random
walk model in time nO(log(s/ε)).

When employing certain boosting algorithms, the
Harmonic Sieve produces a TOP as its hypothesis. Thus,
TOP is actually properly learnable in RW in the stated
time.

5 Agnostic Parity Learning
It is straightforward to employ PT to agnostically learn
parity inRW . First, some analysis. Let o = argmaxa |f̂(a)|;
that is, o represents the index of the optimal approximat-
ing parity (or its negation, but we will assume without
loss of generality that f̂(o) > 0). By the definition of
agnostic learning, we want an a ∈ {0, 1}n such that
Pr[χa 6= f ] ≤ Pr[χo 6= f ] + ε (we are also assuming,
again without loss of generality, that f̂(a) > 0). Since
for any a, Pr[χa 6= f ] = (1− f̂(a))/2, we can achieve
this goal if we find an a such that |f̂(o)| − |f̂(a)| ≤ 2ε.

Now we describe the agnostic algorithm, which is
given a single parameter ε > 0. First, we run PT with
θ = 1 (by Parseval, this is the value of L2(f̂) when
f is Boolean). If it throws a vector a, then we know
that |f̂(a)| ≥ 1− ε/2 and, since the maximum possible
value of |f̂(o)| is 1, that χa (or its negation, if f̂(a) is
negative) is a suitable hypothesis for purposes of agnos-
tic learning. If instead PT returns rather than throwing
a value, we will iteratively call PT, each time dividing θ
by 2. This process is guaranteed to terminate, since PT
will throw 0n if θ becomes smaller than ε/2. If the itera-
tion terminates because PT is called with θ ≤ ε/2, then
we know that there was no extra heavy coefficient for
the next larger θ, which could be at most ε. This means
that |f̂(o)| ≤ 3ε/2, which in turn means that χ0n or its
negation is a suitable agnostic hypothesis.

If PT throws a value using a value of θ that is neither
1 nor less than ε/2, we employ binary search, using the
successful θ as the initial lower bound of the search and
twice this value as the initial upper bound. The search
continues until these bounds are within ε of one another.
Call the lower and upper bounds θl and θu; we know

θu − thetal ≤ ε. From Lemma 1 we know that the
thrown value c is such that |f̂(c)| ≥ θl − ε/2. From
Lemma 2 we know that |f̂(o)| ≤ θu + ε/2 ≤ θl + 3ε/2.
Since θl > ε/2 in this case, we have that |f̂(c)−f̂(o)| ≤
2ε as desired.

Because the θ multiplicative step size begins at 1/2,
is reduced by a factor of 2 at each iteration, and ends
when it reachesO(ε), this procedure calls PTO(log 1/ε)
times. Furthermore, since all calls to PTH have θ ≥
ε/2, every call to PT runs in time polynomial in nlog 1/ε.
We therefore have the following:

Theorem 6 Parity is agnostically learnable in the uni-
form random walk model in time nO(log 1/ε).

6 Product Random Walk Model
We next turn to results for a generalization of the uni-
form random walk model to certain non-uniform walks.
In this section, we give definitions and some preliminary
observations. Subsequent sections generalize existing
learning results to this model.

6.1 Properties of p-biased Distributions
A p-biased distribution over {0, 1}n is a distribution where
Pr[xi = 0] = p for each index i. Define q = 1−p. Fur-
ther, all bits are independent of each other, so a p-biased
distribution D assigns probability weight

(Πi:xi=0p) (Πi:xi=1q)

to a string x.
Given a p-biased distribution D, we define the inner

product of two functions f and g to be Ex∼D[f(x)g(x)].
Given a string x and an index i, define

zi(x) =
{√

q/p if xi = 0,
−
√
p/q if xi = 1

and for a set S ⊆ [n], define φS = Πi∈Szi. It is shown
in [Bah61] that the 2n functions φS form an orthonormal
basis on real valued functions on {0, 1}n with respect to
the inner product defined in this section. We define the
p-biased Fourier coefficient of f : {0, 1}n → R as

f̃(S) = E
x∼D

[f(S)φS ].

Notice that when p = 1/2, we recover the uniform
distribution. Indeed, many theorems from Fourier anal-
ysis with respect to the uniform distribution are true in
p-biased distributions, such as Parseval’s identity:

E
x∼D

[f(x)2] =
∑
S

f̃(S)2.

With the standard Fourier coefficients, if f̂(a) is heavy
then the corresponding parity χa (or its negation) is a



weak approximator to f . But φS is not a Boolean func-
tion, so it cannot be directly used as a hypothesis if
f̃(S) is heavy. However, [Jac97] shows how to produce
a weak approximating Boolean function from a heavy
f̃(S) as long as |S| is logarithmic, which will be the
case for our results.

6.2 Product Random Walk Oracle
Given the definition of p-biased distributions, it is nat-
ural to define a product random walk oracle as follows.
The initial x will be chosen at random according to the
p-biased distribution. After this, given that the previous
call to the oracle returned 〈x, f(x)〉, the next call will
uniformly at random choose a coordinate i and update
bit i of x with a new random p-biased bit. The resulting
x′ is returned along with its label. We call PAC learning
from such an oracle and measuring the accuracy of the
hypothesis against the associated p-biased distribution
the Product Random Walk model, or pRW for short.

As an alternative definition in a more general frame-
work, we could define our pRW oracle using the Metropolis-
Hastings algorithm [Has70], a well-studied Markov chain
Monte Carlo method for generating samples from a dis-
tribution. Then, we could alternately define our ran-
dom walk oracle for a product distribution D as the or-
acle that generates samples as the Metropolis-Hastings
does in generating new states converging towards a ran-
dom draw from D. In other words, as the Metropolis-
Hastings algorithm generates x1,x2,x3, . . ., our ran-
dom walk oracle returns 〈x1, f(x1)〉, 〈x2, f(x2)〉, 〈x3, f(x3)〉, . . ..
We will see that for very simple parameter choices in the
Metropolis-Hastings algorithm, the two definitions are
equivalent. We take this as evidence that our definition
of the pRW oracle is indeed natural.

We will denote the general version of the Metropolis-
Hastings algorithm MH. Let µ be a probability distribu-
tion we want to generate samples from. The MH al-
gorithm, given a state xt and a probability distribution
Q(·;xt) depending on xt, proceeds as shown in Algo-
rithm 3.

Algorithm 3 : MH
Input: xt, a probability distribution Q(·;xt)
Output: xt+1

Draw x′ ∼ Q(x′;xt).
if µ(x′) ≥ µ(xt) then

return x′.
else

With probability µ(x′)/µ(xt), return x′.
return xt

end if

In our case µ(x) is a p-biased distribution, which we
will denote µp(x). Let (xt)(i) denote xt with the ith bit

flipped. We assume without loss of generality that p ≤
1
2 . We will define the distribution Q(·;xt) is as follows:
xt itself has probability mass p, and for all 1 ≤ i ≤ n,
(xt)(i) has probability mass q/n. In the MH algorithm
described above, xt+1 6= xt only if x′ = (xt)(i) for
some i and xt+1 = x′.

We claim that MH as shown gives samples with the
same distribution as samples from the pRW oracle. For
any fixed i, x′ = (xt)(i) with probability q/n. Let us
assume x′ = (xt)(i). If xti = 1, then xt+1 = x′, as
µp((xt)(i)) ≥ µp(xt) when p ≤ 1

2 . If xti = 0, then
xt+1 = x′ with probability µp((xt)(i))/µp(xt) = p/q.
Since drawing from Q(·;xt) and accepting a proposal
are independent events, we note that for all 1 ≤ i ≤ n,

Pr[xt+1 = (xt)(i)] =
{
q/n if xti = 1
p/n if xti = 0

and all of the other remaining probability mass for the
value of xt+1 lies on the event xt+1 = xt.

Our pRW oracle proceeds by uniformly picking a
coordinate and updating it with a p-biased bit. The prob-
ability any coordinate is chosen is 1/n. Upon updating
a bit, if that bit is 0 it is flipped with probability q, and if
it is 1 it is flipped with probability p. Since the choice of
flipping and choosing a coordinate are independent, we
see that MH and the pRW oracle sample from the same
distribution.

6.3 The Noise Sensitivity Model
We will actually prove our product random walk results
in a weaker learning model. The product ρ-noise sensi-
tivity model is defined similarly to the ρ-noise sensitiv-
ity model introduced by [BMOS05]. Specifically, each
call to the oracle for this model will return a 5-tuple
〈x, f(x),y, f(y), S〉, where x is generated at random
from a fixed p-biased distribution and y is constructed
from x as follows: for each of the n bits of x, inde-
pendently and with probability 1 − ρ update the bit by
choosing a new p-biased value for it (if a bit of x is not
updated, it is unchanged in y). S is the set of coordinates
of the bits updated. The accuracy of the hypothesis pro-
duced will be measured using the underlying p-biased
distribution. We refer to this model as pρNS for short.
The following lemma is an immediate generalization of
Proposition 10 of [BMOS05].

Lemma 7 For any 0 < ρ < 1, any algorithm in the
pρNS model can be simulated in the pRW model at the
cost of a O(n log n) factor in run time.

7 Positive and Negative Results in pRW

Having introduced the pRW model, we would like to
transfer our uniform random walk result for agnostically



learning parity to the pRW model. Unfortunately, this is
not possible using Fourier methods, due to the “smear-
ing” of the Fourier spectrum of parity under p-biased
distributions that we show next. Here, we think of par-
ity as a function from {−1, 1}n into {−1, 1}, where p is
the probability that any bit is 1, and q is the probability
that any bit is −1.

Claim 8 Let χ[n] be the parity function on n bits. Then
the p-biased Fourier coefficient f̃(S) of χ[n] is

(p− q)n−|S|(2√pq)|S|.

Proof: Assume we are working under the p-biased dis-
tribution; all expectations here are with respect to this
distribution. Then

f̃(S) = E[χ[n]φS ]
= E[Πi∈[n]χiΠi∈Sφi]
= E[Πi∈SχiφiΠi/∈Sχi]
= Πi∈SE[χiφi]Πi/∈SE[χi].

It is straightforward to check that E[χi] = p − q

and E[χiφi] = −1(−
√
p/q)q + 1(

√
q/p)p = 2

√
pq,

proving the claim.

When p is bounded away from 1
2 by a constant, both

p− q and 2
√
pq are bounded away from 1 by a constant,

so every f̃(S) is exponentially small. Thus, our agnostic
parity algorithm, which relies on finding heavy Fourier
coefficients, cannot succeed in the product random walk
model (for most p).

Despite this negative beginning, we are able to ob-
tain two positive results for pRW . We begin by ob-
serving that many of the algorithms used in learning un-
der the uniform distribution using Fourier analysis tech-
niques work by estimating certain (possibly weighted)
sums of squares of Fourier coefficients. Often, the al-
gorithm efficiently estimates these sums by estimating
expectations, and the correctness of these expectations
depends only on the orthogonality of the χS functions.
When only orthogonality is used, it is straightforward to
extend the algorithm to product distributions. However,
the structural theorems used to prove correctness may
not follow, as we have just seen in the case of parity. In
addition, the complexity of the algorithm may increase
when extending to product distributions.

We will show two positive learning results in pRW
(via results in pρNS):

Theorem 9 DNF formulas can be efficiently learned in
the pRW model, where the efficiency depends on the
parameters of the product distribution.

Theorem 10 Juntas can be efficiently agnostically learned
in the pRW model, where the efficiency depends on the
parameters of the product distribution.

The proofs are given in the next two sections.

8 Product Learning of DNF
In [BMOS05], the authors proceed by estimating certain
weighted sums of squares of Fourier coefficients. These
weighted sums correspond to noise sensitivity estimates.
In fact, most of these proofs (e.g., Lemma 6, Theorem 7,
and Theorem 11 of their paper) use only the orthogonal-
ity of the χS basis functions to show that the expecta-
tions that their algorithm estimates yield the appropriate
weighted sum of squares of Fourier coefficients. These
proofs can be generalized to pρNS almost immediately
by replacing all occurrences of f̂ with f̃ . The gener-
alization of their Claim 12 is not as immediate and is
therefore given here.

We start with some definitions from [BMOS05]. Given
a pρNS oracle and a set I ⊆ [n], let D(I)

α be the distri-
bution on pairs (x,y) as follows: x is a random string
from a p-biased distribution, and y is formed from x
by updating each bit in I with probability 1 and updat-
ing each bit not in I with probability 1 − α. Using
a pρNS oracle, we can simulate this distribution. We
simply keep drawing {x, f(x),y, f(y), S} until we get
a 5-tuple with I ⊆ S. With high probability, we need
at most poly((1 − α)|I|) examples until this happens.
Then (x,y) is our desired draw from D

(I)
α .

Define T ′(I) = E
(x,y)∼D(I)

α
[f(x)f(y)]. It is easy

to see that with a pρNS oracle we can estimate T ′(I).
Now we prove the analog of Claim 12 in the product
setting. Our proof will demonstrate that we only use
orthonormality of the φS functions to achieve this result.

Claim 11 T ′(I) =
∑
S

⋂
I=∅ α

|S|f̃(S)2

Proof: All expectations in this proof are over (x,y) ∼
D

(I)
α .

E[f(x)f(y)]

= E[(
∑
S

f̃(S)φS(x))(
∑
T

f̃(T )φT (y))]

=
∑
S

∑
T

f̃(S)f̃(T )E[φS(x)φT (y)]

=
∑
S

∑
T

f̃(S)f̃(T )E[Πi∈Szi(x)Πj∈T zj(y)].

Because we are working over product distributions, zi(x)
and zj(x) are independent when i 6= j, and x can be re-
placed with y in either or both cases. Notice that if S\T



or T \ S is nonempty, the expectation is 0. We will as-
sume without loss of generality that T \ S is nonempty
and j ∈ T \S. Then zj(y) is independent of every other
term in the expectation, and E[zj(y)] is 0. So the only
nonzero terms in the sum occur when S = T , and the
sum becomes

∑
S

f̃(S)2E[Πi∈Szi(x)zi(y)]

=
∑
S

f̃(S)2Πi∈SE[zi(x)zi(y)]

using independence again. Note that if i ∈ I , then zi(x)
and zi(y) are independent and thus E[zi(x)zi(y)] =
E[zi(x)]E[zi(y)] = 0. For i /∈ I , we see that yi is
updated with probability 1 − α. The probability distri-
bution is on zi(x)zi(y) is as follows:

zi(x)zi(y) =


q
p with probability p(α+ (1− α)p)
p
q with probability q(α+ (1− α)q)
−1 with probability 2pq(1− α)

The first case corresponds to both bits being 1, the
second for both bits being 0, and the third for when the
bits are different. The expectation is q(α+ (1− α)p) +
p(α+(1−α)q)−2pq(1−α) = (p+q)α+(1−α)pq+
(1− α)pq − 2pq(1− α) = α. So the sum reduces to

∑
S

f̃(S)2Πi∈SE[zi(x)zi(y)]] =
∑

S:S
⋂
I=∅

α|S|f̃(S)2,

as claimed.

In addition to these generalizations, we need (in us-
ing the Bounded Sieve; see [BMOS05] for details on the
use of this algorithm) to employ the p-biased version of
Jackson’s DNF fact [Jac97]. The end result is the fol-
lowing:

Theorem 12 The class of s-term DNF formulas over n
variables can be learned with error ε and confidence 1−
δ in the pρNS and pRW models in time poly(n, slog(1/p),
ε− log(1/p), 1/δ).

9 Agnostically Learning Juntas
We also claim that we can agnostically learn juntas us-
ing random walks. Our proof is very similar to the proof
in [GKK08]. In fact, our algorithm is virtually the same.
However, rather than working in the model of uniform
distribution plus membership queries, we extend this al-
gorithm to product distributions as well as restricting our
oracle access to a pρNS oracle.

The algorithm from [GKK08] makes use of its mem-
bership queries by using KM to identify all Fourier co-
efficients f̂(S) of heavy magnitude with |S| ≤ k. Since

the size of S is bounded for their purposes, it suffices
to use the Bounded Sieve, just as in [BMOS05]. In
showing above that DNF is efficiently learnable in the
pρNS model, we have effectively also shown that the
Bounded Sieve works even in the pρNS model. The
Fourier methods used in their algorithm again only use
orthogonality and are not specific to the uniform dis-
tribution. Therefore, after translating expectations to
the correct product distribution, we can copy their al-
gorithm.

Suppose we wish to agnostically learn a k-junta. We
will start by running the Bounded Sieve in pρNS, stop-
ping at level k and setting the threshold θ = ε2−k/2. In
this fashion, we find all heavy Fourier coefficients S of
f with |S| ≤ k. Let S be the set of heavy Fourier coef-
ficients found, and set g(x) =

∑
S∈S g̃(S)φS(x). Fol-

lowing [GKK08], let R be the set defined where i ∈ R
if and only if

∑
i∈S g̃(S)2 ≤ ε2/k. Finally, for every set

K ⊆ R of size k, estimate the error of sgn(g′K) on f ,
where g′K =

∑
S⊆K g̃(S)φS(x). The function sgn(g′K)

of least error over choices of K ⊆ R is our hypothesis.
We will now prove the correctness of this algorithm,

as well as a brief runtime analysis. We will prove a
sequence of lemmas very similar to those in [GKK08].
First, an analog of their Lemma 13:

Lemma 13 GivenK ⊂ [n], and f : {−1, 1}n → {−1, 1},
let fK(x) =

∑
S⊆K f̃(S)φS(x). TheK-junta that min-

imizes errf (·) is given by hK(x) = sgn(fK(x)). Also,
errf (hK) = 1

2 (1− ‖fK(X)‖1).

Proof: The proof follows similarly to Lemma 13 of [GKK08].
The major difference is that in the {φS} basis, xi is not
a unbiased bit. However, the φS functions are orthonor-
mal, which is the property used to derive (in the φ basis)
that E[φS(x)|xK = u] = 1[S ⊆ K]φS(u). The rest of
the argument follows directly by changing f̂ to f̃ .

Their Lemma 14 is also easily generalized:

Lemma 14 Let gK : {−1, 1} → R be such that ‖fK(x)−
gK(x)‖1 < ε, and let h′K = sgn(gK). Then errf (h′K) <
errf (hK) + 2ε.

Proof: This lemma follows from straightforward proba-
bility and from part of Lemma 13; the only modification
is to “average” in a product distribution sense over the
choice of u rather than a uniform distribution sense.

We note that we need an extra running time factor of
poly(p−k), since the nonzero Fourier coefficients could
be exponentially small in p. If we think of p as constant,
then p−k is subsumed by kk anyway. So finally, their
Theorem 15 generalizes using orthogonality as well:

Theorem 15 The described algorithm agnostically learns
k-juntas to error Opt + 5ε in the pρNS model in time
poly(n, kk, ε−k, p−k).



10 Further Work

Although we have made progress on learning TOP in
the uniform random walk model, it would of course be
preferable to have a polynomial-time algorithm. In the
product model, it is obvious that n-bit parity is learn-
able by simply observing which bits are relevant during
a walk. Can TOP be learned (quasi)-efficiently in this
model?
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